Esempio n. 1
0
class Training(PyBioSchema):
    setup = fields.Nested(Setup)
    source = fields.ImportableSource(required=True)
    required_kwargs = fields.List(fields.Str, missing=list)
    optional_kwargs = fields.Dict(fields.Str, missing=dict)
    dependencies = fields.Dependencies(required=True)
    description = fields.Str(missing=None)
Esempio n. 2
0
class TransformationSpec(BaseSpec):
    dependencies = fields.Dependencies(required=True)
    inputs = fields.Tensors(
        InputArray, valid_magic_values=[MagicTensorsValue.any, MagicTensorsValue.dynamic], required=True
    )
    outputs = fields.Tensors(
        OutputArray, valid_magic_values=[MagicTensorsValue.same, MagicTensorsValue.dynamic], required=True
    )
Esempio n. 3
0
class SamplerSpec(BaseSpec):
    dependencies = fields.Dependencies(missing=None)
    outputs = fields.Tensors(OutputArray, valid_magic_values=[MagicTensorsValue.dynamic], missing=None)
Esempio n. 4
0
class ReaderSpec(BaseSpec):
    dependencies = fields.Dependencies(missing=None)
    outputs = fields.Tensors(OutputArray, valid_magic_values=[MagicTensorsValue.dynamic], required=True)
Esempio n. 5
0
class Prediction(PyBioSchema):
    weights = fields.Nested(Weights, missing=None)
    dependencies = fields.Dependencies(missing=None)
    preprocess = fields.Nested(Transformation, many=True, missing=list)
    postprocess = fields.Nested(Transformation, many=True, missing=list)