class Training(PyBioSchema): setup = fields.Nested(Setup) source = fields.ImportableSource(required=True) required_kwargs = fields.List(fields.Str, missing=list) optional_kwargs = fields.Dict(fields.Str, missing=dict) dependencies = fields.Dependencies(required=True) description = fields.Str(missing=None)
class TransformationSpec(BaseSpec): dependencies = fields.Dependencies(required=True) inputs = fields.Tensors( InputArray, valid_magic_values=[MagicTensorsValue.any, MagicTensorsValue.dynamic], required=True ) outputs = fields.Tensors( OutputArray, valid_magic_values=[MagicTensorsValue.same, MagicTensorsValue.dynamic], required=True )
class SamplerSpec(BaseSpec): dependencies = fields.Dependencies(missing=None) outputs = fields.Tensors(OutputArray, valid_magic_values=[MagicTensorsValue.dynamic], missing=None)
class ReaderSpec(BaseSpec): dependencies = fields.Dependencies(missing=None) outputs = fields.Tensors(OutputArray, valid_magic_values=[MagicTensorsValue.dynamic], required=True)
class Prediction(PyBioSchema): weights = fields.Nested(Weights, missing=None) dependencies = fields.Dependencies(missing=None) preprocess = fields.Nested(Transformation, many=True, missing=list) postprocess = fields.Nested(Transformation, many=True, missing=list)