def test_aabb(robot):
    base_link = link_from_name(robot, BASE_LINK_NAME)
    region_aabb = AABB(lower=-np.ones(3), upper=+np.ones(3))
    draw_aabb(region_aabb)

    # bodies = get_bodies_in_region(region_aabb)
    # print(len(bodies), bodies)
    # for body in get_bodies():
    #     set_pose(body, Pose())

    #step_simulation()  # Need to call before get_bodies_in_region
    #update_scene()
    for i in range(3):
        with timer(message='{:f}'):
            bodies = get_bodies_in_region(
                region_aabb)  # This does cache some info
        print(i, len(bodies), bodies)
    # https://github.com/bulletphysics/bullet3/search?q=broadphase
    # https://github.com/bulletphysics/bullet3/search?p=1&q=getCachedOverlappingObjects&type=&utf8=%E2%9C%93
    # https://andysomogyi.github.io/mechanica/bullet.html
    # http://www.cs.kent.edu/~ruttan/GameEngines/lectures/Bullet_User_Manual

    aabb = get_aabb(robot)
    # aabb = get_subtree_aabb(robot, base_link)
    print(aabb)
    draw_aabb(aabb)

    for link in [BASE_LINK, base_link]:
        print(link, get_collision_data(robot, link),
              pairwise_link_collision(robot, link, robot, link))
Exemple #2
0
def visualize_cartesian_path(body, pose_path):
    for i, pose in enumerate(pose_path):
        set_pose(body, pose)
        print('{}/{}) continue?'.format(i, len(pose_path)))
        wait_for_user()
    handles = draw_pose(get_pose(body))
    handles.extend(draw_aabb(get_aabb(body)))
    print('Finish?')
    wait_for_user()
    for h in handles:
        remove_debug(h)
Exemple #3
0
def add_walls(ros_world):
    thickness = 0.01  # 0.005 | 0.01 | 0.02
    height = 0.11  # 0.11 | 0.12
    [table_name] = ros_world.perception.get_surfaces()
    #table_body = ros_world.get_body(table_name)
    table_info = ros_world.perception.info_from_name[table_name]
    #draw_pose(table_info.pose, length=1)
    with ros_world:
        #aabb = aabb_from_points(apply_affine(table_info.pose, table_info.type.vertices))
        aabb = aabb_from_points(table_info.type.vertices)
        draw_aabb(aabb)
        # pose = get_pose(table_body)
        # pose = ros_world.get_pose(table_name)
        # aabb = approximate_as_prism(table_body, pose)
        x, y, z = get_aabb_center(aabb)
        l, w, h = get_aabb_extent(aabb)

        #right_wall = create_box(l, thickness, height)
        #set_pose(right_wall, multiply(table_info.pose, (Pose(point=[x, y - (w + thickness) / 2., z + (h + height) / 2.]))))

        #bottom_wall = create_box(thickness, w / 2., height)
        #set_point(bottom_wall, [x - (l + thickness) / 2., y - w / 4., z + (h + height) / 2.])

        top_wall = create_box(thickness, w, height)
        set_pose(
            top_wall,
            multiply(table_info.pose, (Pose(
                point=[x + (l + thickness) / 2., y, z + (h + height) / 2.]))))

        walls = [top_wall]
        #walls = [right_wall, top_wall] # , bottom_wall]
        for i, body in enumerate(walls):
            name = create_name('wall', i + 1)
            ros_world.perception.sim_bodies[name] = body
            ros_world.perception.sim_items[name] = None

    #wait_for_user()
    return walls  # Return names?
def main(floor_width=2.0):
    # Creates a pybullet world and a visualizer for it
    connect(use_gui=True)
    identity_pose = (unit_point(), unit_quat())
    origin_handles = draw_pose(
        identity_pose, length=1.0
    )  # Draws the origin coordinate system (x:RED, y:GREEN, z:BLUE)

    # Bodies are described by an integer index
    floor = create_box(w=floor_width, l=floor_width, h=0.001,
                       color=TAN)  # Creates a tan box object for the floor
    set_point(floor,
              [0, 0, -0.001 / 2.])  # Sets the [x,y,z] translation of the floor

    obstacle = create_box(w=0.5, l=0.5, h=0.1,
                          color=RED)  # Creates a red box obstacle
    set_point(
        obstacle,
        [0.5, 0.5, 0.1 / 2.])  # Sets the [x,y,z] position of the obstacle
    print('Position:', get_point(obstacle))
    set_euler(obstacle,
              [0, 0, np.pi / 4
               ])  #  Sets the [roll,pitch,yaw] orientation of the obstacle
    print('Orientation:', get_euler(obstacle))

    with LockRenderer(
    ):  # Temporarily prevents the renderer from updating for improved loading efficiency
        with HideOutput():  # Temporarily suppresses pybullet output
            robot = load_model(ROOMBA_URDF)  # Loads a robot from a *.urdf file
            robot_z = stable_z(
                robot, floor
            )  # Returns the z offset required for robot to be placed on floor
            set_point(robot,
                      [0, 0, robot_z])  # Sets the z position of the robot
    dump_body(robot)  # Prints joint and link information about robot
    set_all_static()

    # Joints are also described by an integer index
    # The turtlebot has explicit joints representing x, y, theta
    x_joint = joint_from_name(robot, 'x')  # Looks up the robot joint named 'x'
    y_joint = joint_from_name(robot, 'y')  # Looks up the robot joint named 'y'
    theta_joint = joint_from_name(
        robot, 'theta')  # Looks up the robot joint named 'theta'
    joints = [x_joint, y_joint, theta_joint]

    base_link = link_from_name(
        robot, 'base_link')  # Looks up the robot link named 'base_link'
    world_from_obstacle = get_pose(
        obstacle
    )  # Returns the pose of the origin of obstacle wrt the world frame
    obstacle_aabb = get_subtree_aabb(obstacle)
    draw_aabb(obstacle_aabb)

    random.seed(0)  # Sets the random number generator state
    handles = []
    for i in range(10):
        for handle in handles:
            remove_debug(handle)
        print('\nIteration: {}'.format(i))
        x = random.uniform(-floor_width / 2., floor_width / 2.)
        set_joint_position(robot, x_joint,
                           x)  # Sets the current value of the x joint
        y = random.uniform(-floor_width / 2., floor_width / 2.)
        set_joint_position(robot, y_joint,
                           y)  # Sets the current value of the y joint
        yaw = random.uniform(-np.pi, np.pi)
        set_joint_position(robot, theta_joint,
                           yaw)  # Sets the current value of the theta joint
        values = get_joint_positions(
            robot,
            joints)  # Obtains the current values for the specified joints
        print('Joint values: [x={:.3f}, y={:.3f}, yaw={:.3f}]'.format(*values))

        world_from_robot = get_link_pose(
            robot,
            base_link)  # Returns the pose of base_link wrt the world frame
        position, quaternion = world_from_robot  # Decomposing pose into position and orientation (quaternion)
        x, y, z = position  # Decomposing position into x, y, z
        print('Base link position: [x={:.3f}, y={:.3f}, z={:.3f}]'.format(
            x, y, z))
        euler = euler_from_quat(
            quaternion)  # Converting from quaternion to euler angles
        roll, pitch, yaw = euler  # Decomposing orientation into roll, pitch, yaw
        print('Base link orientation: [roll={:.3f}, pitch={:.3f}, yaw={:.3f}]'.
              format(roll, pitch, yaw))
        handles.extend(
            draw_pose(world_from_robot, length=0.5)
        )  # # Draws the base coordinate system (x:RED, y:GREEN, z:BLUE)
        obstacle_from_robot = multiply(
            invert(world_from_obstacle),
            world_from_robot)  # Relative transformation from robot to obstacle

        robot_aabb = get_subtree_aabb(
            robot,
            base_link)  # Computes the robot's axis-aligned bounding box (AABB)
        lower, upper = robot_aabb  # Decomposing the AABB into the lower and upper extrema
        center = (lower + upper) / 2.  # Computing the center of the AABB
        extent = upper - lower  # Computing the dimensions of the AABB
        handles.extend(draw_aabb(robot_aabb))

        collision = pairwise_collision(
            robot, obstacle
        )  # Checks whether robot is currently colliding with obstacle
        print('Collision: {}'.format(collision))
        wait_for_duration(1.0)  # Like sleep() but also updates the viewer
    wait_for_user()  # Like raw_input() but also updates the viewer

    # Destroys the pybullet world
    disconnect()
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('-c', '--cfree', action='store_true',
                        help='When enabled, disables collision checking.')
    # parser.add_argument('-p', '--problem', default='test_pour', choices=sorted(problem_fn_from_name),
    #                     help='The name of the problem to solve.')
    parser.add_argument('--holonomic', action='store_true', # '-h',
                        help='')
    parser.add_argument('-l', '--lock', action='store_false',
                        help='')
    parser.add_argument('-s', '--seed', default=None, type=int,
                        help='The random seed to use.')
    parser.add_argument('-v', '--viewer', action='store_false',
                        help='')
    args = parser.parse_args()
    connect(use_gui=args.viewer)

    seed = args.seed
    #seed = 0
    #seed = time.time()
    set_random_seed(seed=seed) # None: 2147483648 = 2**31
    set_numpy_seed(seed=seed)
    print('Random seed:', get_random_seed(), random.random())
    print('Numpy seed:', get_numpy_seed(), np.random.random())

    #########################

    robot, base_limits, goal_conf, obstacles = problem1()
    draw_base_limits(base_limits)
    custom_limits = create_custom_base_limits(robot, base_limits)
    base_joints = joints_from_names(robot, BASE_JOINTS)
    base_link = link_from_name(robot, BASE_LINK_NAME)
    if args.cfree:
        obstacles = []
    # for obstacle in obstacles:
    #     draw_aabb(get_aabb(obstacle)) # Updates automatically
    resolutions = None
    #resolutions = np.array([0.05, 0.05, math.radians(10)])
    set_all_static() # Doesn't seem to affect

    region_aabb = AABB(lower=-np.ones(3), upper=+np.ones(3))
    draw_aabb(region_aabb)
    step_simulation() # Need to call before get_bodies_in_region
    #update_scene() # TODO: https://github.com/bulletphysics/bullet3/pull/3331
    bodies = get_bodies_in_region(region_aabb)
    print(len(bodies), bodies)
    # https://github.com/bulletphysics/bullet3/search?q=broadphase
    # https://github.com/bulletphysics/bullet3/search?p=1&q=getCachedOverlappingObjects&type=&utf8=%E2%9C%93
    # https://andysomogyi.github.io/mechanica/bullet.html
    # http://www.cs.kent.edu/~ruttan/GameEngines/lectures/Bullet_User_Manual

    #draw_pose(get_link_pose(robot, base_link), length=0.5)
    for conf in [get_joint_positions(robot, base_joints), goal_conf]:
        draw_pose(pose_from_pose2d(conf, z=DRAW_Z), length=DRAW_LENGTH)
    aabb = get_aabb(robot)
    #aabb = get_subtree_aabb(robot, base_link)
    draw_aabb(aabb)

    for link in [BASE_LINK, base_link]:
        print(link, get_collision_data(robot, link), pairwise_link_collision(robot, link, robot, link))

    #########################

    saver = WorldSaver()
    start_time = time.time()
    profiler = Profiler(field='tottime', num=50) # tottime | cumtime | None
    profiler.save()
    with LockRenderer(lock=args.lock):
        path = plan_motion(robot, base_joints, goal_conf, holonomic=args.holonomic, obstacles=obstacles,
                           custom_limits=custom_limits, resolutions=resolutions,
                           use_aabb=True, cache=True, max_distance=0.,
                           restarts=2, iterations=20, smooth=20) # 20 | None
        saver.restore()
    #wait_for_duration(duration=1e-3)
    profiler.restore()

    #########################

    solved = path is not None
    length = INF if path is None else len(path)
    cost = sum(get_distance_fn(robot, base_joints, weights=resolutions)(*pair) for pair in get_pairs(path))
    print('Solved: {} | Length: {} | Cost: {:.3f} | Runtime: {:.3f} sec'.format(
        solved, length, cost, elapsed_time(start_time)))
    if path is None:
        disconnect()
        return
    iterate_path(robot, base_joints, path)
    disconnect()