Exemple #1
0
	def __init__(self):
		self.cm = cmClass.sq_cv_meta()
		self.cq = cqClass.sq_cv_q()
		self.cqm = cqmClass.sq_cv_q_meta()
		self.cqp = cqpClass.cv_q_predict()
		self.dtp = dtpClass.sq_dt_prediction()

		self.cfm = cfmClass.csv_file_manage()
		self.tm = tmClass.text_modification()
		self.vacMatching = vacancyMatching.VacancyMatching()
Exemple #2
0
    def __init__(self):
        self.fileName = ""
        self.tempFileOb = ''
        self.tm = tmClass.text_modification()
        self.fmArff = fmClass.file_manage('arff')
        self.fmPkl = fmClass.file_manage('pkl')

        self.features = {}
        self.featureNameList = []
        self.featureCounts = defaultdict(lambda :1)
        self.featureVectors = []
        self.labelCounts = defaultdict(lambda :0)
Exemple #3
0
    def __init__(self):
        self.cm = cmClass.sq_cv_meta()
        self.cqm = cqmClass.sq_cv_q_meta()
        self.cq = cqClass.sq_cv_q()
        self.cqp = cqpClass.cv_q_predict()
        self.nbp = nbpClass.sq_nb_prediction()
        self.predicDT = predictionDT.predictionDT()

        self.tm = tmClass.text_modification()
        self.fm = fmClass.file_manage('arff')
        self.fmPkl = fmClass.file_manage('pkl')

        self.fileName = ""
        self.featureNameList = []
        self.features = {}
        self.featureCounts = defaultdict(lambda :1)
        self.featureVectors = []
        self.labelCounts = defaultdict(lambda :0)
Exemple #4
0
 def __init__(self):
     self.cqm = cqmClass.sq_cv_q_meta()
     self.tm = tmClass.text_modification()
Exemple #5
0
            st = self.tm.stringLowercase(st)
            index = keyValues.index(st)
            val = val + index

        # If there are more than one values, then it multiplies by 10000 to get unique value
        if len(str) > 1:
            val = val * 10000

        return val


if __name__ == "__main__":
    cm = cmClass.sq_cv_meta()
    cq = cqClass.sq_cv_q()

    tm = tmClass.text_modification()
    cfm = cfmClass.csv_file_manage()
    td = TrainDataset()
    """
        Functions Related to Save data in CSV files predictionDT.py
    """
    types = cm.getMetaValue('predict_cat')

    for idx, type in enumerate(types):
        cfm.openCsv('predictionDTDataset/' + tm.stringUppercase(type), 'a')

        dataSet = cq.getDataForDtDataset()
        for data in dataSet:

            elements = []
            if type == 'job':