Exemple #1
0
    def writeTransitionMatrix(scenario):

        # load solution objects
        from pathFinderModule import PathFinder
        cacheDir = PathFinder.getCacheDir(scenario)
        with open(os.path.join(cacheDir, 'decisions.pkl'), 'rb') as handle:
            OPTs = pickle.load(handle)

        # get the base output directory
        baseOutputDir = PathFinder.getTransitionMatrixOutputDir()

        # create output folder if it does not exist
        if not os.path.exists(baseOutputDir):
            os.path.mkdir(baseOutputDir)

        # get the tagged subfolder output directory
        outputDir = os.path.join(baseOutputDir,
                                 PathFinder.getScenarioPathTag(scenario))

        # check for whether scenario output subfolder exists
        # if it does, then this is a duplicate writing out
        if os.path.exists(outputDir):
            return None

        # check if map file exists, create it if it does not
        if not os.path.exists(os.path.join(baseOutputDir, 'map.csv')):
            fileHandle = open(os.path.join(baseOutputDir, 'map.csv'), 'w')
            for k in scenario:
                fileHandle.write(k + ',')
            fileHandle.write('\n')
            fileHandle.close()

        # append scenario info to map file by writing out to text file
        # then loading text file back in
        with open('.temp.txt', 'w') as f:
            values = scenario.getParams()
            w = csv.DictWriter(f, values.keys())
            w.writerow(values)
        f = open('.temp.txt', 'r')
        text = f.read()
        f.close()
        os.path.remove('.temp.txt')
        fileHandle = open(os.path.join(baseOutputDir, 'map.csv'), 'a+')
        print(fileHandle,
              scenario.basedeftag + ',' + scenario.counterdeftag + ',' + text)
        fileHandle.close()

        # create a folder to store output
        os.path.mkdir(outputDir)

        # converts policy function into discretized transition matrix
        # if policy doesn't fall neatly into grid, averages between two
        # nearest points proportionally to distance from that point
        def convertToTransitionMatrix(policy, values, dim):
            discrete = np.digitize(policy, values)
            distanceToBinEdge = policy - values(discrete)
            distanceToBinEdgeUpper = policy - values(discrete + 1)
            upperProbability = distanceToBinEdge / (distanceToBinEdge -
                                                    distanceToBinEdgeUpper)
            transition = np.zeros((len(discrete), dim))
            transition[np.ravel_multi_index(
                (np.array(range(grids['nz'] * grids['nk'] * grids['nb'])),
                 (discrete + 1)), transition.shape)] = upperProbability
            transition[np.ravel_multi_index(
                (np.array(range(
                    grids['nz'] * grids['nk'] * grids['nb'])), discrete),
                transition.shape)] = 1 - upperProbability
            return transition

        # for a given age, year, discretize assets and lifetime earning
        # average transitions. store output in `transitions` variable.
        transitions = {}

        # store grids for easy access
        from paramGeneratorModule import ParamGenerator
        grids = ParamGenerator.grids(scenario)

        for age in range(OPTs['SAVINGS'].shape[3]):
            for year in range(OPTs['SAVINGS'].shape[4]):

                # compute transition matrices for full state -> assets,
                # earnings grid
                assetsTransition = convertToTransitionMatrix(
                    OPTs['SAVINGS'][:, :, :, age, year], grids['kv'],
                    grids['nk'])

                earningsTransition = convertToTransitionMatrix(
                    OPTs['AVG_EARNINGS'][:, :, :, age, year], grids['bv'],
                    grids['nb'])

                # compute joint transition of assets and earnings
                assetEarningsTransition = (
                    np.kron(np.ones((1, grids['nb'])), assetsTransition) *
                    np.kron(earningsTransition, np.ones((1, grids['nk']))))

                # expand joint transition of asset and earnings to full
                # state space size
                assetEarningsTransition = np.kron(np.ones((1, grids['nz'])),
                                                  assetEarningsTransition)

                # get the productivity transition matrix
                productivityTransition = grids['transz']
                productivityTransition = np.squeeze(
                    productivityTransition[age, :, :])

                # expand it to the full state space size
                productivityTransition = np.kron(
                    productivityTransition,
                    np.ones(grids['nb'] * grids['nk'],
                            grids['nb'] * grids['nk']))

                # multiply to get full transition matrix
                transitionMatrix = productivityTransition * assetEarningsTransition

                # save transition matrix into struct
                transitions['age' + str(age) + 'year' +
                            str(year)] = transitionMatrix

        with open(os.path.join(outputDir, 'data.pkl'), 'wb') as handle:
            pickle.dump(transitions, handle, protocol=pickle.HIGHEST_PROTOCOL)
    def __init__(self, scenario, DIST=None, Market=None, OPTs=None):

        if not scenario.isSteady():
            raise Exception(
                'Unable to generate income distribution moments for transition paths.'
            )

        # PARAMETERS
        pathFinder = PathFinder(scenario)

        self.scenario = scenario
        save_dir = PathFinder.getCacheDir(scenario)

        # Define time constants and grids
        timing = ParamGenerator.timing(scenario)
        grids = ParamGenerator.grids(scenario)
        T_life = timing['T_life']  # Total life years
        T_model = timing['T_model']  # Transition path model years
        Tmax_work = timing['Tmax_work']  # Largest retirement age
        ng = grids['ng']  # num groups
        nz = grids['nz']  # num labor productivity shocks
        zs = grids['zs']  # shocks grid (by demographic type and age)
        nk = grids['nk']  # num asset points
        nb = grids['nb']  # num avg. earnings points

        # Useful later for a couple of functions
        self.kv = grids['kv']
        self.karray = np.tile(np.reshape(grids['kv'], [1, nk, 1, 1, 1, 1]),
                              [nz, 1, nb, T_life, ng, T_model])
        self.T_work = Tmax_work
        self.T_life = T_life

        ## DISTRIBUTION AND POLICY FUNCTIONS

        # Import households distribution
        if DIST is None:
            with open(os.path.join(save_dir, 'distribution.pkl'),
                      'rb') as handle:
                s = pickle.load(handle)
            DIST = s['DIST']
        dist = DIST.flatten(order='F')
        if T_model == 1:
            DIST = DIST[:, :, :, :, :, np.newaxis]

        dist_l = np.zeros((nz, nk, nb, T_life, ng, T_model))
        dist_l[0:nz, 0:nk, 0:nb, 0:Tmax_work, 0:ng,
               0:T_model] = DIST[0:nz, 0:nk, 0:nb, 0:Tmax_work, 0:ng,
                                 0:T_model]  # Working age population
        dist_l[0:nz, 0:nk, 0:nb, Tmax_work - 1:T_life, 0:ng,
               0:T_model] = 0  # Retired population
        dist_l = dist_l.flatten(order='F') / np.sum(dist_l)

        # Useful later for a couple of functions
        self.DIST = DIST

        # Import market variables
        if Market is None:
            with open(os.path.join(save_dir, 'market.pkl')) as handle:
                s = pickle.load(handle)
            wages = s['wages']
            capsharesAM = s['capsharesAM']
            bondDividendRates = s['bondDividendRates']
            equityDividendRates = s['equityDividendRates']
        else:
            wages = Market['wages']
            capsharesAM = Market['capsharesAM']
            bondDividendRates = Market['bondDividendRates']
            equityDividendRates = Market['equityDividendRates']

        # Import policy functions
        f = lambda X: np.tile(np.reshape(X, [nz, nk, nb, T_life, 1, T_model]),
                              [1, 1, 1, 1, ng, 1])
        if OPTs is None:
            with open(os.path.join(save_dir, 'decisions.pkl')) as handle:
                s = pickle.load(handle)
            s = s['OPTs']
            labinc = f(s['LABOR']) * np.tile(
                np.reshape(np.transpose(zs, [2, 1, 0]),
                           [nz, 1, 1, T_life, 1, T_model]),
                [1, nk, nb, 1, ng, 1]) * wages
            k = f(s['SAVINGS'])
            self.ben = f(s['OASI_BENEFITS'])
            self.lab = f(s['LABOR'])
            self.con = f(s['CONSUMPTION'])
        else:
            labinc = f(OPTs['LABOR']) * np.tile(
                np.reshape(np.transpose(zs, [2, 1, 0]),
                           [nz, 1, 1, T_life, 1, T_model]),
                [1, nk, nb, 1, ng, 1]) * wages
            k = f(OPTs['SAVINGS'])
            self.ben = f(OPTs['OASI_BENEFITS'])
            self.lab = f(OPTs['LABOR'])
            self.con = f(OPTs['CONSUMPTION'])

        kinc = ((1 - capsharesAM) * bondDividendRates +
                capsharesAM * equityDividendRates) * k
        totinc = labinc.flatten(order='F') + kinc.flatten(
            order='F') + self.ben.flatten(order='F')  # Total income
        labinc = labinc.flatten(order='F')  # Labor income
        k = k.flatten(order='F')  # Asset holdings for tomorrow (k')

        # DATA WEALTH AND INCOME DISTRIBUTIONS
        file = pathFinder.getMicrosimInputPath(
            'SIM_NetPersonalWealth_distribution')

        self.a_distdata = pd.read_csv(file)
        self.a_distdata.append([99.9, float('nan'),
                                1])  # Append last point for graph

        file = pathFinder.getMicrosimInputPath(
            'SIM_PreTaxLaborInc_distribution')
        self.l_distdata = pd.read_csv(file)
        self.l_distdata.append([99.9, float('nan'),
                                1])  # Append last point for graph

        # MODEL WEALTH AND INCOME DISTRIBUTIONS

        # Compute wealth distribution
        self.a_distmodel = get_moments(dist, k)
        # Gini and Lorenz curve
        (self.a_ginimodel, self.a_lorenz) = gini(dist, k)

        # Compute labor income distribution
        self.l_distmodel = get_moments(dist_l, labinc)
        # Gini and Lorenz curve
        (self.l_ginimodel, self.l_lorenz) = gini(dist_l, labinc)

        # Compute total income distribution
        self.t_distmodel = get_moments(dist, totinc)
        # Gini and Lorenz curve
        (self.t_ginimodel, self.t_lorenz) = gini(dist, labinc)