Exemple #1
0
    def get_power(self, gridded_vis, kernel_weights, ps_dim=2):
        """
        Determine the 2D Power Spectrum of the observation.

        Parameters
        ----------

        gridded_vis : complex (ngrid, ngrid, neta)-array
            The gridded visibilities, fourier-transformed along the frequency axis. Units JyHz.

        coords: list of 3 1D arrays.
            The [u,v,eta] co-ordinates corresponding to the gridded fourier visibilities. u and v in 1/rad, and
            eta in 1/Hz.

        Returns
        -------
        PS : float (n_obs, n_eta, bins)-list
            The cylindrical averaged (or 2D) Power Spectrum, with units JyHz**2.
        """
        logger.info("Calculating the power spectrum")
        PS = []
        for vis in gridded_vis:
            # The 3D power spectrum
            power_3d = np.absolute(vis)**2

            if ps_dim == 2:
                P = angular_average_nd(
                    field=power_3d,
                    coords=[self.uvgrid, self.uvgrid, self.eta],
                    bins=self.u_edges,
                    n=ps_dim,
                    weights=np.sum(kernel_weights, axis=2),  # weights,
                    bin_ave=False,
                )[0]

            elif ps_dim == 1:

                P = angular_average_nd(
                    field=power_3d,
                    coords=[self.uvgrid, self.uvgrid, self.eta],
                    bins=self.u_edges,
                    weights=kernel_weights,
                    bin_ave=False,
                )[0]

            P[np.isnan(P)] = 0
            PS.append(P)

        return PS
Exemple #2
0
 def grid_weights(self):
     """The number of uv cells that go into a single u annulus (unrelated to baseline weights)"""
     return angular_average_nd(
         field=np.ones((len(self.uvgrid),) * 2),
         coords=[self.uvgrid, self.uvgrid],
         bins=self.u_edges, n=self.ps_dim, bin_ave=False,
         average=False)[0]
Exemple #3
0
def ps_3d_to_ps_2d(ps_3d, u, nu, bins=100):
    """
    Take a 3D power spectrum and return a cylindrically-averaged 2D power spectrum.

    Parameters
    ----------
    ps_3d : 3D array
        The power spectrum in 3D, with first axis corresponding to frequency.

    u : 1D array
        The grid-coordinates along a side of the `ps_3d` array. Assumes that the (u,v) grid is square.

    nu : 1D array
        The frequencies corresponding to the first dimension of `ps_3d`.

    bins : int
        Number of (regular linear) bins to form the average into.

    Returns
    -------
    ps_2d : 2D array
        The circularly-averaged PS, with first axis corresponding to frequency.

    ubins : 1D array
        Length `bins` array giving the average central-bin co-ordinate for u after averaging.
    """
    # Perform cylindrical averaging.
    ps_2d, ubins, _ = angular_average_nd(field=ps_3d.T,
                                         coords=[u, u, nu],
                                         bins=bins,
                                         n=2)
    return ps_2d.T, ubins
    def compute_mps(lightcone, bins=None, nthreads=None):

        # First get "visibilities"
        vis, kperp = fft(lightcone.brightness_temp,
                         L=lightcone.user_params.BOX_LEN,
                         axes=(0, 1))

        # vis has shape (HII_DIM, HII_DIM, lightcone_dim)

        # Do wavelet transform
        wvlts, kpar, _ = morlet_transform_c(vis.T,
                                            lightcone.lightcone_coords,
                                            nthreads=nthreads)

        # wvlts has shape (len(kpar) + vis.T.shape) corresponding to (eta, nu_c, u,v)

        # Now square it...
        wvlts = np.abs(wvlts)**2

        # Determine a nice number of bins.
        if bins is None:
            bins = int((np.product(kperp.shape) * len(kpar))**(1. / 3.) / 2.2)

        # And angularly average
        wvlts, k = angular_average_nd(wvlts.transpose((2, 3, 0, 1)),
                                      list(kperp) +
                                      [kpar, lightcone.lightcone_coords],
                                      n=3,
                                      bins=bins,
                                      bin_ave=False,
                                      get_variance=False)

        return wvlts, k, lightcone.lightcone_coords
Exemple #5
0
def test_angular_avg_nd_2_1_varnull():
    x = np.linspace(-3,3,200)

    P = np.ones((200,10))

    coords = [x, np.linspace(-2,2,10)]
    p_k, k_av_bins, var = angular_average_nd(P,coords, bins=20, n=1, get_variance=True)

    assert np.all(var==0)
Exemple #6
0
def test_angular_avg_nd_3():
    x = np.linspace(-3,3,400)
    X,Y = np.meshgrid(x,x)
    r2 = X**2 + Y**2
    P = r2**-1.
    P = np.repeat(P,100).reshape(400,400,100)
    freq = [x,x,np.linspace(-2,2,100)]
    p_k, k_av_bins = angular_average_nd(P,freq,bins=50,n=2)
    print(p_k[6:,0], k_av_bins[6:]**-2.)
    assert np.max(np.abs((p_k[6:,0] - k_av_bins[6:]**-2.)/k_av_bins[6:]**-2.)) <  0.05