def test_scenario_1_s(self): # Smaller version of the corridor collisions scenario above # to facilitate DRL training scenario_1_mdp = OvercookedGridworld.from_layout_name( 'scenario1_s', start_order_list=['any'], cook_time=5) mlp = MediumLevelPlanner.from_pickle_or_compute( scenario_1_mdp, NO_COUNTERS_PARAMS, force_compute=force_compute) a0 = GreedyHumanModel(mlp) a1 = CoupledPlanningAgent(mlp) agent_pair = AgentPair(a0, a1) start_state = OvercookedState( [P((2, 1), s, Obj('onion', (2, 1))), P((4, 2), s)], {}, order_list=['onion']) env = OvercookedEnv(scenario_1_mdp, start_state_fn=lambda: start_state) trajectory, time_taken_hr, _, _ = env.run_agents( agent_pair, include_final_state=True, display=DISPLAY) env.reset() print("\n" * 5) print("-" * 50) a0 = CoupledPlanningAgent(mlp) a1 = CoupledPlanningAgent(mlp) agent_pair = AgentPair(a0, a1) trajectory, time_taken_rr, _, _ = env.run_agents( agent_pair, include_final_state=True, display=DISPLAY) print("H+R time taken: ", time_taken_hr) print("R+R time taken: ", time_taken_rr) self.assertGreater(time_taken_hr, time_taken_rr)
def test_one_player_env(self): mdp = OvercookedGridworld.from_layout_name("cramped_room_single") env = OvercookedEnv(mdp, horizon=12) a0 = FixedPlanAgent([stay, w, w, e, e, n, e, interact, w, n, interact]) ag = AgentGroup(a0) env.run_agents(ag, display=False) self.assertEqual(env.state.players_pos_and_or, (((2, 1), (0, -1)), ))
def test_scenario_1(self): # Myopic corridor collision # # X X X X X O X D X X X X X # X ↓Ho X X # X X X X X X X X ↓R X # X X # X S X X X X X X X X P P X # # H on left with onion, further away to the tunnel entrance than R. # Optimal planner tells R to go first and that H will wait # for R to pass. H however, starts going through the tunnel # and they get stuck. The H plan is a bit extreme (it would probably # realize that it should retrace it's steps at some point) scenario_1_mdp = OvercookedGridworld.from_layout_name( 'small_corridor', start_order_list=['any'], cook_time=5) mlp = MediumLevelPlanner.from_pickle_or_compute( scenario_1_mdp, NO_COUNTERS_PARAMS, force_compute=force_compute) a0 = GreedyHumanModel(mlp) a1 = CoupledPlanningAgent(mlp) agent_pair = AgentPair(a0, a1) start_state = OvercookedState( [P((2, 1), s, Obj('onion', (2, 1))), P((10, 2), s)], {}, order_list=['onion']) env = OvercookedEnv(scenario_1_mdp, start_state_fn=lambda: start_state) env.run_agents(agent_pair, include_final_state=True, display=DISPLAY)
def test_four_player_env_fixed(self): mdp = OvercookedGridworld.from_layout_name("multiplayer_schelling") assert mdp.num_players == 4 env = OvercookedEnv(mdp, horizon=16) a0 = FixedPlanAgent([stay, w, w]) a1 = FixedPlanAgent([ stay, stay, e, e, n, n, n, e, interact, n, n, w, w, w, n, interact, e ]) a2 = FixedPlanAgent( [stay, w, interact, n, n, e, e, e, n, e, n, interact, w]) a3 = FixedPlanAgent([e, interact, n, n, w, w, w, n, interact, e, s]) ag = AgentGroup(a0, a1, a2, a3) env.run_agents(ag, display=False) self.assertEqual(env.state.players_pos_and_or, (((1, 1), (-1, 0)), ((3, 1), (0, -1)), ((2, 1), (-1, 0)), ((4, 2), (0, 1))))
def test_one_coupled_one_fixed(self): a0 = CoupledPlanningAgent(self.mlp_large) a1 = FixedPlanAgent([s, e, n, w]) agent_pair = AgentPair(a0, a1) env = OvercookedEnv(large_mdp, horizon=10) trajectory, time_taken, _, _ = env.run_agents(agent_pair, include_final_state=True, display=DISPLAY) self.assertEqual(time_taken, 10)
def test_fixed_plan_agents(self): a0 = FixedPlanAgent([s, e, n, w]) a1 = FixedPlanAgent([s, w, n, e]) agent_pair = AgentPair(a0, a1) env = OvercookedEnv(large_mdp, horizon=10) trajectory, time_taken, _, _ = env.run_agents(agent_pair, include_final_state=True, display=DISPLAY) end_state = trajectory[-1][0] self.assertEqual(time_taken, 10) self.assertEqual(env.mdp.get_standard_start_state().player_positions, end_state.player_positions)
def test_two_coupled_agents(self): a0 = CoupledPlanningAgent(self.mlp_large) a1 = CoupledPlanningAgent(self.mlp_large) agent_pair = AgentPair(a0, a1) start_state = OvercookedState([P( (2, 2), n), P((2, 1), n)], {}, order_list=['any']) env = OvercookedEnv(large_mdp, start_state_fn=lambda: start_state) trajectory, time_taken, _, _ = env.run_agents(agent_pair, include_final_state=True, display=DISPLAY) end_state = trajectory[-1][0] self.assertEqual(end_state.order_list, [])
def test_two_coupled_agents_coupled_pair(self): mlp_simple = MediumLevelPlanner.from_pickle_or_compute( simple_mdp, NO_COUNTERS_PARAMS, force_compute=force_compute) cp_agent = CoupledPlanningAgent(mlp_simple) agent_pair = CoupledPlanningPair(cp_agent) start_state = OvercookedState([P( (2, 2), n), P((2, 1), n)], {}, order_list=['any']) env = OvercookedEnv(simple_mdp, start_state_fn=lambda: start_state) trajectory, time_taken, _, _ = env.run_agents(agent_pair, include_final_state=True, display=DISPLAY) end_state = trajectory[-1][0] self.assertEqual(end_state.order_list, [])
def test_one_coupled_one_greedy_human(self): # Even though in the first ~10 timesteps it seems like agent 1 is wasting time # it turns out that this is actually not suboptimal as the true bottleneck is # going to be agent 0 later on (when it goes to get the 3rd onion) a0 = GreedyHumanModel(self.mlp_large) a1 = CoupledPlanningAgent(self.mlp_large) agent_pair = AgentPair(a0, a1) start_state = OvercookedState([P( (2, 1), s), P((1, 1), s)], {}, order_list=['onion']) env = OvercookedEnv(large_mdp, start_state_fn=lambda: start_state) trajectory, time_taken, _, _ = env.run_agents(agent_pair, include_final_state=True, display=DISPLAY) end_state = trajectory[-1][0] self.assertEqual(end_state.order_list, [])
def test_two_greedy_human_open_map(self): scenario_2_mdp = OvercookedGridworld.from_layout_name( 'scenario2', start_order_list=['any'], cook_time=5) mlp = MediumLevelPlanner.from_pickle_or_compute( scenario_2_mdp, NO_COUNTERS_PARAMS, force_compute=force_compute) a0 = GreedyHumanModel(mlp) a1 = GreedyHumanModel(mlp) agent_pair = AgentPair(a0, a1) start_state = OvercookedState([P( (8, 1), s), P((1, 1), s)], {}, order_list=['onion']) env = OvercookedEnv(scenario_2_mdp, start_state_fn=lambda: start_state, horizon=100) trajectory, time_taken, _, _ = env.run_agents(agent_pair, include_final_state=True, display=DISPLAY) end_state = trajectory[-1][0] self.assertEqual(len(end_state.order_list), 0)
class TestOvercookedEnvironment(unittest.TestCase): def setUp(self): self.base_mdp = OvercookedGridworld.from_layout_name("cramped_room") self.env = OvercookedEnv(self.base_mdp, **DEFAULT_ENV_PARAMS) self.rnd_agent_pair = AgentPair(FixedPlanAgent([stay, w, w]), FixedPlanAgent([stay, e, e])) np.random.seed(0) def test_constructor(self): try: OvercookedEnv(self.base_mdp, horizon=10) except Exception as e: self.fail("Failed to instantiate OvercookedEnv:\n{}".format(e)) with self.assertRaises(TypeError): OvercookedEnv(self.base_mdp, **{"invalid_env_param": None}) def test_step_fn(self): for _ in range(10): joint_action = random_joint_action() self.env.step(joint_action) def test_execute_plan(self): action_plan = [random_joint_action() for _ in range(10)] self.env.execute_plan(self.base_mdp.get_standard_start_state(), action_plan) def test_run_agents(self): start_state = self.env.state self.env.run_agents(self.rnd_agent_pair) self.assertNotEqual(self.env.state, start_state) def test_rollouts(self): try: self.env.get_rollouts(self.rnd_agent_pair, 3) except Exception as e: self.fail("Failed to get rollouts from environment:\n{}".format(e)) def test_one_player_env(self): mdp = OvercookedGridworld.from_layout_name("cramped_room_single") env = OvercookedEnv(mdp, horizon=12) a0 = FixedPlanAgent([stay, w, w, e, e, n, e, interact, w, n, interact]) ag = AgentGroup(a0) env.run_agents(ag, display=False) self.assertEqual(env.state.players_pos_and_or, (((2, 1), (0, -1)), )) def test_four_player_env_fixed(self): mdp = OvercookedGridworld.from_layout_name("multiplayer_schelling") assert mdp.num_players == 4 env = OvercookedEnv(mdp, horizon=16) a0 = FixedPlanAgent([stay, w, w]) a1 = FixedPlanAgent([ stay, stay, e, e, n, n, n, e, interact, n, n, w, w, w, n, interact, e ]) a2 = FixedPlanAgent( [stay, w, interact, n, n, e, e, e, n, e, n, interact, w]) a3 = FixedPlanAgent([e, interact, n, n, w, w, w, n, interact, e, s]) ag = AgentGroup(a0, a1, a2, a3) env.run_agents(ag, display=False) self.assertEqual(env.state.players_pos_and_or, (((1, 1), (-1, 0)), ((3, 1), (0, -1)), ((2, 1), (-1, 0)), ((4, 2), (0, 1)))) def test_multiple_mdp_env(self): mdp0 = OvercookedGridworld.from_layout_name("cramped_room") mdp1 = OvercookedGridworld.from_layout_name("counter_circuit") mdp_fn = lambda: np.random.choice([mdp0, mdp1]) # Default env env = OvercookedEnv(mdp_fn, horizon=100) env.get_rollouts(self.rnd_agent_pair, 5) def test_starting_position_randomization(self): self.base_mdp = OvercookedGridworld.from_layout_name("cramped_room") start_state_fn = self.base_mdp.get_random_start_state_fn( random_start_pos=True, rnd_obj_prob_thresh=0.0) env = OvercookedEnv(self.base_mdp, start_state_fn) start_state = env.state.players_pos_and_or for _ in range(3): env.reset() print(env) curr_terrain = env.state.players_pos_and_or self.assertFalse(np.array_equal(start_state, curr_terrain)) def test_starting_obj_randomization(self): self.base_mdp = OvercookedGridworld.from_layout_name("cramped_room") start_state_fn = self.base_mdp.get_random_start_state_fn( random_start_pos=False, rnd_obj_prob_thresh=0.8) env = OvercookedEnv(self.base_mdp, start_state_fn) start_state = env.state.all_objects_list for _ in range(3): env.reset() print(env) curr_terrain = env.state.all_objects_list self.assertFalse(np.array_equal(start_state, curr_terrain)) def test_failing_rnd_layout(self): with self.assertRaises(TypeError): mdp_gen_params = {"None": None} mdp_fn = LayoutGenerator.mdp_gen_fn_from_dict(**mdp_gen_params) OvercookedEnv(mdp=mdp_fn, **DEFAULT_ENV_PARAMS) def test_random_layout(self): mdp_gen_params = {"prop_feats": (1, 1)} mdp_fn = LayoutGenerator.mdp_gen_fn_from_dict(**mdp_gen_params) env = OvercookedEnv(mdp=mdp_fn, **DEFAULT_ENV_PARAMS) start_terrain = env.mdp.terrain_mtx for _ in range(3): env.reset() print(env) curr_terrain = env.mdp.terrain_mtx self.assertFalse(np.array_equal(start_terrain, curr_terrain)) mdp_gen_params = { "mdp_choices": ['cramped_room', 'asymmetric_advantages'] } mdp_fn = LayoutGenerator.mdp_gen_fn_from_dict(**mdp_gen_params) env = OvercookedEnv(mdp=mdp_fn, **DEFAULT_ENV_PARAMS) layouts_seen = [] for _ in range(10): layouts_seen.append(env.mdp.terrain_mtx) env.reset() all_same_layout = all([ np.array_equal(env.mdp.terrain_mtx, terrain) for terrain in layouts_seen ]) self.assertFalse(all_same_layout)
def learn(*, network, env, total_timesteps, early_stopping=False, eval_env=None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4, vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95, log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2, save_interval=0, load_path=None, model_fn=None, scope='', **network_kwargs): ''' Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347) Parameters: ---------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See common/models.py/lstm for more details on using recurrent nets in policies env: baselines.common.vec_env.VecEnv environment. Needs to be vectorized for parallel environment simulation. The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class. nsteps: int number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int number of timesteps (i.e. number of actions taken in the environment) ent_coef: float policy entropy coefficient in the optimization objective lr: float or function learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training. vf_coef: float value function loss coefficient in the optimization objective max_grad_norm: float or None gradient norm clipping coefficient gamma: float discounting factor lam: float advantage estimation discounting factor (lambda in the paper) log_interval: int number of timesteps between logging events nminibatches: int number of training minibatches per update. For recurrent policies, should be smaller or equal than number of environments run in parallel. noptepochs: int number of training epochs per update cliprange: float or function clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training and 0 is the end of the training save_interval: int number of timesteps between saving events load_path: str path to load the model from **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' additional_params = network_kwargs["network_kwargs"] from baselines import logger # set_global_seeds(seed) We deal with seeds upstream if "LR_ANNEALING" in additional_params.keys(): lr_reduction_factor = additional_params["LR_ANNEALING"] start_lr = lr lr = lambda prop: (start_lr / lr_reduction_factor) + ( start_lr - (start_lr / lr_reduction_factor )) * prop # Anneals linearly from lr to lr/red factor if isinstance(lr, float): lr = constfn(lr) else: assert callable(lr) if isinstance(cliprange, float): cliprange = constfn(cliprange) else: assert callable(cliprange) total_timesteps = int(total_timesteps) policy = build_policy(env, network, **network_kwargs) bestrew = 0 # Get the nb of env nenvs = env.num_envs # Get state_space and action_space ob_space = env.observation_space ac_space = env.action_space # Calculate the batch_size nbatch = nenvs * nsteps nbatch_train = nbatch // nminibatches # Instantiate the model object (that creates act_model and train_model) if model_fn is None: from baselines.ppo2.model import Model model_fn = Model model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, scope=scope) if load_path is not None: model.load(load_path) # Instantiate the runner object runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam) if eval_env is not None: eval_runner = Runner(env=eval_env, model=model, nsteps=nsteps, gamma=gamma, lam=lam) epinfobuf = deque(maxlen=100) if eval_env is not None: eval_epinfobuf = deque(maxlen=100) # Start total timer tfirststart = time.perf_counter() best_rew_per_step = 0 run_info = defaultdict(list) nupdates = total_timesteps // nbatch print("TOT NUM UPDATES", nupdates) for update in range(1, nupdates + 1): assert nbatch % nminibatches == 0, "Have {} total batch size and want {} minibatches, can't split evenly".format( nbatch, nminibatches) # Start timer tstart = time.perf_counter() frac = 1.0 - (update - 1.0) / nupdates # Calculate the learning rate lrnow = lr(frac) # Calculate the cliprange cliprangenow = cliprange(frac) # Get minibatch obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run( ) #pylint: disable=E0632 if eval_env is not None: eval_obs, eval_returns, eval_masks, eval_actions, eval_values, eval_neglogpacs, eval_states, eval_epinfos = eval_runner.run( ) #pylint: disable=E0632 eplenmean = safemean([epinfo['ep_length'] for epinfo in epinfos]) eprewmean = safemean([epinfo['r'] for epinfo in epinfos]) rew_per_step = eprewmean / eplenmean print("Curr learning rate {} \t Curr reward per step {}".format( lrnow, rew_per_step)) if rew_per_step > best_rew_per_step and early_stopping: # Avoid updating best model at first iteration because the means might be a bit off because # of how the multithreaded batch simulation works best_rew_per_step = eprewmean / eplenmean checkdir = osp.join(logger.get_dir(), 'checkpoints') model.save(checkdir + ".temp_best_model") print("Saved model as best", best_rew_per_step, "avg rew/step") epinfobuf.extend(epinfos) if eval_env is not None: eval_epinfobuf.extend(eval_epinfos) # Here what we're going to do is for each minibatch calculate the loss and append it. mblossvals = [] if states is None: # nonrecurrent version # Index of each element of batch_size # Create the indices array inds = np.arange(nbatch) for _ in range(noptepochs): # Randomize the indexes np.random.shuffle(inds) # 0 to batch_size with batch_train_size step for start in tqdm.trange(0, nbatch, nbatch_train, desc="{}/{}".format(_, noptepochs)): end = start + nbatch_train mbinds = inds[start:end] slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mblossvals.append(model.train(lrnow, cliprangenow, *slices)) else: # recurrent version assert nenvs % nminibatches == 0 envsperbatch = nenvs // nminibatches envinds = np.arange(nenvs) flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps) for _ in range(noptepochs): np.random.shuffle(envinds) for start in range(0, nenvs, envsperbatch): end = start + envsperbatch mbenvinds = envinds[start:end] mbflatinds = flatinds[mbenvinds].ravel() slices = (arr[mbflatinds] for arr in (obs, returns, masks, actions, values, neglogpacs)) mbstates = states[mbenvinds] mblossvals.append( model.train(lrnow, cliprangenow, *slices, mbstates)) # Feedforward --> get losses --> update lossvals = np.mean(mblossvals, axis=0) # End timer tnow = time.perf_counter() # Calculate the fps (frame per second) fps = int(nbatch / (tnow - tstart)) if update % log_interval == 0 or update == 1: # Calculates if value function is a good predicator of the returns (ev > 1) # or if it's just worse than predicting nothing (ev =< 0) ev = explained_variance(values, returns) logger.logkv("serial_timesteps", update * nsteps) logger.logkv("nupdates", update) logger.logkv("total_timesteps", update * nbatch) logger.logkv("fps", fps) logger.logkv("explained_variance", float(ev)) eprewmean = safemean([epinfo['r'] for epinfo in epinfobuf]) ep_dense_rew_mean = safemean( [epinfo['ep_shaped_r'] for epinfo in epinfobuf]) ep_sparse_rew_mean = safemean( [epinfo['ep_sparse_r'] for epinfo in epinfobuf]) eplenmean = safemean([epinfo['ep_length'] for epinfo in epinfobuf]) run_info['eprewmean'].append(eprewmean) run_info['ep_dense_rew_mean'].append(ep_dense_rew_mean) run_info['ep_sparse_rew_mean'].append(ep_sparse_rew_mean) run_info['eplenmean'].append(eplenmean) run_info['explained_variance'].append(float(ev)) logger.logkv( 'true_eprew', safemean([epinfo['ep_sparse_r'] for epinfo in epinfobuf])) logger.logkv('eprewmean', eprewmean) logger.logkv('eplenmean', eplenmean) if eval_env is not None: logger.logkv( 'eval_eprewmean', safemean([epinfo['r'] for epinfo in eval_epinfobuf])) logger.logkv( 'eval_eplenmean', safemean([epinfo['l'] for epinfo in eval_epinfobuf])) time_elapsed = tnow - tfirststart logger.logkv('time_elapsed', time_elapsed) time_per_update = time_elapsed / update time_remaining = (nupdates - update) * time_per_update logger.logkv('time_remaining', time_remaining / 60) for (lossval, lossname) in zip(lossvals, model.loss_names): run_info[lossname].append(lossval) logger.logkv(lossname, lossval) if MPI is None or MPI.COMM_WORLD.Get_rank() == 0: logger.dumpkvs() # Update current logs if additional_params["RUN_TYPE"] in ["ppo", "joint_ppo"]: from overcooked_ai_py.utils import save_dict_to_file save_dict_to_file(run_info, additional_params["SAVE_DIR"] + "logs") # Linear annealing of reward shaping if additional_params["REW_SHAPING_HORIZON"] != 0: # Piecewise linear annealing schedule # annealing_thresh: until when we should stop doing 100% reward shaping # annealing_horizon: when we should reach doing 0% reward shaping annealing_horizon = additional_params[ "REW_SHAPING_HORIZON"] annealing_thresh = 0 def fn(x): if annealing_thresh != 0 and annealing_thresh - ( annealing_horizon / annealing_thresh) * x > 1: return 1 else: fn = lambda x: -1 * (x - annealing_thresh) * 1 / ( annealing_horizon - annealing_thresh) + 1 return max(fn(x), 0) curr_timestep = update * nbatch curr_reward_shaping = fn(curr_timestep) env.update_reward_shaping_param(curr_reward_shaping) print("Current reward shaping", curr_reward_shaping) sp_horizon = additional_params["SELF_PLAY_HORIZON"] # Save/overwrite best model if past a certain threshold if ep_sparse_rew_mean > bestrew and ep_sparse_rew_mean > additional_params[ "SAVE_BEST_THRESH"]: # Don't save best model if still doing some self play and it's supposed to be a BC model if additional_params[ "OTHER_AGENT_TYPE"][: 2] == "bc" and sp_horizon != 0 and env.self_play_randomization > 0: pass else: from human_aware_rl.ppo.ppo import save_ppo_model print("BEST REW", ep_sparse_rew_mean, "overwriting previous model with", bestrew) save_ppo_model( model, "{}seed{}/best".format( additional_params["SAVE_DIR"], additional_params["CURR_SEED"])) bestrew = max(ep_sparse_rew_mean, bestrew) # If not sp run, and horizon is not None, # vary amount of self play over time, either with a sigmoidal feedback loop # or with a fixed piecewise linear schedule. if additional_params[ "OTHER_AGENT_TYPE"] != "sp" and sp_horizon is not None: if type(sp_horizon) is not list: # Sigmoid self-play schedule based on current performance (not recommended) curr_reward = ep_sparse_rew_mean rew_target = sp_horizon shift = rew_target / 2 t = (1 / rew_target) * 10 fn = lambda x: -1 * (np.exp(t * (x - shift)) / (1 + np.exp(t * (x - shift)))) + 1 env.self_play_randomization = fn(curr_reward) print("Current self-play randomization", env.self_play_randomization) else: assert len(sp_horizon) == 2 # Piecewise linear self-play schedule # self_play_thresh: when we should stop doing 100% self-play # self_play_timeline: when we should reach doing 0% self-play self_play_thresh, self_play_timeline = sp_horizon def fn(x): if self_play_thresh != 0 and self_play_timeline - ( self_play_timeline / self_play_thresh) * x > 1: return 1 else: fn = lambda x: -1 * ( x - self_play_thresh) * 1 / ( self_play_timeline - self_play_thresh ) + 1 return max(fn(x), 0) curr_timestep = update * nbatch env.self_play_randomization = fn(curr_timestep) print("Current self-play randomization", env.self_play_randomization) if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and ( MPI is None or MPI.COMM_WORLD.Get_rank() == 0): checkdir = osp.join(logger.get_dir(), 'checkpoints') os.makedirs(checkdir, exist_ok=True) savepath = osp.join(checkdir, '%.5i' % update) print('Saving to', savepath) model.save(savepath) # Visualization of rollouts with actual other agent run_type = additional_params["RUN_TYPE"] if run_type in ["ppo", "joint_ppo" ] and update % additional_params["VIZ_FREQUENCY"] == 0: from overcooked_ai_py.mdp.overcooked_env import OvercookedEnv from overcooked_ai_py.mdp.overcooked_mdp import OvercookedGridworld from overcooked_ai_py.agents.agent import AgentPair from overcooked_ai_py.agents.benchmarking import AgentEvaluator from human_aware_rl.baselines_utils import get_agent_from_model print(additional_params["SAVE_DIR"]) mdp = OvercookedGridworld.from_layout_name( **additional_params["mdp_params"]) overcooked_env = OvercookedEnv(mdp, **additional_params["env_params"]) agent = get_agent_from_model( model, additional_params["sim_threads"], is_joint_action=(run_type == "joint_ppo")) agent.set_mdp(mdp) if run_type == "ppo": if additional_params["OTHER_AGENT_TYPE"] == 'sp': agent_pair = AgentPair(agent, agent, allow_duplicate_agents=True) else: print("PPO agent on index 0:") env.other_agent.set_mdp(mdp) agent_pair = AgentPair(agent, env.other_agent) trajectory, time_taken, tot_rewards, tot_shaped_rewards = overcooked_env.run_agents( agent_pair, display=True, display_until=100) overcooked_env.reset() agent_pair.reset() print("tot rew", tot_rewards, "tot rew shaped", tot_shaped_rewards) print("PPO agent on index 1:") agent_pair = AgentPair(env.other_agent, agent) else: agent_pair = AgentPair(agent) trajectory, time_taken, tot_rewards, tot_shaped_rewards = overcooked_env.run_agents( agent_pair, display=True, display_until=100) overcooked_env.reset() agent_pair.reset() print("tot rew", tot_rewards, "tot rew shaped", tot_shaped_rewards) print(additional_params["SAVE_DIR"]) if nupdates > 0 and early_stopping: checkdir = osp.join(logger.get_dir(), 'checkpoints') print("Loaded best model", best_rew_per_step) model.load(checkdir + ".temp_best_model") return model, run_info