Exemple #1
0
 def astype(self, dtype, copy=True):
     if is_interval_dtype(dtype):
         if copy:
             self = self.copy()
         return self
     elif is_object_dtype(dtype):
         return Index(self.values, dtype=object)
     elif is_categorical_dtype(dtype):
         from pandas import Categorical
         return Categorical(self, ordered=True)
     raise ValueError('Cannot cast IntervalIndex to dtype %s' % dtype)
Exemple #2
0
            def _evaluate_numeric_binop(self, other):

                other = self._validate_for_numeric_binop(other, op, opstr)
                attrs = self._get_attributes_dict()
                attrs = self._maybe_update_attributes(attrs)

                if reversed:
                    self, other = other, self

                try:
                    # alppy if we have an override
                    if step:
                        with np.errstate(all='ignore'):
                            rstep = step(self._step, other)

                        # we don't have a representable op
                        # so return a base index
                        if not is_integer(rstep) or not rstep:
                            raise ValueError

                    else:
                        rstep = self._step

                    with np.errstate(all='ignore'):
                        rstart = op(self._start, other)
                        rstop = op(self._stop, other)

                    result = RangeIndex(rstart,
                                        rstop,
                                        rstep,
                                        **attrs)

                    # for compat with numpy / Int64Index
                    # even if we can represent as a RangeIndex, return
                    # as a Float64Index if we have float-like descriptors
                    if not all([is_integer(x) for x in
                                [rstart, rstop, rstep]]):
                        result = result.astype('float64')

                    return result

                except (ValueError, TypeError, AttributeError):
                    pass

                # convert to Int64Index ops
                if isinstance(self, RangeIndex):
                    self = self.values
                if isinstance(other, RangeIndex):
                    other = other.values

                with np.errstate(all='ignore'):
                    results = op(self, other)
                return Index(results, **attrs)
Exemple #3
0
    def equals(self, other):

        if self.is_(other):
            return True

        # if we can coerce to an II
        # then we can compare
        if not isinstance(other, IntervalIndex):
            if not is_interval_dtype(other):
                return False
            other = Index(getattr(other, '.values', other))

        return (self.left.equals(other.left) and self.right.equals(other.right)
                and self.closed == other.closed)
Exemple #4
0
def _get_combined_index(indexes, intersect=False):
    # TODO: handle index names!
    indexes = _get_distinct_indexes(indexes)
    if len(indexes) == 0:
        return Index([])
    if len(indexes) == 1:
        return indexes[0]
    if intersect:
        index = indexes[0]
        for other in indexes[1:]:
            index = index.intersection(other)
        return index
    union = _union_indexes(indexes)
    return _ensure_index(union)
Exemple #5
0
 def astype(self, dtype, copy=True):
     dtype = pandas_dtype(dtype)
     if is_float_dtype(dtype):
         values = self._values.astype(dtype, copy=copy)
     elif is_integer_dtype(dtype):
         if self.hasnans:
             raise ValueError('cannot convert float NaN to integer')
         values = self._values.astype(dtype, copy=copy)
     elif is_object_dtype(dtype):
         values = self._values.astype('object', copy=copy)
     else:
         raise TypeError('Setting %s dtype to anything other than '
                         'float64 or object is not supported' %
                         self.__class__)
     return Index(values, name=self.name, dtype=dtype)
Exemple #6
0
    def _convert_list_indexer(self, keyarr, kind=None):
        # Return our indexer or raise if all of the values are not included in
        # the categories

        if self.categories._defer_to_indexing:
            indexer = self.categories._convert_list_indexer(keyarr, kind=kind)
            return Index(self.codes).get_indexer_for(indexer)

        indexer = self.categories.get_indexer(keyarr)
        if (indexer == -1).any():
            raise KeyError("a list-indexer must only "
                           "include values that are "
                           "in the categories")

        return self.get_indexer(keyarr)
Exemple #7
0
def _sanitize_and_check(indexes):
    kinds = list(set([type(index) for index in indexes]))

    if list in kinds:
        if len(kinds) > 1:
            indexes = [Index(com._try_sort(x))
                       if not isinstance(x, Index) else
                       x for x in indexes]
            kinds.remove(list)
        else:
            return indexes, 'list'

    if len(kinds) > 1 or Index not in kinds:
        return indexes, 'special'
    else:
        return indexes, 'array'
Exemple #8
0
    def _simple_new(cls, start, stop=None, step=None, name=None,
                    dtype=None, **kwargs):
        result = object.__new__(cls)

        # handle passed None, non-integers
        if start is None or not com.is_integer(start):
            try:
                return RangeIndex(start, stop, step, name=name, **kwargs)
            except TypeError:
                return Index(start, stop, step, name=name, **kwargs)

        result._start = start
        result._stop = stop or 0
        result._step = step or 1
        result.name = name
        for k, v in compat.iteritems(kwargs):
            setattr(result, k, v)

        result._reset_identity()
        return result
Exemple #9
0
def _union_indexes(indexes):
    if len(indexes) == 0:
        raise AssertionError('Must have at least 1 Index to union')
    if len(indexes) == 1:
        result = indexes[0]
        if isinstance(result, list):
            result = Index(sorted(result))
        return result

    indexes, kind = _sanitize_and_check(indexes)

    def _unique_indices(inds):
        def conv(i):
            if isinstance(i, Index):
                i = i.tolist()
            return i

        return Index(lib.fast_unique_multiple_list([conv(i) for i in inds]))

    if kind == 'special':
        result = indexes[0]

        if hasattr(result, 'union_many'):
            return result.union_many(indexes[1:])
        else:
            for other in indexes[1:]:
                result = result.union(other)
            return result
    elif kind == 'array':
        index = indexes[0]
        for other in indexes[1:]:
            if not index.equals(other):
                return _unique_indices(indexes)

        name = _get_consensus_names(indexes)[0]
        if name != index.name:
            index = index._shallow_copy(name=name)
        return index
    else:
        return _unique_indices(indexes)
Exemple #10
0
    def reindex(self,
                target,
                method=None,
                level=None,
                limit=None,
                tolerance=None):
        """
        Create index with target's values (move/add/delete values as necessary)

        Returns
        -------
        new_index : pd.Index
            Resulting index
        indexer : np.ndarray or None
            Indices of output values in original index

        """

        if method is not None:
            raise NotImplementedError("argument method is not implemented for "
                                      "CategoricalIndex.reindex")
        if level is not None:
            raise NotImplementedError("argument level is not implemented for "
                                      "CategoricalIndex.reindex")
        if limit is not None:
            raise NotImplementedError("argument limit is not implemented for "
                                      "CategoricalIndex.reindex")

        target = ibase._ensure_index(target)

        if not is_categorical_dtype(target) and not target.is_unique:
            raise ValueError("cannot reindex with a non-unique indexer")

        indexer, missing = self.get_indexer_non_unique(np.array(target))
        new_target = self.take(indexer)

        # filling in missing if needed
        if len(missing):
            cats = self.categories.get_indexer(target)

            if (cats == -1).any():
                # coerce to a regular index here!
                result = Index(np.array(self), name=self.name)
                new_target, indexer, _ = result._reindex_non_unique(
                    np.array(target))

            else:

                codes = new_target.codes.copy()
                codes[indexer == -1] = cats[missing]
                new_target = self._create_from_codes(codes)

        # we always want to return an Index type here
        # to be consistent with .reindex for other index types (e.g. they don't
        # coerce based on the actual values, only on the dtype)
        # unless we had an inital Categorical to begin with
        # in which case we are going to conform to the passed Categorical
        new_target = np.asarray(new_target)
        if is_categorical_dtype(target):
            new_target = target._shallow_copy(new_target, name=self.name)
        else:
            new_target = Index(new_target, name=self.name)

        return new_target, indexer
Exemple #11
0
 def to_tuples(self):
     return Index(com._asarray_tuplesafe(zip(self.left, self.right)))
Exemple #12
0
 def astype(self, dtype):
     if np.dtype(dtype) not in (np.object, np.float64):
         raise TypeError('Setting %s dtype to anything other than '
                         'float64 or object is not supported' %
                         self.__class__)
     return Index(self._values, name=self.name, dtype=dtype)