Exemple #1
0
    def reindex(self, target, method=None, level=None, limit=None,
                tolerance=None):
        """
        Create index with target's values (move/add/delete values as necessary)

        Returns
        -------
        new_index : pd.Index
            Resulting index
        indexer : np.ndarray or None
            Indices of output values in original index

        """

        if method is not None:
            raise NotImplementedError("argument method is not implemented for "
                                      "CategoricalIndex.reindex")
        if level is not None:
            raise NotImplementedError("argument level is not implemented for "
                                      "CategoricalIndex.reindex")
        if limit is not None:
            raise NotImplementedError("argument limit is not implemented for "
                                      "CategoricalIndex.reindex")

        target = ibase._ensure_index(target)

        if not is_categorical_dtype(target) and not target.is_unique:
            raise ValueError("cannot reindex with a non-unique indexer")

        indexer, missing = self.get_indexer_non_unique(np.array(target))
        new_target = self.take(indexer)

        # filling in missing if needed
        if len(missing):
            cats = self.categories.get_indexer(target)

            if (cats == -1).any():
                # coerce to a regular index here!
                result = Index(np.array(self), name=self.name)
                new_target, indexer, _ = result._reindex_non_unique(
                    np.array(target))

            else:

                codes = new_target.codes.copy()
                codes[indexer == -1] = cats[missing]
                new_target = self._create_from_codes(codes)

        # we always want to return an Index type here
        # to be consistent with .reindex for other index types (e.g. they don't
        # coerce based on the actual values, only on the dtype)
        # unless we had an inital Categorical to begin with
        # in which case we are going to conform to the passed Categorical
        new_target = np.asarray(new_target)
        if is_categorical_dtype(target):
            new_target = target._shallow_copy(new_target, name=self.name)
        else:
            new_target = Index(new_target, name=self.name)

        return new_target, indexer
Exemple #2
0
def _union_indexes(indexes):
    if len(indexes) == 0:
        raise AssertionError("Must have at least 1 Index to union")
    if len(indexes) == 1:
        result = indexes[0]
        if isinstance(result, list):
            result = Index(sorted(result))
        return result

    indexes, kind = _sanitize_and_check(indexes)

    def _unique_indices(inds):
        def conv(i):
            if isinstance(i, Index):
                i = i.tolist()
            return i

        return Index(lib.fast_unique_multiple_list([conv(i) for i in inds]))

    if kind == "special":
        result = indexes[0]

        if hasattr(result, "union_many"):
            return result.union_many(indexes[1:])
        else:
            for other in indexes[1:]:
                result = result.union(other)
            return result
    elif kind == "array":
        index = indexes[0]
        for other in indexes[1:]:
            if not index.equals(other):
                return _unique_indices(indexes)

        name = _get_consensus_names(indexes)[0]
        if name != index.name:
            index = index._shallow_copy(name=name)
        return index
    else:
        return _unique_indices(indexes)
Exemple #3
0
def _union_indexes(indexes):
    if len(indexes) == 0:
        raise AssertionError('Must have at least 1 Index to union')
    if len(indexes) == 1:
        result = indexes[0]
        if isinstance(result, list):
            result = Index(sorted(result))
        return result

    indexes, kind = _sanitize_and_check(indexes)

    def _unique_indices(inds):
        def conv(i):
            if isinstance(i, Index):
                i = i.tolist()
            return i

        return Index(lib.fast_unique_multiple_list([conv(i) for i in inds]))

    if kind == 'special':
        result = indexes[0]

        if hasattr(result, 'union_many'):
            return result.union_many(indexes[1:])
        else:
            for other in indexes[1:]:
                result = result.union(other)
            return result
    elif kind == 'array':
        index = indexes[0]
        for other in indexes[1:]:
            if not index.equals(other):
                return _unique_indices(indexes)

        return index
    else:
        return _unique_indices(indexes)
Exemple #4
0
 def to_tuples(self):
     return Index(com._asarray_tuplesafe(zip(self.left, self.right)))
    def reindex(self,
                target,
                method=None,
                level=None,
                limit=None,
                tolerance=None):
        """
        Create index with target's values (move/add/delete values as necessary)

        Returns
        -------
        new_index : pd.Index
            Resulting index
        indexer : np.ndarray or None
            Indices of output values in original index

        """

        if method is not None:
            raise NotImplementedError("argument method is not implemented for "
                                      "CategoricalIndex.reindex")
        if level is not None:
            raise NotImplementedError("argument level is not implemented for "
                                      "CategoricalIndex.reindex")
        if limit is not None:
            raise NotImplementedError("argument limit is not implemented for "
                                      "CategoricalIndex.reindex")

        target = ibase._ensure_index(target)

        if not com.is_categorical_dtype(target) and not target.is_unique:
            raise ValueError("cannot reindex with a non-unique indexer")

        indexer, missing = self.get_indexer_non_unique(np.array(target))
        new_target = self.take(indexer)

        # filling in missing if needed
        if len(missing):
            cats = self.categories.get_indexer(target)

            if (cats == -1).any():
                # coerce to a regular index here!
                result = Index(np.array(self), name=self.name)
                new_target, indexer, _ = result._reindex_non_unique(
                    np.array(target))

            else:

                codes = new_target.codes.copy()
                codes[indexer == -1] = cats[missing]
                new_target = self._create_from_codes(codes)

        # we always want to return an Index type here
        # to be consistent with .reindex for other index types (e.g. they don't
        # coerce based on the actual values, only on the dtype)
        # unless we had an inital Categorical to begin with
        # in which case we are going to conform to the passed Categorical
        new_target = np.asarray(new_target)
        if com.is_categorical_dtype(target):
            new_target = target._shallow_copy(new_target, name=self.name)
        else:
            new_target = Index(new_target, name=self.name)

        return new_target, indexer
Exemple #6
0
 def astype(self, dtype):
     if np.dtype(dtype) not in (np.object, np.float64):
         raise TypeError('Setting %s dtype to anything other than '
                         'float64 or object is not supported' %
                         self.__class__)
     return Index(self._values, name=self.name, dtype=dtype)