Exemple #1
0
def plot_solar_system(outer=True, epoch=None, use_3d=False):
    """
    Plots the whole solar system in one single call.

    .. versionadded:: 0.9.0

    Parameters
    ------------
    outer : bool, optional
        Whether to print the outer Solar System, default to True.
    epoch : ~astropy.time.Time, optional
        Epoch value of the plot, default to J2000.
    use_3d : bool, optional
        Produce 3D plot, default to False.

    """
    bodies = [Mercury, Venus, Earth, Mars]
    if outer:
        bodies.extend([Jupiter, Saturn, Uranus, Neptune])

    if use_3d:
        op = OrbitPlotter3D()  # type: Union[OrbitPlotter3D, OrbitPlotter2D]
    else:
        op = OrbitPlotter2D()
        op.set_frame(*Orbit.from_body_ephem(Earth, epoch).pqw())  # type: ignore

    for body in bodies:
        orb = Orbit.from_body_ephem(body, epoch)
        op.plot(orb, label=str(body))

    return op
Exemple #2
0
def plot_solar_system(outer=True, epoch=None, use_3d=False):
    """
    Plots the whole solar system in one single call.

    .. versionadded:: 0.9.0

    Parameters
    ------------
    outer : bool, optional
        Whether to print the outer Solar System, default to True.
    epoch : ~astropy.time.Time, optional
        Epoch value of the plot, default to J2000.
    use_3d : bool, optional
        Produce 3D plot, default to False.

    """
    bodies = [Mercury, Venus, Earth, Mars]
    if outer:
        bodies.extend([Jupiter, Saturn, Uranus, Neptune])

    if use_3d:
        op = OrbitPlotter3D()  # type: Union[OrbitPlotter3D, OrbitPlotter2D]
    else:
        op = OrbitPlotter2D()
        op.set_frame(*Orbit.from_body_ephem(Earth,
                                            epoch).pqw())  # type: ignore

    for body in bodies:
        orb = Orbit.from_body_ephem(body, epoch)
        op.plot(orb, label=str(body))

    return op
Exemple #3
0
def test_from_ephem_raises_warning_if_time_is_not_tdb_with_proper_time(recwarn):
    body = Earth
    epoch = Time("2017-09-29 07:31:26", scale="utc")
    expected_epoch_string = "2017-09-29 07:32:35.182"  # epoch.tdb.value

    Orbit.from_body_ephem(body, epoch)

    w = recwarn.pop(TimeScaleWarning)
    assert expected_epoch_string in str(w.message)
Exemple #4
0
def test_from_ephem_raises_warning_if_time_is_not_tdb_with_proper_time(recwarn):
    body = Earth
    epoch = time.Time("2017-09-29 07:31:26", scale="utc")
    expected_epoch_string = "2017-09-29 07:32:35.182"  # epoch.tdb.value

    Orbit.from_body_ephem(body, epoch)

    w = recwarn.pop(TimeScaleWarning)
    assert expected_epoch_string in str(w.message)
Exemple #5
0
def hill_radius(body, a=None, e=None):
    """Approximated radius of the Hill Sphere of Influence (SOI) for a body.

    Parameters
    ----------
    body : `~poliastro.bodies.Body`
           Astronomical body which the SOI's radius is computed for.
    a : float, optional
        Semimajor axis of the body's orbit, default to None (will be computed from ephemerides).
    e : float, optional
        Eccentricity of the body's orbit, default to 0 (will be computed from ephemerides).

    Returns
    -------
    astropy.units.quantity.Quantity
        Approximated radius of the Sphere of Influence (SOI) [m]

    """
    # Compute semimajor and eccentricity axis at epoch J2000 for the body if it was not
    # introduced by the user
    if a is None or e is None:

        ss = Orbit.from_body_ephem(body, J2000_TDB)
        a = a if a is not None else ss.a
        e = e if e is not None else ss.ecc

    mass_ratio = body.k / (3 * body.parent.k)
    r_SOI = a * (1 - e) * (mass_ratio**(1 / 3))

    return r_SOI.decompose()
Exemple #6
0
def compute_soi(body, a=None):
    """Approximated radius of the Laplace Sphere of Influence (SOI) for a body.

    Parameters
    ----------
    body : `~poliastro.bodies.Body`
           Astronomical body which the SOI's radius is computed for.
    a : float, optional
        Semimajor axis of the body's orbit, default to None (will be computed from ephemerides).

    Returns
    -------
    astropy.units.quantity.Quantity
        Approximated radius of the Sphere of Influence (SOI) [m]

    """
    # Compute semimajor axis at epoch J2000 for the body if it was not
    # introduced by the user
    if a is None:
        try:
            a = Orbit.from_body_ephem(body, J2000).a

        except KeyError:
            raise RuntimeError(
                """To compute the semimajor axis for Moon and Pluto use the JPL ephemeris:

>>> from astropy.coordinates import solar_system_ephemeris
>>> solar_system_ephemeris.set("jpl")""")

    r_SOI = a * (body.k / body.parent.k)**(2 / 5)

    return r_SOI.decompose()
Exemple #7
0
    def do_GET(self):

        self.send_response(200)
        self.send_header("Content-type", "application/json")
        self.end_headers()

        epoch_now = time.Time(datetime.datetime.now())

        res = {
            "earth": str(Orbit.from_body_ephem(Earth, epoch_now)),
            "mars": str(Orbit.from_body_ephem(Mars, epoch_now))
        }

        self.wfile.write(json.dumps(res).encode("utf-8"))

        return
Exemple #8
0
def compute_soi(body, a=None):
    """Approximated radius of the Laplace Sphere of Influence (SOI) for a body.

    Parameters
    ----------
    body : `~poliastro.bodies.Body`
           Astronomical body which the SOI's radius is computed for.
    a : float, optional
        Semimajor axis of the body's orbit, default to None (will be computed from ephemerides).

    Returns
    -------
    astropy.units.quantity.Quantity
        Approximated radius of the Sphere of Influence (SOI) [m]

    """
    # Compute semimajor axis at epoch J2000 for the body if it was not
    # introduced by the user
    if a is None:
        try:
            a = Orbit.from_body_ephem(body, J2000).a

        except KeyError:
            raise RuntimeError(
                """To compute the semimajor axis for Moon and Pluto use the JPL ephemeris:

>>> from astropy.coordinates import solar_system_ephemeris
>>> solar_system_ephemeris.set("jpl")""")

    r_SOI = a * (body.k / body.parent.k) ** (2 / 5)

    return r_SOI.decompose()
Exemple #9
0
def hill_radius(body, a=None, e=None):
    """Approximated radius of the Hill Sphere of Influence (SOI) for a body.

    Parameters
    ----------
    body : `~poliastro.bodies.Body`
           Astronomical body which the SOI's radius is computed for.
    a : float, optional
        Semimajor axis of the body's orbit, default to None (will be computed from ephemerides).
    e : float, optional
        Eccentricity of the body's orbit, default to 0 (will be computed from ephemerides).

    Returns
    -------
    astropy.units.quantity.Quantity
        Approximated radius of the Sphere of Influence (SOI) [m]

    """
    # Compute semimajor and eccentricity axis at epoch J2000 for the body if it was not
    # introduced by the user
    if a is None or e is None:

        ss = Orbit.from_body_ephem(body, J2000_TDB)
        a = a if a is not None else ss.a
        e = e if e is not None else ss.ecc

    mass_ratio = body.k / (3 * body.parent.k)
    r_SOI = a * (1 - e) * (mass_ratio ** (1 / 3))

    return r_SOI.decompose()
Exemple #10
0
def _plot_bodies(orbit_plotter, outer=True, epoch=None):
    bodies = [Mercury, Venus, Earth, Mars]
    if outer:
        bodies.extend([Jupiter, Saturn, Uranus, Neptune])

    for body in bodies:
        orb = Orbit.from_body_ephem(body, epoch)
        orbit_plotter.plot(orb, label=str(body))
def optimal_transit(date, transit_min, transit_max, planet1, planet2, vs0,
                    step):

    date_arrival = date + transit_min  # minimalna data wykonania tranzytu
    date_max = date + transit_max  # maksymalna data wykonania, zakonczenie petli
    date_arrival_final = date_arrival

    vs_temp = 0 * u.km / u.s
    dv_final = 0 * u.km / u.s
    step_first = True

    # petla idaca po datach z okreslonym krokiem
    while date_arrival < date_max:
        tof = date_arrival - date  # tof - time of flight
        date_iso = time.Time(str(date.iso), scale='utc')  # data startu
        date_arrival_iso = time.Time(str(date_arrival.iso),
                                     scale='utc')  # data przylotu

        r1 = Orbit.from_body_ephem(planet1, date_iso)
        r2 = Orbit.from_body_ephem(planet2, date_arrival_iso)
        r_1, v_1 = r1.rv()  # pozycja i predkosc planety poczatkowej
        r_2, v_2 = r2.rv()  # pozycja i predkosc planety koncowej
        (vs1, vs2), = iod.lambert(Sun.k, r_1, r_2,
                                  tof)  # rozwiazanie zagadnienia lamberta

        dv_vector = vs1 - (
            vs0 + (v_1 / (24 * 3600) * u.day / u.s)
        )  # zmiana predkosci niezbedna do udanego wykonania manewru
        dv = np.linalg.norm(
            dv_vector / 10) * u.km / u.s  # modul wektora zmiany predkosci

        if step_first:  # zapis wynikow z pierwszego kroku
            dv_final = dv
            vs_temp = vs2

            step_first = False
        else:
            if dv < dv_final:  # sprawdzenie czy kolejny krok jest bardziej korzystna
                dv_final = dv
                date_arrival_final = date_arrival
                vs_temp = vs2

        date_arrival += step * u.day

    return dv_final, date_arrival_final, vs_temp  # funkcja zwraca niezbedny przyrost predkosci, date przybycia
Exemple #12
0
def total_delta_v(launch, arrival):
    """Calculate the total delta v for specific combination of launch date and arrival date

    :param launch: launch time in isoformat string
    :param arrival: desired arrival time in isoformat string
    """

    date_launch = time.Time(launch, scale="utc")
    date_arrival = time.Time(arrival, scale="utc")

    ss_earth = Orbit.from_body_ephem(Earth, date_launch)
    ss_mars = Orbit.from_body_ephem(Mars, date_arrival)

    man_lambert = Maneuver.lambert(ss_earth, ss_mars)

    return {
        'delta_v': man_lambert.get_total_cost().value,
        'total_seconds': man_lambert.get_total_time().value
    }
Exemple #13
0
def _plot_solar_system_2d(outer=True, epoch=None, interactive=False):
    pqw = Orbit.from_body_ephem(Earth, epoch).pqw()
    if interactive:
        orbit_plotter = (OrbitPlotter2D()
                         )  # type: Union[OrbitPlotter2D, StaticOrbitPlotter]
        orbit_plotter.set_frame(*pqw)
    else:
        orbit_plotter = StaticOrbitPlotter()
        orbit_plotter.set_frame(*pqw)

    _plot_bodies(orbit_plotter, outer, epoch)

    return orbit_plotter
Exemple #14
0
    def set_body_frame(self, body, epoch=None):
        """Sets perifocal frame based on the orbit of a body at a particular epoch if given.

        Parameters
        ----------
        body : poliastro.bodies.SolarSystemPlanet
            Body.
        epoch : astropy.time.Time, optional
            Epoch of current position.

        """
        from poliastro.twobody import Orbit

        with warnings.catch_warnings():
            warnings.simplefilter("ignore", DeprecationWarning)
            orbit = Orbit.from_body_ephem(body, epoch).change_plane(self.plane)  # type: ignore

        self.set_orbit_frame(orbit)
def orbit_check(date, v, m, Isp):

    # sprawdzenie czy orbita została osiągnieta

    date_iso = time.Time(str(date.iso), format='iso', scale='utc')
    r_out = Orbit.from_body_ephem(Jupiter,
                                  date_iso)  # polozenie Jowisza po asyscie
    r_out1, vp_out1 = r_out.rv()
    v_exit = v + (vp_out1 /
                  (24 * 3600) * u.day / u.s)  # predkosc satelity po manewrach
    epoch_out = date.jyear

    ss_out = Orbit.from_vectors(Sun, r_out1, v_exit,
                                epoch=epoch_out)  # wyjsciowe parametry orbity

    print('Sprawdzanie osiągnięcia orbity ...')
    print()

    if ss_out.ecc >= 1:  # ekscentrycznosc orbity
        print('Predkosc jest okej')
    else:
        print('Predkosc jest za mała')
        print()
        print('Dostosuj się do minimalnej orbity wyjściowej ')

        # minimalna orbita wyjsciowa paraboliczna:
        ss_out_new = Orbit.parabolic(Sun,
                                     ss_out.p,
                                     ss_out.inc,
                                     ss_out.raan,
                                     ss_out.argp,
                                     ss_out.nu,
                                     epoch=epoch_out)

        v_out_new = ss_out_new.rv()[1] - v_exit  # obliczenia nowej predkosci
        dv_out_new = np.linalg.norm(v_out_new) * u.km / u.s
        m_p_new = m * (math.exp(dv_out_new / Isp) - 1
                       )  # obliczenia brakujace masy paliwa

        # Odpowiedz:
        print('Potrzebna delta V: %.3f km/s' % float(dv_out_new / u.km * u.s))
        print('Potrzebna dod. masa paliwa: %i kg' % int(m_p_new / u.kg))
Exemple #16
0
    def plot_body_orbit(self, body, epoch=None, label=None):
        """Plots complete revolution of body and current position if given.

        Parameters
        ----------
        body : poliastro.bodies.SolarSystemBody
            Body.
        epoch : astropy.time.Time, optional
            Epoch of current position.
        label : str, optional
            Label of the orbit, default to the name of the body.

        """
        from poliastro.twobody import Orbit

        with warnings.catch_warnings():
            warnings.simplefilter("ignore", DeprecationWarning)
            orbit = Orbit.from_body_ephem(body, epoch)

        self.plot(orbit, label=label or str(body))
Exemple #17
0
    def _plot_body_orbit(
        self,
        body,
        epoch,
        *,
        label=None,
        color=None,
        trail=False,
    ):
        if color is None:
            color = BODY_COLORS.get(body.name)

        from poliastro.twobody import Orbit

        with warnings.catch_warnings():
            warnings.simplefilter("ignore", DeprecationWarning)
            orbit = Orbit.from_body_ephem(body, epoch)

        return self._plot(orbit,
                          label=label or str(body),
                          color=color,
                          trail=trail)
Exemple #18
0
def hill_radius(body, a=None, e=None):
    """Approximated radius of the Hill Sphere of Influence (SOI) for a body.

    Parameters
    ----------
    body : `~poliastro.bodies.Body`
           Astronomical body which the SOI's radius is computed for.
    a : float, optional
        Semimajor axis of the body's orbit, default to None (will be computed from ephemerides).
    e : float, optional
        Eccentricity of the body's orbit, default to 0 (will be computed from ephemerides).

    Returns
    -------
    astropy.units.quantity.Quantity
        Approximated radius of the Sphere of Influence (SOI) [m]

    """
    # Compute semimajor and eccentricity axis at epoch J2000 for the body if it was not
    # introduced by the user
    if a is None or e is None:
        try:
            ss = Orbit.from_body_ephem(body, J2000_TDB)
            a = a if a is not None else ss.a
            e = e if e is not None else ss.ecc

        except KeyError:
            raise RuntimeError(
                """To compute the semimajor axis or eccentricity for Moon and Pluto use the JPL ephemeris:

>>> from astropy.coordinates import solar_system_ephemeris
>>> solar_system_ephemeris.set("jpl")""")

    mass_ratio = body.k / (3 * body.parent.k)
    r_SOI = a * (1 - e) * (mass_ratio**(1 / 3))

    return r_SOI.decompose()
Exemple #19
0
def laplace_radius(body, a=None):
    """Approximated radius of the Laplace Sphere of Influence (SOI) for a body.

    Parameters
    ----------
    body : `~poliastro.bodies.Body`
           Astronomical body which the SOI's radius is computed for.
    a : float, optional
        Semimajor axis of the body's orbit, default to None (will be computed from ephemerides).

    Returns
    -------
    astropy.units.quantity.Quantity
        Approximated radius of the Sphere of Influence (SOI) [m]

    """
    # Compute semimajor axis at epoch J2000 for the body if it was not
    # introduced by the user
    if a is None:
        a = Orbit.from_body_ephem(body, J2000_TDB).a

    r_SOI = a * (body.k / body.parent.k) ** (2 / 5)

    return r_SOI.decompose()
Exemple #20
0
def laplace_radius(body, a=None):
    """Approximated radius of the Laplace Sphere of Influence (SOI) for a body.

    Parameters
    ----------
    body : `~poliastro.bodies.Body`
           Astronomical body which the SOI's radius is computed for.
    a : float, optional
        Semimajor axis of the body's orbit, default to None (will be computed from ephemerides).

    Returns
    -------
    astropy.units.quantity.Quantity
        Approximated radius of the Sphere of Influence (SOI) [m]

    """
    # Compute semimajor axis at epoch J2000 for the body if it was not
    # introduced by the user
    if a is None:
        a = Orbit.from_body_ephem(body, J2000_TDB).a

    r_SOI = a * (body.k / body.parent.k)**(2 / 5)

    return r_SOI.decompose()
ss = Orbit.from_vectors(Earth, r, v)
print(ss)

from poliastro.plotting import plot
#plot(ss)

a = 1.523679 * u.AU
ecc = 0.093315 * u.one
inc = 1.85 * u.deg
raan = 49.562 * u.deg
argp = 286.537 * u.deg
nu = 23.33 * u.deg

ss = Orbit.from_classical(Sun, a, ecc, inc, raan, argp, nu)
#plot(ss)

from poliastro.examples import iss
print(iss)

from poliastro.maneuver import Maneuver
dv = [5, 0, 0] * u.m / u.s
man = Maneuver.impulse(dv)
man = Maneuver((0 * u.s, dv))

from astropy import time
epoch = time.Time("2018-01-25 20:00")
from poliastro import ephem
new = Orbit.from_body_ephem(Earth, epoch)
print(new)
def test_orbit_from_ephem_is_in_icrs_frame(body):
    ss = Orbit.from_body_ephem(body)

    assert ss.frame.is_equivalent_frame(ICRS())
def test_orbit_from_ephem_with_no_epoch_is_today():
    # This is not that obvious http://stackoverflow.com/q/6407362/554319
    body = Earth
    ss = Orbit.from_body_ephem(body)
    assert (Time.now() - ss.epoch).sec < 1
Exemple #24
0
date_liftoff = time.Time('1969-07-16 14:32', scale='tdb')
date_launch = date_liftoff + (2 * u.h + 44 * u.min)
#date_launch is the time at which Translunar Insertion Maneuver is performed
date_arrival = date_launch + (75 * u.h + 54 * u.min)
#date_arrival is the time at which Cislunar Insertion Maneuver is performed
tof = date_arrival - date_launch

#Apollo Parking Orbit Around Earth
apollo = Orbit.circular(Earth,
                        alt=185.21 * u.km,
                        inc=32.521 * u.deg,
                        epoch=date_launch)

#Moon Orbit aqcuisition and conversion to GCRS
EPOCH = date_arrival
moon = Orbit.from_body_ephem(Moon, EPOCH)
moon_icrs = ICRS(x=moon.r[0],
                 y=moon.r[1],
                 z=moon.r[2],
                 v_x=moon.v[0],
                 v_y=moon.v[1],
                 v_z=moon.v[2],
                 representation=CartesianRepresentation,
                 differential_cls=CartesianDifferential)

moon_gcrs = moon_icrs.transform_to(GCRS(obstime=EPOCH))
moon_gcrs.representation = CartesianRepresentation
moon_gcrs

moon = Orbit.from_vectors(
    Earth, [moon_gcrs.x, moon_gcrs.y, moon_gcrs.z] * u.km,
from poliastro.examples import iss
iss

#plot (iss)
iss.epoch
iss.nu.to(u.deg)
iss.n.to(u.deg / u.min)

iss_30m = iss.propagate(30 * u.min)
iss_30m.epoch

iss_30m.nu.to(u.deg)
#plot (iss_30m)

earth = Orbit.from_body_ephem(Earth)

#plot(earth)
earth_30d = earth.propagate(30 * u.day)
#plot(earth_30d)

from poliastro.maneuver import Maneuver
dv = [5, 0, 0] * u.m / u.s
man = Maneuver.impulse(dv)
man = Maneuver((0 * u.s, dv))

ss_i = Orbit.circular(Earth, alt=700 * u.km)
ss_i
#plot(ss_i)
hoh = Maneuver.hohmann(ss_i, 36000 * u.km)
hoh.get_total_cost()
Exemple #26
0
def test_orbit_from_ephem_is_in_icrs_frame(body):
    ss = Orbit.from_body_ephem(body)

    assert ss.frame.is_equivalent_frame(ICRS())
Exemple #27
0
import numpy as np
from astropy import units as u
from poliastro.bodies import Earth, Jupiter, Sun
from poliastro.twobody import Orbit
from poliastro.util import norm

# Orbits
ss_Earth = Orbit.from_body_ephem(Earth)
ss_Jupiter = Orbit.from_body_ephem(Jupiter)

# Radius vector
r_Earth = ss_Earth.r.to(u.m)
r_Jupiter = ss_Jupiter.r.to(u.m)

# Radius vector norm
R_E = norm(r_Earth)
R_J = norm(r_Jupiter)

# Velocity vectors
v_Earth = ss_Earth.v.to(u.m / u.s)
v_Jupiter = ss_Jupiter.v.to(u.m / u.s)

# Velocity vectors direction
v_Earth_dir = v_Earth / norm(v_Earth)
Exemple #28
0
def test_orbit_from_ephem_with_no_epoch_is_today():
    # This is not that obvious http://stackoverflow.com/q/6407362/554319
    body = Earth
    ss = Orbit.from_body_ephem(body)
    assert (Time.now() - ss.epoch).sec < 1
Exemple #29
0
import numpy as np
from poliastro.twobody import Orbit
from poliastro.util import norm

from astropy.time import Time
from poliastro import iod
from poliastro.threebody.flybys import compute_flyby
from brentq import brentq
import matplotlib.pyplot as plt

T_ref = 150 * u.day
k = Sun.k
a_ref = np.cbrt(k * T_ref**2 / (4 * np.pi**2)).to(u.km)
energy_ref = (-k / (2 * a_ref)).to(u.J / u.kg)
flyby_1_time = Time("2018-09-28", scale="tdb")
r_mag_ref = norm(Orbit.from_body_ephem(Venus, epoch=flyby_1_time).r)
v_mag_ref = np.sqrt(2 * k / r_mag_ref - k / a_ref)
d_launch = Time("2018-08-11", scale="tdb")
ss0 = Orbit.from_body_ephem(Earth, d_launch)
ss1 = Orbit.from_body_ephem(Venus, epoch=flyby_1_time)
tof = flyby_1_time - d_launch
(v0, v1_pre), = iod.lambert(Sun.k, ss0.r, ss1.r, tof.to(u.s))
V = Orbit.from_body_ephem(Venus, epoch=flyby_1_time).v
h = 2548 * u.km
d_flyby_1 = Venus.R + h
V_2_v_, delta_ = compute_flyby(v1_pre, V, Venus.k, d_flyby_1)
theta_range = np.linspace(0, 2 * np.pi)


def func(theta):
    V_2_v, _ = compute_flyby(v1_pre, V, Venus.k, d_flyby_1, theta * u.rad)
# print ("a: " + str(perDiff(a, aJPL)) + "%")
# print ("e: " + str(perDiff(e, eJPL)) + "%")
# print ("i: " + str(perDiff(i, iJPL)) + "%")
# print ("Lon ascending node: " + str(perDiff(lOmega[0], lOmegaJPL)) + "%")
# print ("Perihelion: " + str(perDiff(aPerihelion, omegaJPL)) + "%")
# print ("M: " + str(perDiff(M, MJPL)) + "%")

a = a * units.AU
ecc = e * units.one
inc = i * units.deg
raan = lOmega[0] * units.deg
argp = aPerihelion * units.deg
nu = v * units.deg
epoch = time.Time(t2, format='jd', scale='utc')

earth_orbit = Orbit.from_body_ephem(Earth)
earth_orbit = earth_orbit.propagate(time.Time(t2, format='jd', scale='tdb'),
                                    rtol=1e-10)
magellan_orbit = neows.orbit_from_name('2018ez2')
magellan_orbit = magellan_orbit.propagate(time.Time(t2,
                                                    format='jd',
                                                    scale='tdb'),
                                          rtol=1e-10)
estimated_orbit = Orbit.from_classical(Sun, a, ecc, inc, raan, argp, nu, epoch)

op = OrbitPlotter()
op.plot(earth_orbit, label='Earth')
op.plot(magellan_orbit, label='2018 EZ2')
op.plot(estimated_orbit, label='Estimated')

plt.show()
Exemple #31
0
from poliastro.maneuver import Maneuver
from poliastro.iod import izzo
from poliastro.plotting import plot, OrbitPlotter
from poliastro.util import norm

solar_system_ephemeris.set("jpl")

## Initial data
# Links and sources: https://github.com/poliastro/poliastro/wiki/EuroPython:-Per-Python-ad-Astra
date_launch = Time("2022-08-05 16:25", scale='tdb')
C_3 = 31.1 * u.km**2 / u.s**2
date_flyby = Time("2024-10-09 19:21", scale='tdb')
date_arrival = Time("2026-07-05 03:18", scale='tdb')

# Initial state of the Earth
ss_e0 = Orbit.from_body_ephem(Earth, date_launch)
r_e0, v_e0 = ss_e0.rv()

print("Position of Earth: ",r_e0)
print("Velocity of Earth: ",v_e0)

# State of the Earth the day of the flyby
ss_efly = Orbit.from_body_ephem(Earth, date_flyby)
r_efly, v_efly = ss_efly.rv()

# Assume that the insertion velocity is tangential to that of the Earth
dv = C_3**.5 * v_e0 / norm(v_e0)
man = Maneuver.impulse(dv)

# Inner Cruise 1
ic1 = ss_e0.apply_maneuver(man)
Exemple #32
0
a = (r_p + r_a) / 2

roadster = Orbit.from_classical(attractor=Sun,
                                a=0.9860407221838553 * u.AU,
                                ecc=0.2799145376150214 * u.one,
                                inc=1.194199764898942 * u.deg,
                                raan=49 * u.deg,
                                argp=286 * u.deg,
                                nu=23 * u.deg,
                                epoch=date)
for date in days_as:

    apophis_orbit = neows.orbit_from_name('99942')
    spacex = neows.orbit_from_name('-143205')
    op.orbits.clear()
    earth = Orbit.from_body_ephem(Earth, date)
    mars = Orbit.from_body_ephem(Mars, date)

    op.plot(earth, label=Earth)
    op.plot(mars, label=Mars)
    op.plot(roadster, label='Roadster')
    op.plot(apophis_orbit, label='Apophis')
    op._redraw()
    plt.pause(0.01)

input('type to exit')

op.plot(Orbit.from_body_ephem(Mars, time.Time("2018-07-28 12:00",
                                              scale='utc')),
        label=Mars)