def test_pickle_support(self):
     import pickle
     src = PropertyTree()
     src.put_double('pi', 3.14)
     src.put_string('greet', 'bonjour')
     p = pickle.dumps(src)
     dst = pickle.loads(p)
     self.assertEqual(dst.get_double('pi'), 3.14)
     self.assertEqual(dst.get_string('greet'), 'bonjour')
Exemple #2
0
    def test_retrieve_data(self):
        ptree = PropertyTree()
        ptree.put_string('type', 'SeriesRC')
        ptree.put_double('series_resistance', 50e-3)
        ptree.put_double('capacitance', 3)
        device = EnergyStorageDevice(ptree)

        ptree = PropertyTree()
        ptree.put_string('type', 'RagoneAnalysis')
        ptree.put_double('discharge_power_lower_limit', 1e-1)
        ptree.put_double('discharge_power_upper_limit', 1e+1)
        ptree.put_int('steps_per_decade', 1)
        ptree.put_double('initial_voltage', 2.1)
        ptree.put_double('final_voltage', 0.7)
        ptree.put_double('time_step', 1.5)
        ptree.put_int('min_steps_per_discharge', 20)
        ptree.put_int('max_steps_per_discharge', 30)
        ragone = Experiment(ptree)

        with File('trash.hdf5', 'w') as fout:
            ragone.run(device, fout)
        performance_data = ragone._data

        fin = File('trash.hdf5', 'r')
        retrieved_data = retrieve_performance_data(fin)
        fin.close()
        # a few digits are lost when power is converted to string
        self.assertLess(
            linalg.norm(performance_data['power'] - retrieved_data['power'],
                        inf), 1e-12)
        self.assertEqual(
            linalg.norm(performance_data['energy'] - retrieved_data['energy'],
                        inf), 0.0)

        # TODO: probably want to move this into its own test
        ragoneplot = RagonePlot("ragone.png")
        ragoneplot.update(ragone)

        # check reset reinitialize the time step and empty the data
        ragone.reset()
        self.assertEqual(ragone._ptree.get_double('time_step'), 1.5)
        self.assertFalse(ragone._data['power'])
        self.assertFalse(ragone._data['energy'])
 def test_property_tree(self):
     # ptree as container to store int, double, string, and bool
     ptree = PropertyTree()
     ptree.put_int('dim', 3)
     self.assertEqual(ptree.get_int('dim'), 3)
     ptree.put_double('path.to.pi', 3.14)
     self.assertEqual(ptree.get_double('path.to.pi'), 3.14)
     ptree.put_string('good.news', 'it works')
     self.assertEqual(ptree.get_string('good.news'), 'it works')
     ptree.put_bool('is.that.a.good.idea', False)
     self.assertEqual(ptree.get_bool('is.that.a.good.idea'), False)
    def test_consistency_pycap_simulation(self):
        #
        # weak run test; simply ensures that Dualfoil object
        # can be run with pycap.Charge
        #
        df1 = Dualfoil(path=path)  # will use pycap
        df2 = Dualfoil(path=path)  # manual runs
        im = df_manip.InputManager(path=path)

        # testing a charge-to-hold-const-voltage
        # manual
        # use InputManager to set the input file
        c = -12.0  # constant current
        im.add_new_leg(c, 5.0, 1)
        df1.run()
        df1.outbot.update_output()
        v = 4.54  # constant voltage
        im.add_new_leg(v, 5.0, 0)
        df1.run()
        df1.outbot.update_output()

        # pycap simulation
        # build a ptree input
        ptree = PropertyTree()
        ptree.put_double('time_step', 300.0)  # 5 minutes
        ptree.put_string('charge_mode', 'constant_current')
        ptree.put_double('charge_current', 12.0)
        ptree.put_string('charge_stop_at_1', 'voltage_greater_than')
        ptree.put_double('charge_voltage_limit', 4.54)
        ptree.put_bool('charge_voltage_finish', True)
        # hold end voltage after either 5 minutes have passed
        # OR current falls under 1 ampere
        ptree.put_double('charge_voltage_finish_max_time', 300.0)
        ptree.put_double('charge_voltage_finish_current_limit', 1.0)

        const_current_const_voltage = Charge(ptree)
        const_current_const_voltage.run(df2)

        # check the output lists of both devices
        o1 = df1.outbot.output
        o2 = df2.outbot.output
        self.assertEqual(len(o1['time']), len(o2['time']))
        for i in range(len(o1['time'])):
            self.assertAlmostEqual(o1['time'][i], o2['time'][i])
            # BELOW: relaxed delta for voltage
            # REASON: dualfoil cuts off its voltages at 5
            #   decimal places, meaning that this end-digit
            #   is subject to roundoff errors
            error = 1e-5
            self.assertAlmostEqual(o1['voltage'][i],
                                   o2['voltage'][i],
                                   delta=error)
            self.assertAlmostEqual(o1['current'][i], o2['current'][i])
Exemple #5
0
    def test_retrieve_data(self):
        ptree = PropertyTree()
        ptree.put_string('type', 'SeriesRC')
        ptree.put_double('series_resistance', 100e-3)
        ptree.put_double('capacitance', 2.5)
        device = EnergyStorageDevice(ptree)

        ptree = PropertyTree()
        ptree.put_string('type', 'ElectrochemicalImpedanceSpectroscopy')
        ptree.put_double('frequency_upper_limit', 1e+2)
        ptree.put_double('frequency_lower_limit', 1e-1)
        ptree.put_int('steps_per_decade', 1)
        ptree.put_int('steps_per_cycle', 64)
        ptree.put_int('cycles', 2)
        ptree.put_int('ignore_cycles', 1)
        ptree.put_double('dc_voltage', 0)
        ptree.put_string('harmonics', '3')
        ptree.put_string('amplitudes', '5e-3')
        ptree.put_string('phases', '0')
        eis = Experiment(ptree)

        with File('trash.hdf5', 'w') as fout:
            eis.run(device, fout)
        spectrum_data = eis._data

        with File('trash.hdf5', 'r') as fin:
            retrieved_data = retrieve_impedance_spectrum(fin)

        print(spectrum_data['impedance'] - retrieved_data['impedance'])
        print(retrieved_data)
        self.assertEqual(
            linalg.norm(
                spectrum_data['frequency'] - retrieved_data['frequency'], inf),
            0.0)
        # not sure why we don't get equality for the impedance
        self.assertLess(
            linalg.norm(
                spectrum_data['impedance'] - retrieved_data['impedance'], inf),
            1e-10)
Exemple #6
0
 def test_force_discharge(self):
     ptree = PropertyTree()
     ptree.put_string('mode', 'constant_voltage')
     ptree.put_double('voltage', 0.0)
     ptree.put_string('end_criterion', 'current_less_than')
     ptree.put_double('current_limit', 1e-5)
     ptree.put_double('time_step', 1.0)
     stage = Stage(ptree)
     data = initialize_data()
     steps = stage.run(device, data)
     self.assertGreaterEqual(steps, 1)
     self.assertEqual(steps, len(data['time']))
     self.assertAlmostEqual(data['voltage'][-1], 0.0)
     self.assertLessEqual(data['current'][-1], 1e-5)
Exemple #7
0
 def test_constant_current_charge_for_given_time(self):
     ptree = PropertyTree()
     ptree.put_string('mode', 'constant_current')
     ptree.put_double('current', 5e-3)
     ptree.put_string('end_criterion', 'time')
     ptree.put_double('duration', 15.0)
     ptree.put_double('time_step', 0.1)
     stage = Stage(ptree)
     data = initialize_data()
     steps = stage.run(device, data)
     self.assertEqual(steps, 150)
     self.assertEqual(steps, len(data['time']))
     self.assertAlmostEqual(data['time'][-1], 15.0)
     self.assertAlmostEqual(data['current'][-1], 5e-3)
 def test_charge_constant_current(self):
     ptree = PropertyTree()
     ptree.put_string('charge_mode', 'constant_current')
     ptree.put_double('charge_current', 10e-3)
     ptree.put_string('charge_stop_at_1', 'voltage_greater_than')
     ptree.put_double('charge_voltage_limit', 1.4)
     ptree.put_double('time_step', 0.2)
     charge = Charge(ptree)
     data = initialize_data()
     charge.run(device, data)
     self.assertAlmostEqual(data['current'][0], 10e-3)
     self.assertAlmostEqual(data['current'][-1], 10e-3)
     self.assertGreaterEqual(data['voltage'][-1], 1.4)
     self.assertAlmostEqual(data['time'][1] - data['time'][0], 0.2)
 def test_charge_constant_voltage(self):
     ptree = PropertyTree()
     ptree.put_string('charge_mode', 'constant_voltage')
     ptree.put_double('charge_voltage', 1.4)
     ptree.put_string('charge_stop_at_1', 'current_less_than')
     ptree.put_double('charge_current_limit', 1e-6)
     ptree.put_string('charge_stop_at_2', 'time')
     ptree.put_double('charge_max_duration', 60)
     ptree.put_double('time_step', 0.2)
     charge = Charge(ptree)
     data = initialize_data()
     charge.run(device, data)
     self.assertTrue(data['time'][-1] >= 60
                     or abs(data['current'][-1]) <= 1e-6)
     self.assertAlmostEqual(data['voltage'][-1], 1.4)
 def test_get_array(self):
     ptree = PropertyTree()
     # array of double
     ptree.put_string('array_double', '3.14,1.41')
     array_double = ptree.get_array_double('array_double')
     self.assertEqual(array_double, [3.14, 1.41])
     # ... string
     ptree.put_string('array_int', '1,2,3')
     array_int = ptree.get_array_int('array_int')
     self.assertEqual(array_int, [1, 2, 3])
     # ... int
     ptree.put_string('array_string', 'uno,dos,tres,cuatro')
     array_string = ptree.get_array_string('array_string')
     self.assertEqual(array_string, ['uno', 'dos', 'tres', 'cuatro'])
     # ... bool
     ptree.put_string('array_bool', 'true,FALSE,False')
     array_bool = ptree.get_array_bool('array_bool')
     self.assertEqual(array_bool, [True, False, False])
Exemple #11
0
 def test_time_steps(self):
     ptree = PropertyTree()
     ptree.put_int('stages', 2)
     ptree.put_int('cycles', 1)
     ptree.put_double('time_step', 1.0)
     ptree.put_string('stage_0.mode', 'hold')
     ptree.put_string('stage_0.end_criterion', 'time')
     ptree.put_double('stage_0.duration', 2.0)
     ptree.put_string('stage_1.mode', 'rest')
     ptree.put_string('stage_1.end_criterion', 'time')
     ptree.put_double('stage_1.duration', 1.0)
     ptree.put_double('stage_1.time_step', 0.1)
     multi = MultiStage(ptree)
     data = initialize_data()
     steps = multi.run(device, data)
     self.assertEqual(steps, 12)
     self.assertEqual(steps, len(data['time']))
     self.assertAlmostEqual(data['time'][5], 2.4)
     self.assertAlmostEqual(data['voltage'][0], data['voltage'][1])
     self.assertAlmostEqual(data['current'][3], 0.0)
Exemple #12
0
 def test_setup_frequency_range(self):
     ptree = PropertyTree()
     ptree.put_string('type', 'ElectrochemicalImpedanceSpectroscopy')
     # specify the upper and lower bounds of the range
     # the number of points per decades controls the spacing on the log
     # scale
     ptree.put_double('frequency_upper_limit', 1e+2)
     ptree.put_double('frequency_lower_limit', 1e-1)
     ptree.put_int('steps_per_decade', 3)
     eis = Experiment(ptree)
     print(eis._frequencies)
     f = eis._frequencies
     self.assertEqual(len(f), 10)
     self.assertAlmostEqual(f[0], 1e+2)
     self.assertAlmostEqual(f[3], 1e+1)
     self.assertAlmostEqual(f[9], 1e-1)
     # or directly specify the frequencies
     frequencies = [3, 2e3, 0.1]
     eis = Experiment(ptree, frequencies)
     self.assertTrue(all(equal(frequencies, eis._frequencies)))
Exemple #13
0
 def test_current_limit(self):
     # lower
     ptree = PropertyTree()
     ptree.put_string('end_criterion', 'current_less_than')
     ptree.put_double('current_limit', -5e-3)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 0.0)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 5e-3)
     current_limit = EndCriterion.factory(ptree)
     device.evolve_one_time_step_constant_current(5.0, 0.0)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 0.002)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, -0.001)
     self.assertTrue(current_limit.check(180.0, device))
     device.evolve_one_time_step_constant_current(5.0, 0.005)
     self.assertTrue(current_limit.check(180.0, device))
     device.evolve_one_time_step_constant_current(5.0, 0.007)
     self.assertFalse(current_limit.check(180.0, device))
     device.evolve_one_time_step_constant_current(5.0, -15e3)
     self.assertFalse(current_limit.check(180.0, device))
     # upper
     ptree.put_string('end_criterion', 'current_greater_than')
     ptree.put_double('current_limit', -5e-3)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 0.0)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 5e-3)
     current_limit = EndCriterion.factory(ptree)
     device.evolve_one_time_step_constant_current(5.0, -1e-3)
     self.assertFalse(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 0.002)
     self.assertFalse(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 0.005)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, -0.2)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 3.0)
     self.assertTrue(current_limit.check(NaN, device))
Exemple #14
0
 def test_compound_criterion(self):
     ptree = PropertyTree()
     ptree.put_string('end_criterion', 'compound')
     ptree.put_string('criterion_0.end_criterion', 'time')
     ptree.put_double('criterion_0.duration', 5.0)
     ptree.put_string('criterion_1.end_criterion', 'voltage_greater_than')
     ptree.put_double('criterion_1.voltage_limit', 2.0)
     # no default value for now
     self.assertRaises(KeyError, EndCriterion.factory, ptree)
     ptree.put_string('logical_operator', 'bad_operator')
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_string('logical_operator', 'or')
     compound_criterion = EndCriterion.factory(ptree)
     compound_criterion.reset(0.0, device)
     device.evolve_one_time_step_constant_voltage(0.1, 1.0)
     self.assertFalse(compound_criterion.check(3.0, device))
     self.assertTrue(compound_criterion.check(5.0, device))
     device.evolve_one_time_step_constant_voltage(0.1, 2.0)
     self.assertTrue(compound_criterion.check(3.0, device))
     self.assertTrue(compound_criterion.check(5.0, device))
     ptree.put_string('logical_operator', 'and')
     compound_criterion = EndCriterion.factory(ptree)
     compound_criterion.reset(0.0, device)
     device.evolve_one_time_step_constant_voltage(0.1, 1.0)
     self.assertFalse(compound_criterion.check(3.0, device))
     self.assertFalse(compound_criterion.check(5.0, device))
     device.evolve_one_time_step_constant_voltage(0.1, 2.0)
     self.assertFalse(compound_criterion.check(3.0, device))
     self.assertTrue(compound_criterion.check(5.0, device))
     ptree.put_string('logical_operator', 'xor')
     compound_criterion = EndCriterion.factory(ptree)
     compound_criterion.reset(0.0, device)
     device.evolve_one_time_step_constant_voltage(0.1, 1.0)
     self.assertFalse(compound_criterion.check(3.0, device))
     self.assertTrue(compound_criterion.check(5.0, device))
     device.evolve_one_time_step_constant_voltage(0.1, 2.0)
     self.assertTrue(compound_criterion.check(3.0, device))
     self.assertFalse(compound_criterion.check(5.0, device))
Exemple #15
0
    def test_builders(self):
        for AbstractClass in [Observer, Observable]:
            # AbstractClass takes a PropertyTree as argument.
            self.assertRaises(TypeError, AbstractClass)

            # The PropertyTree must specify what concrete class derived from
            # AbstractClass to instantiate.
            ptree = PropertyTree()
            self.assertRaises(KeyError, AbstractClass, ptree)

            # The derived concrete class must be registerd in the dictionary
            # that holds the builders.
            ptree.put_string('type', 'Invalid')
            self.assertRaises(KeyError, AbstractClass, ptree)

            # Now declare a concrete class.
            class ConcreteClass(AbstractClass):
                def __new__(cls, *args, **kwargs):
                    return object.__new__(ConcreteClass)

                def __init__(*args, **kwargs):
                    pass

            # Here is how to register a derived concrete class to the base
            # abstract class.
            AbstractClass._builders['ConcreteClass'] = ConcreteClass

            # Now instantiation works.
            ptree.put_string('type', 'ConcreteClass')
            AbstractClass(ptree)

            # Also can build directly from derived class.
            ConcreteClass()

            # Remove from the dictionary.
            del AbstractClass._builders['ConcreteClass']
            self.assertRaises(KeyError, AbstractClass, ptree)
Exemple #16
0
 def test_voltage_limit(self):
     ptree = PropertyTree()
     ptree.put_double('voltage_limit', 1.7)
     # upper limit
     ptree.put_string('end_criterion', 'voltage_greater_than')
     voltage_limit = EndCriterion.factory(ptree)
     voltage_limit.reset(5.0, device)
     device.evolve_one_time_step_constant_voltage(0.2, 1.3)
     self.assertFalse(voltage_limit.check(0.0, device))
     self.assertFalse(voltage_limit.check(60.0, device))
     device.evolve_one_time_step_constant_voltage(0.2, 1.7)
     self.assertTrue(voltage_limit.check(45.0, device))
     device.evolve_one_time_step_constant_voltage(0.2, 2.1)
     self.assertTrue(voltage_limit.check(45.0, device))
     # lower limit
     ptree.put_string('end_criterion', 'voltage_less_than')
     voltage_limit = EndCriterion.factory(ptree)
     voltage_limit.reset(0.0, device)
     device.evolve_one_time_step_constant_voltage(0.2, 1.3)
     self.assertTrue(voltage_limit.check(0.0, device))
     device.evolve_one_time_step_constant_voltage(0.2, 1.7)
     self.assertTrue(voltage_limit.check(45.0, device))
     device.evolve_one_time_step_constant_voltage(0.2, 2.1)
     self.assertFalse(voltage_limit.check(45.0, device))
Exemple #17
0
 def test_fourier_analysis(self):
     ptree = PropertyTree()
     ptree.put_int('steps_per_cycle', 3)
     ptree.put_int('cycles', 1)
     ptree.put_int('ignore_cycles', 0)
     ptree.put_string('harmonics', '1')
     # uninitialized data
     data = {}
     self.assertRaises(KeyError, fourier_analysis, data, ptree)
     # empty data
     data = initialize_data()
     self.assertRaises(IndexError, fourier_analysis, data, ptree)
     # bad data
     data['time'] = array([1, 2, 3], dtype=float)
     data['current'] = array([4, 5, 6], dtype=float)
     data['voltage'] = array([7, 8], dtype=float)
     self.assertRaises(AssertionError, fourier_analysis, data, ptree)
     # poor data (size not a power of 2)
     data['voltage'] = array([7, 8, 9], dtype=float)
     with catch_warnings():
         simplefilter("error")
         self.assertRaises(RuntimeWarning, fourier_analysis, data, ptree)
     # data unchanged after analyze
     dummy = array([1, 2, 3, 4, 5, 6, 7, 8], dtype=float)
     data['time'] = dummy
     data['current'] = dummy
     data['voltage'] = dummy
     # ptree needs to be updated
     self.assertRaises(AssertionError, fourier_analysis, data, ptree)
     ptree.put_int('steps_per_cycle', 4)
     ptree.put_int('cycles', 2)
     ptree.put_int('ignore_cycles', 0)
     fourier_analysis(data, ptree)
     self.assertTrue(all(equal(data['time'], dummy)))
     self.assertTrue(all(equal(data['current'], dummy)))
     self.assertTrue(all(equal(data['voltage'], dummy)))
    def test_accuracy_pycap_simulation(self):
        #
        # tests the accuracy of a pycap simulation against a
        # straight run dualfoil sim with different timesteps
        #
        df1 = Dualfoil(path=path)  # manual runs
        df2 = Dualfoil(path=path)  # pycap simulation
        im = df_manip.InputManager(path=path)

        # testing a charge-to-hold-const-voltage
        # manual
        # use InputManager to set the input file
        c = -10.0  # constant charge current
        # charge for 5 minutes straight
        im.add_new_leg(c, 5, 1)
        df1.run()
        df1.outbot.update_output()
        v = 4.539  # expected voltage after 5 minutes
        # hold constant voltage for 3 minutes straight
        im.add_new_leg(v, 3.0, 0)
        df1.run()
        df1.outbot.update_output()

        # pycap simulation
        # build a ptree input
        ptree = PropertyTree()
        ptree.put_double('time_step', 30.0)  # 30 second time step
        ptree.put_string('charge_mode', 'constant_current')
        ptree.put_double('charge_current', 10.0)
        ptree.put_string('charge_stop_at_1', 'voltage_greater_than')
        ptree.put_double('charge_voltage_limit', v)
        ptree.put_bool('charge_voltage_finish', True)
        # hold end voltage after either 3 minutes have passed
        # OR current falls under 1 ampere
        ptree.put_double('charge_voltage_finish_max_time', 180.0)
        ptree.put_double('charge_voltage_finish_current_limit', 1.0)

        const_current_const_voltage = Charge(ptree)
        const_current_const_voltage.run(df2)

        o1 = df1.outbot.output  # contains sim1 output
        o2 = df2.outbot.output  # contains sim2 output

        # affirm we make it this far and have usable data
        self.assertTrue(len(o1['time']) > 0)
        self.assertTrue(len(o2['time']) > 0)
        # lengths of data should be different
        self.assertFalse(len(o1['time']) == len(o2['time']))

        # TEST LOGIC:
        #  -Merge the two outputs into one, sorted by
        #   increasing time stamps.
        #  -Compare the consistency of the two simulations
        #   by checking for smooth changes within the curves
        #   of the combined output lists
        o1['time'].extend(o2['time'])
        time = ar(o1['time'])  # nparray
        o1['voltage'].extend(o2['voltage'])
        voltage = ar(o1['voltage'])  # nparray
        o1['current'].extend(o2['current'])
        current = ar(o1['current'])  # np array
        # create a dictionary with the combined output lists
        output = {'time': time, 'voltage': voltage, 'current': current}
        # sort based on time, keeping the three types aligned
        key = argsort(output['time'])
        # for using the key to sort the list
        tmp = {'time': [], 'voltage': [], 'current': []}
        for i in key:
            tmp['time'].append(output['time'][i])
            tmp['voltage'].append(output['voltage'][i])
            tmp['current'].append(output['current'][i])
        # reassign ordered set to `output` as nparrays
        output['time'] = ar(tmp['time'])
        output['voltage'] = ar(tmp['voltage'])
        output['current'] = ar(tmp['current'])

        # BELOW: first 20 seconds are identical time stamps;
        #     skip these to avoid errors from incorrect sorting
        # REASON FOR ERROR: Dualfoil only prints time data as
        #     precice as minutes to three decimal places. So when
        #     the following is generated....
        #       Manual Run         |       Pycap Simulation
        #  (min)     (V)     (amp) |  (min)     (V)     (amp)
        #  .001   4.52345    10.0  |  .001   4.52345    10.0
        #  .001   4.52349    10.0  |  .001   4.52349    10.0
        #           ...                       ...
        #     ...python's `sorted()` function has no way of
        #     distinguishing entries; it instead returns this:
        # [
        #   (.001, 4.52345, 10.0),
        #   (.001, 4.52349, 10.0),  <- these two should
        #   (.001, 4.52345, 10.0),  <-   be switched
        #   (.001, 4.52349, 10.0)
        # ]
        # SOLUTION: consistency test affirms that the exact same
        #     time step will produce same current and voltage, so
        #     skip ahead to first instance where time stamps will
        #     be out of alignment
        i = 0
        while output['time'][i] <= 0.4:  # 24 seconds
            i = i + 1
        index_limit = len(output['time']) - 1

        # go through and affirm smoothness of curve
        while i < index_limit:
            # Check if time values are the same to 3 decimal places.
            # If so, current and voltage are not guarunteed
            #   to also be exactly the same, but should be close
            if output['time'][i] == output['time'][i - 1]:
                # affirm that current is virtually the same
                self.assertAlmostEqual(output['current'][i],
                                       output['current'][i - 1])
                # BELOW: delta is eased slightly
                # REASON: `sorted()` can't tell which entry came
                #   first from same time-stamp if from different
                #   simulations; allow for this with error
                error = 3e-5
                self.assertAlmostEqual(output['voltage'][i],
                                       output['voltage'][i - 1],
                                       delta=error)
            else:
                # Time values are different
                # Check to affirm that the variable NOT being held
                # constant is steadily increasing / decreasing

                # First part happens in first 4 minutes
                if output['time'][i] <= 5.0:  # part 1, const currrent
                    # current should be equal
                    self.assertEqual(output['current'][i],
                                     output['current'][i - 1])
                    # voltage should not have decreased
                    self.assertTrue(output['voltage'][i],
                                    output['voltage'][i - 1])
                else:  # part 2, const voltage
                    # current should be getting less positive
                    self.assertTrue(
                        output['current'][i] <= output['current'][i - 1],
                        msg=(output['current'][i - 2:i + 10],
                             output['time'][i - 2:i + 10]))
                    # voltage should decrease, then stay at 4.54
                    if output['voltage'][i - 1] == 4.54:
                        self.assertEqual(output['voltage'][i],
                                         output['voltage'][i - 1])
                    else:
                        self.assertTrue(
                            output['voltage'][i] <= output['voltage'][i - 1])
            # update index
            i = i + 1
# Copyright (c) 2016, the Cap authors.
#
# This file is subject to the Modified BSD License and may not be distributed
# without copyright and license information. Please refer to the file LICENSE
# for the text and further information on this license.

from pycap import PropertyTree, EnergyStorageDevice
from pycap import Charge
from pycap import initialize_data
from mpi4py import MPI
import unittest

comm = MPI.COMM_WORLD
filename = 'series_rc.info'
ptree = PropertyTree()
ptree.parse_info(filename)
device = EnergyStorageDevice(ptree, comm)


class capChargeTestCase(unittest.TestCase):
    def test_charge_constant_current(self):
        ptree = PropertyTree()
        ptree.put_string('charge_mode', 'constant_current')
        ptree.put_double('charge_current', 10e-3)
        ptree.put_string('charge_stop_at_1', 'voltage_greater_than')
        ptree.put_double('charge_voltage_limit', 1.4)
        ptree.put_double('time_step', 0.2)
        charge = Charge(ptree)
        data = initialize_data()
        charge.run(device, data)
        self.assertAlmostEqual(data['current'][0], 10e-3)
Exemple #20
0
 def test_constructor(self):
     self.assertRaises(TypeError, EndCriterion)
     self.assertRaises(RuntimeError, EndCriterion, PropertyTree())
Exemple #21
0
 def test_invalid_end_criterion(self):
     ptree = PropertyTree()
     ptree.put_string('end_criterion', 'bad_name')
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
Exemple #22
0
 def test_always_statisfied(self):
     ptree = PropertyTree()
     ptree.put_string('end_criterion', 'skip')
     always_statisfied = EndCriterion.factory(ptree)
     always_statisfied.reset(0.0, device)
     self.assertTrue(always_statisfied.check(NaN, device))
Exemple #23
0
 def test_never_statisfied(self):
     ptree = PropertyTree()
     ptree.put_string('end_criterion', 'none')
     never_statisfied = EndCriterion.factory(ptree)
     never_statisfied.reset(0.0, device)
     self.assertFalse(never_statisfied.check(NaN, device))
Exemple #24
0
 def test_rest(self):
     ptree = PropertyTree()
     ptree.put_string('mode', 'rest')
     evolve_one_time_step = TimeEvolution.factory(ptree)
     evolve_one_time_step(device, 0.1)
     self.assertEqual(device.get_current(), 0.0)
Exemple #25
0
 def test_invalid_time_evolution(self):
     ptree = PropertyTree()
     ptree.put_string('mode', 'unexpected')
     self.assertRaises(RuntimeError, TimeEvolution.factory, ptree)
Exemple #26
0
 def test_constructor(self):
     self.assertRaises(TypeError, TimeEvolution)
     self.assertRaises(RuntimeError, TimeEvolution, PropertyTree())
#!/usr/bin/env python

from puq import dump_hdf5
from optparse import OptionParser
from pycap import PropertyTree, EnergyStorageDevice
from pycap import measure_impedance_spectrum
from numpy import real, imag, log10, absolute, angle

# read uq database
uq_database = PropertyTree()
uq_database.parse_xml('uq.xml')
# get number of parameters
params = uq_database.get_int('uq.params')

# usage
usage = 'usage: %prog'
for p in range(params):
    usage += ' --param_' + str(p) + ' val_' + str(p)
parser = OptionParser(usage)
# register options
for p in range(params):
    parser.add_option('--param_' + str(p), type=float)
# parse the command line arguments
(options, args) = parser.parse_args()

# make device database
device_database = PropertyTree()
device_database.parse_xml('super_capacitor.xml')
# adjust the parameters in the database
options_dict = vars(options)
for var in options_dict:
Exemple #28
0
def run():
    # parse uq database
    input_database = PropertyTree()
    input_database.parse_xml('uq.xml')
    uq_database = input_database.get_child('uq')

    # declare parameters
    params = uq_database.get_int('params')
    parameter_list = []
    for p in range(params):
        parameter_database = uq_database.get_child('param_' + str(p))
        distribution_type = parameter_database.get_string('distribution_type')
        parameter_name = parameter_database.get_string('name')
        if distribution_type == 'uniform':
            parameter_range = parameter_database.get_array_double('range')
            parameter_list.append(
                UniformParameter('param_' + str(p),
                                 parameter_name,
                                 min=parameter_range[0],
                                 max=parameter_range[1]))
        elif distribution_type == 'normal':
            parameter_mean = parameter_database.get_double('mean')
            parameter_standard_deviation = parameter_database.get_double(
                'standard_deviation')
            parameter_list.append(
                NormalParameter('param_' + str(p),
                                parameter_name,
                                mean=parameter_mean,
                                dev=parameter_standard_deviation))
        else:
            raise RuntimeError('invalid distribution type ' +
                               distribution_type + ' for param_' + str(p))

    # create a host
    host_database = uq_database.get_child('host')
    host_type = host_database.get_string('type')
    if host_type == "Interactive":
        host = InteractiveHost(
            cpus=host_database.get_int_with_default_value('cpus', 1),
            cpus_per_node=host_database.get_int_with_default_value(
                'cpus_per_node', 0))
    elif host_type == "PBS":
        host = PBSHost(
            host_database.get_string('env'),
            cpus=host_database.get_int_with_default_value('cpus', 0),
            cpus_per_node=host_database.get_int_with_default_value(
                'cpus_per_node', 0),
            qname=host_database.get_string_with_default_value(
                'qname', 'standby'),
            walltime=host_database.get_string_with_default_value(
                'walltime', '1:00:00'),
            modules=host_database.get_string_with_default_value('modules', ''),
            pack=host_database.get_int_with_default_value('pack', 1),
            qlimit=host_database.get_int_with_default_value('qlimit', 200))
    else:
        raise RuntimeError('invalid host type ' + host_type)

    # pick UQ method
    method = uq_database.get_string('method')
    if method == 'SmolyakSparseGrid':
        level = uq_database.get_int('level')
        uq = Smolyak(parameter_list, level=level)
    elif method == 'MonteCarlo':
        samples = uq_database.get_int('samples')
        uq = MonteCarlo(parameter_list, num=samples)
    elif method == 'LatinHypercubeSampling':
        samples = uq_database.get_int('samples')
        uq = LHS(parameter_list, num=samples)
    else:
        raise RuntimeError('invalid UQ method ' + method)

    # make a test program
    test_program_database = uq_database.get_child('test_program')
    description = test_program_database.get_string('description')
    executable_name = test_program_database.get_string('executable')
    for p in range(params):
        executable_name += ' --param_' + str(p) + ' $param_' + str(p)
    prog = TestProgram(exe=executable_name, desc=description)

    # run
    return Sweep(uq, host, prog)