def __init__(self): self.cm = cmClass.sq_cv_meta() self.cq = cqClass.sq_cv_q() self.cqm = cqmClass.sq_cv_q_meta() self.cqp = cqpClass.cv_q_predict() self.dtp = dtpClass.sq_dt_prediction() self.cfm = cfmClass.csv_file_manage() self.tm = tmClass.text_modification() self.vacMatching = vacancyMatching.VacancyMatching()
def __init__(self): self.fileName = "" self.tempFileOb = '' self.tm = tmClass.text_modification() self.fmArff = fmClass.file_manage('arff') self.fmPkl = fmClass.file_manage('pkl') self.features = {} self.featureNameList = [] self.featureCounts = defaultdict(lambda :1) self.featureVectors = [] self.labelCounts = defaultdict(lambda :0)
def __init__(self): self.cm = cmClass.sq_cv_meta() self.cqm = cqmClass.sq_cv_q_meta() self.cq = cqClass.sq_cv_q() self.cqp = cqpClass.cv_q_predict() self.nbp = nbpClass.sq_nb_prediction() self.predicDT = predictionDT.predictionDT() self.tm = tmClass.text_modification() self.fm = fmClass.file_manage('arff') self.fmPkl = fmClass.file_manage('pkl') self.fileName = "" self.featureNameList = [] self.features = {} self.featureCounts = defaultdict(lambda :1) self.featureVectors = [] self.labelCounts = defaultdict(lambda :0)
def __init__(self): self.cqm = cqmClass.sq_cv_q_meta() self.tm = tmClass.text_modification()
st = self.tm.stringLowercase(st) index = keyValues.index(st) val = val + index # If there are more than one values, then it multiplies by 10000 to get unique value if len(str) > 1: val = val * 10000 return val if __name__ == "__main__": cm = cmClass.sq_cv_meta() cq = cqClass.sq_cv_q() tm = tmClass.text_modification() cfm = cfmClass.csv_file_manage() td = TrainDataset() """ Functions Related to Save data in CSV files predictionDT.py """ types = cm.getMetaValue('predict_cat') for idx, type in enumerate(types): cfm.openCsv('predictionDTDataset/' + tm.stringUppercase(type), 'a') dataSet = cq.getDataForDtDataset() for data in dataSet: elements = [] if type == 'job':