def test_no_name(self):
     ptree = PropertyTree()
     ptree.put_double('initial_voltage', 0)
     ptree.put_double('final_voltage', 0)
     ptree.put_double('scan_limit_1', 1)
     ptree.put_double('scan_limit_2', 0)
     ptree.put_double('step_size', 0.1)
     ptree.put_double('scan_rate', 1)
     ptree.put_int('cycles', 1)
     cv = CyclicVoltammetry(ptree)
     try:
         cv.run(device)
     except:
         self.fail('calling run without data should not raise')
     data = initialize_data()
     cv.run(device, data)
     voltage = array([0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.,
                      0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.],
                     dtype=float)
     time = linspace(0, 2, 21)
     try:
         testing.assert_array_almost_equal(data['voltage'], voltage)
         testing.assert_array_almost_equal(data['time'], time)
     except AssertionError as e:
         print(e)
         self.fail()
 def testSeriesRC(self):
     # make series RC equivalent circuit
     device_database = PropertyTree()
     device_database.put_string('type', 'SeriesRC')
     device_database.put_double('series_resistance', R)
     device_database.put_double('capacitance', C)
     device = EnergyStorageDevice(device_database, MPI.COMM_WORLD)
     # setup experiment and measure
     eis_database = setup_expertiment()
     spectrum_data = measure_impedance_spectrum(device, eis_database)
     # extract data
     f = spectrum_data['frequency']
     Z_computed = spectrum_data['impedance']
     R_computed = real(Z_computed)
     X_computed = imag(Z_computed)
     M_computed = 20*log10(absolute(Z_computed))
     P_computed = angle(Z_computed)*180/pi
     # compute the exact solution
     Z_exact = R+1/(1j*C*2*pi*f)
     R_exact = real(Z_exact)
     X_exact = imag(Z_exact)
     M_exact = 20*log10(absolute(Z_exact))
     P_exact = angle(Z_exact)*180/pi
     # ensure the error is small
     max_phase_error_in_degree = linalg.norm(P_computed-P_exact, inf)
     max_magniture_error_in_decibel = linalg.norm(M_computed-M_exact, inf)
     print('max_phase_error_in_degree = {0}'.format(max_phase_error_in_degree))
     print('max_magniture_error_in_decibel = {0}'.format(max_magniture_error_in_decibel))
     self.assertLessEqual(max_phase_error_in_degree, 1)
     self.assertLessEqual(max_magniture_error_in_decibel, 0.2)
 def test_evolve_constant_voltage(self):
     ptree = PropertyTree()
     ptree.put_string('mode', 'constant_voltage')
     ptree.put_double('voltage', 2.1)
     evolve_one_time_step = TimeEvolution.factory(ptree)
     evolve_one_time_step(device, 0.1)
     self.assertEqual(device.get_voltage(), 2.1)
 def test_evolve_constant_current(self):
     ptree = PropertyTree()
     ptree.put_string('mode', 'constant_current')
     ptree.put_double('current', 100e-3)
     evolve_one_time_step = TimeEvolution.factory(ptree)
     evolve_one_time_step(device, 0.1)
     self.assertEqual(device.get_current(), 100e-3)
 def test_evolve_constant_load(self):
     ptree = PropertyTree()
     ptree.put_string('mode', 'constant_load')
     ptree.put_double('load', 120)
     evolve_one_time_step = TimeEvolution.factory(ptree)
     evolve_one_time_step(device, 0.1)
     self.assertAlmostEqual(device.get_voltage()/device.get_current(), -120)
 def testRetrieveData(self):
     try:
         from h5py import File
     except ImportError:
         print('module h5py not found')
         return
     device_database = PropertyTree()
     device_database.put_string('type', 'SeriesRC')
     device_database.put_double('series_resistance', R)
     device_database.put_double('capacitance', C)
     device = EnergyStorageDevice(device_database, MPI.COMM_WORLD)
     eis_database  = setup_expertiment()
     eis_database.put_int('steps_per_decade', 1)
     eis_database.put_int('steps_per_cycle', 64)
     eis_database.put_int('cycles', 2)
     eis_database.put_int('ignore_cycles', 1)
     fout = File('trash.hdf5', 'w')
     spectrum_data = measure_impedance_spectrum(device, eis_database, fout)
     fout.close()
     fin = File('trash.hdf5', 'r')
     retrieved_data = retrieve_impedance_spectrum(fin)
     fin.close()
     print(spectrum_data['impedance']-retrieved_data['impedance'])
     print(retrieved_data)
     self.assertEqual(linalg.norm(spectrum_data['frequency'] -
                                  retrieved_data['frequency'], inf), 0.0)
     # not sure why we don't get equality for the impedance
     self.assertLess(linalg.norm(spectrum_data['impedance'] -
                                 retrieved_data['impedance'], inf), 1e-10)
Exemple #7
0
 def test_time_limit(self):
     ptree = PropertyTree()
     ptree.put_string('end_criterion', 'time')
     ptree.put_double('duration', 15)
     time_limit = EndCriterion.factory(ptree)
     time_limit.reset(0.0, device)
     self.assertFalse(time_limit.check(2.0, device))
     self.assertTrue(time_limit.check(15.0, device))
     self.assertTrue(time_limit.check(60.0, device))
 def test_verification_with_equivalent_circuit(self):
     R = 50e-3   # ohm
     R_L = 500   # ohm
     C = 3       # farad
     # setup EIS experiment
     ptree = PropertyTree()
     ptree.put_string('type', 'ElectrochemicalImpedanceSpectroscopy')
     ptree.put_double('frequency_upper_limit', 1e+4)
     ptree.put_double('frequency_lower_limit', 1e-6)
     ptree.put_int('steps_per_decade', 3)
     ptree.put_int('steps_per_cycle', 1024)
     ptree.put_int('cycles', 2)
     ptree.put_int('ignore_cycles', 1)
     ptree.put_double('dc_voltage', 0)
     ptree.put_string('harmonics', '3')
     ptree.put_string('amplitudes', '5e-3')
     ptree.put_string('phases', '0')
     eis = Experiment(ptree)
     # setup equivalent circuit database
     device_database = PropertyTree()
     device_database.put_double('series_resistance', R)
     device_database.put_double('parallel_resistance', R_L)
     device_database.put_double('capacitance', C)
     # analytical solutions
     Z = {}
     Z['SeriesRC'] = lambda f: R + 1 / (1j * C * 2 * pi * f)
     Z['ParallelRC'] = lambda f: R + R_L / (1 + 1j * R_L * C * 2 * pi * f)
     for device_type in ['SeriesRC', 'ParallelRC']:
         # create a device
         device_database.put_string('type', device_type)
         device = EnergyStorageDevice(device_database)
         # setup experiment and measure
         eis.reset()
         eis.run(device)
         f = eis._data['frequency']
         Z_computed = eis._data['impedance']
         # compute the exact solution
         Z_exact = Z[device_type](f)
         # ensure the error is small
         max_phase_error_in_degree = linalg.norm(
             angle(Z_computed) * 180 / pi - angle(Z_exact) * 180 / pi,
             inf)
         max_magniture_error_in_decibel = linalg.norm(
             20 * log10(absolute(Z_exact)) - 20 *
             log10(absolute(Z_computed)),
             inf)
         print(device_type)
         print(
             '-- max_phase_error_in_degree = {0}'.format(max_phase_error_in_degree))
         print(
             '-- max_magniture_error_in_decibel = {0}'.format(max_magniture_error_in_decibel))
         self.assertLessEqual(max_phase_error_in_degree, 1)
         self.assertLessEqual(max_magniture_error_in_decibel, 0.2)
    def test_consistency_pycap_simulation(self):
        # 
        # weak run test; simply ensures that Dualfoil object
        # can be run with pycap.Charge
        #
        df1 = Dualfoil(path=path)  # will use pycap
        df2 = Dualfoil(path=path)  # manual runs
        im = df_manip.InputManager(path=path)

        # testing a charge-to-hold-const-voltage
        # manual 
        # use InputManager to set the input file
        c = -12.0  # constant current
        im.add_new_leg(c, 5.0, 1)
        df1.run()
        df1.outbot.update_output()
        v = 4.54  # constant voltage
        im.add_new_leg(v, 5.0, 0)
        df1.run()
        df1.outbot.update_output()
        
        # pycap simulation
        # build a ptree input
        ptree = PropertyTree()
        ptree.put_double('time_step', 300.0)  # 5 minutes
        ptree.put_string('charge_mode', 'constant_current')
        ptree.put_double('charge_current', 12.0)
        ptree.put_string('charge_stop_at_1', 'voltage_greater_than')
        ptree.put_double('charge_voltage_limit', 4.54)
        ptree.put_bool('charge_voltage_finish', True)
        # hold end voltage after either 5 minutes have passed
        # OR current falls under 1 ampere
        ptree.put_double('charge_voltage_finish_max_time', 300.0)
        ptree.put_double('charge_voltage_finish_current_limit', 1.0)

        const_current_const_voltage = Charge(ptree)
        const_current_const_voltage.run(df2)

        # check the output lists of both devices
        o1 = df1.outbot.output
        o2 = df2.outbot.output
        self.assertEqual(len(o1['time']), len(o2['time']))
        for i in range(len(o1['time'])):
            self.assertAlmostEqual(o1['time'][i], o2['time'][i])
            # BELOW: relaxed delta for voltage
            # REASON: dualfoil cuts off its voltages at 5
            #   decimal places, meaning that this end-digit
            #   is subject to roundoff errors
            error = 1e-5
            self.assertAlmostEqual(o1['voltage'][i], o2['voltage'][i],
                                   delta=error)
            self.assertAlmostEqual(o1['current'][i], o2['current'][i])
def setup_expertiment():
    eis_database = PropertyTree()
    eis_database.put_double('frequency_upper_limit', 1e+4)
    eis_database.put_double('frequency_lower_limit', 1e-6)
    eis_database.put_int('steps_per_decade', 3)
    eis_database.put_int('steps_per_cycle', 1024)
    eis_database.put_int('cycles', 2)
    eis_database.put_int('ignore_cycles', 1)
    eis_database.put_double('dc_voltage', 0)
    eis_database.put_string('harmonics', ' 3')
    eis_database.put_string('amplitudes', ' 5e-3')
    eis_database.put_string('phases', '0')

    return eis_database
    def test_retrieve_data(self):
        ptree = PropertyTree()
        ptree.put_string('type', 'SeriesRC')
        ptree.put_double('series_resistance', 100e-3)
        ptree.put_double('capacitance', 2.5)
        device = EnergyStorageDevice(ptree)

        ptree = PropertyTree()
        ptree.put_string('type', 'ElectrochemicalImpedanceSpectroscopy')
        ptree.put_double('frequency_upper_limit', 1e+2)
        ptree.put_double('frequency_lower_limit', 1e-1)
        ptree.put_int('steps_per_decade', 1)
        ptree.put_int('steps_per_cycle', 64)
        ptree.put_int('cycles', 2)
        ptree.put_int('ignore_cycles', 1)
        ptree.put_double('dc_voltage', 0)
        ptree.put_string('harmonics', '3')
        ptree.put_string('amplitudes', '5e-3')
        ptree.put_string('phases', '0')
        eis = Experiment(ptree)

        with File('trash.hdf5', 'w') as fout:
            eis.run(device, fout)
        spectrum_data = eis._data

        with File('trash.hdf5', 'r') as fin:
            retrieved_data = retrieve_impedance_spectrum(fin)

        print(spectrum_data['impedance'] - retrieved_data['impedance'])
        print(retrieved_data)
        self.assertEqual(linalg.norm(spectrum_data['frequency'] -
                                     retrieved_data['frequency'], inf), 0.0)
        # not sure why we don't get equality for the impedance
        self.assertLess(linalg.norm(spectrum_data['impedance'] -
                                    retrieved_data['impedance'], inf), 1e-10)
Exemple #12
0
 def test_constant_current_charge_for_given_time(self):
     ptree = PropertyTree()
     ptree.put_string('mode', 'constant_current')
     ptree.put_double('current', 5e-3)
     ptree.put_string('end_criterion', 'time')
     ptree.put_double('duration', 15.0)
     ptree.put_double('time_step', 0.1)
     stage = Stage(ptree)
     data = initialize_data()
     steps = stage.run(device, data)
     self.assertEqual(steps, 150)
     self.assertEqual(steps, len(data['time']))
     self.assertAlmostEqual(data['time'][-1], 15.0)
     self.assertAlmostEqual(data['current'][-1], 5e-3)
 def test_setup_frequency_range(self):
     ptree = PropertyTree()
     ptree.put_string('type', 'ElectrochemicalImpedanceSpectroscopy')
     # specify the upper and lower bounds of the range
     # the number of points per decades controls the spacing on the log
     # scale
     ptree.put_double('frequency_upper_limit', 1e+2)
     ptree.put_double('frequency_lower_limit', 1e-1)
     ptree.put_int('steps_per_decade', 3)
     eis = Experiment(ptree)
     print(eis._frequencies)
     f = eis._frequencies
     self.assertEqual(len(f), 10)
     self.assertAlmostEqual(f[0], 1e+2)
     self.assertAlmostEqual(f[3], 1e+1)
     self.assertAlmostEqual(f[9], 1e-1)
     # or directly specify the frequencies
     frequencies = [3, 2e3, 0.1]
     eis = Experiment(ptree, frequencies)
     self.assertTrue(all(equal(frequencies, eis._frequencies)))
 def test_charge_constant_voltage(self):
     ptree = PropertyTree()
     ptree.put_string('charge_mode', 'constant_voltage')
     ptree.put_double('charge_voltage', 1.4)
     ptree.put_string('charge_stop_at_1', 'current_less_than')
     ptree.put_double('charge_current_limit', 1e-6)
     ptree.put_string('charge_stop_at_2', 'time')
     ptree.put_double('charge_max_duration', 60)
     ptree.put_double('time_step', 0.2)
     charge = Charge(ptree)
     data = initialize_data()
     charge.run(device, data)
     self.assertTrue(data['time'][-1] >= 60 or
                     abs(data['current'][-1]) <= 1e-6)
     self.assertAlmostEqual(data['voltage'][-1], 1.4)
Exemple #15
0
 def test_compound_criterion(self):
     ptree = PropertyTree()
     ptree.put_string('end_criterion', 'compound')
     ptree.put_string('criterion_0.end_criterion', 'time')
     ptree.put_double('criterion_0.duration', 5.0)
     ptree.put_string('criterion_1.end_criterion', 'voltage_greater_than')
     ptree.put_double('criterion_1.voltage_limit', 2.0)
     # no default value for now
     self.assertRaises(KeyError, EndCriterion.factory, ptree)
     ptree.put_string('logical_operator', 'bad_operator')
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_string('logical_operator', 'or')
     compound_criterion = EndCriterion.factory(ptree)
     compound_criterion.reset(0.0, device)
     device.evolve_one_time_step_constant_voltage(0.1, 1.0)
     self.assertFalse(compound_criterion.check(3.0, device))
     self.assertTrue(compound_criterion.check(5.0, device))
     device.evolve_one_time_step_constant_voltage(0.1, 2.0)
     self.assertTrue(compound_criterion.check(3.0, device))
     self.assertTrue(compound_criterion.check(5.0, device))
     ptree.put_string('logical_operator', 'and')
     compound_criterion = EndCriterion.factory(ptree)
     compound_criterion.reset(0.0, device)
     device.evolve_one_time_step_constant_voltage(0.1, 1.0)
     self.assertFalse(compound_criterion.check(3.0, device))
     self.assertFalse(compound_criterion.check(5.0, device))
     device.evolve_one_time_step_constant_voltage(0.1, 2.0)
     self.assertFalse(compound_criterion.check(3.0, device))
     self.assertTrue(compound_criterion.check(5.0, device))
     ptree.put_string('logical_operator', 'xor')
     compound_criterion = EndCriterion.factory(ptree)
     compound_criterion.reset(0.0, device)
     device.evolve_one_time_step_constant_voltage(0.1, 1.0)
     self.assertFalse(compound_criterion.check(3.0, device))
     self.assertTrue(compound_criterion.check(5.0, device))
     device.evolve_one_time_step_constant_voltage(0.1, 2.0)
     self.assertTrue(compound_criterion.check(3.0, device))
     self.assertFalse(compound_criterion.check(5.0, device))
Exemple #16
0
 def test_voltage_limit(self):
     ptree = PropertyTree()
     ptree.put_double('voltage_limit', 1.7)
     # upper limit
     ptree.put_string('end_criterion', 'voltage_greater_than')
     voltage_limit = EndCriterion.factory(ptree)
     voltage_limit.reset(5.0, device)
     device.evolve_one_time_step_constant_voltage(0.2, 1.3)
     self.assertFalse(voltage_limit.check(0.0, device))
     self.assertFalse(voltage_limit.check(60.0, device))
     device.evolve_one_time_step_constant_voltage(0.2, 1.7)
     self.assertTrue(voltage_limit.check(45.0, device))
     device.evolve_one_time_step_constant_voltage(0.2, 2.1)
     self.assertTrue(voltage_limit.check(45.0, device))
     # lower limit
     ptree.put_string('end_criterion', 'voltage_less_than')
     voltage_limit = EndCriterion.factory(ptree)
     voltage_limit.reset(0.0, device)
     device.evolve_one_time_step_constant_voltage(0.2, 1.3)
     self.assertTrue(voltage_limit.check(0.0, device))
     device.evolve_one_time_step_constant_voltage(0.2, 1.7)
     self.assertTrue(voltage_limit.check(45.0, device))
     device.evolve_one_time_step_constant_voltage(0.2, 2.1)
     self.assertFalse(voltage_limit.check(45.0, device))
Exemple #17
0
 def test_time_steps(self):
     ptree = PropertyTree()
     ptree.put_int('stages', 2)
     ptree.put_int('cycles', 1)
     ptree.put_double('time_step', 1.0)
     ptree.put_string('stage_0.mode', 'hold')
     ptree.put_string('stage_0.end_criterion', 'time')
     ptree.put_double('stage_0.duration', 2.0)
     ptree.put_string('stage_1.mode', 'rest')
     ptree.put_string('stage_1.end_criterion', 'time')
     ptree.put_double('stage_1.duration', 1.0)
     ptree.put_double('stage_1.time_step', 0.1)
     multi = MultiStage(ptree)
     data = initialize_data()
     steps = multi.run(device, data)
     self.assertEqual(steps, 12)
     self.assertEqual(steps, len(data['time']))
     self.assertAlmostEqual(data['time'][5], 2.4)
     self.assertAlmostEqual(data['voltage'][0], data['voltage'][1])
     self.assertAlmostEqual(data['current'][3], 0.0)
 def test_charge_constant_current(self):
     ptree = PropertyTree()
     ptree.put_string('charge_mode', 'constant_current')
     ptree.put_double('charge_current', 10e-3)
     ptree.put_string('charge_stop_at_1', 'voltage_greater_than')
     ptree.put_double('charge_voltage_limit', 1.4)
     ptree.put_double('time_step', 0.2)
     charge = Charge(ptree)
     data = initialize_data()
     charge.run(device, data)
     self.assertAlmostEqual(data['current'][0], 10e-3)
     self.assertAlmostEqual(data['current'][-1], 10e-3)
     self.assertGreaterEqual(data['voltage'][-1], 1.4)
     self.assertAlmostEqual(data['time'][1] - data['time'][0], 0.2)
Exemple #19
0
 def test_force_discharge(self):
     ptree = PropertyTree()
     ptree.put_string('mode', 'constant_voltage')
     ptree.put_double('voltage', 0.0)
     ptree.put_string('end_criterion', 'current_less_than')
     ptree.put_double('current_limit', 1e-5)
     ptree.put_double('time_step', 1.0)
     stage = Stage(ptree)
     data = initialize_data()
     steps = stage.run(device, data)
     self.assertGreaterEqual(steps, 1)
     self.assertEqual(steps, len(data['time']))
     self.assertAlmostEqual(data['voltage'][-1], 0.0)
     self.assertLessEqual(data['current'][-1], 1e-5)
Exemple #20
0
    def test_retrieve_data(self):
        ptree = PropertyTree()
        ptree.put_string('type', 'SeriesRC')
        ptree.put_double('series_resistance', 100e-3)
        ptree.put_double('capacitance', 2.5)
        device = EnergyStorageDevice(ptree)

        ptree = PropertyTree()
        ptree.put_string('type', 'ElectrochemicalImpedanceSpectroscopy')
        ptree.put_double('frequency_upper_limit', 1e+2)
        ptree.put_double('frequency_lower_limit', 1e-1)
        ptree.put_int('steps_per_decade', 1)
        ptree.put_int('steps_per_cycle', 64)
        ptree.put_int('cycles', 2)
        ptree.put_int('ignore_cycles', 1)
        ptree.put_double('dc_voltage', 0)
        ptree.put_string('harmonics', '3')
        ptree.put_string('amplitudes', '5e-3')
        ptree.put_string('phases', '0')
        eis = Experiment(ptree)

        with File('trash.hdf5', 'w') as fout:
            eis.run(device, fout)
        spectrum_data = eis._data

        with File('trash.hdf5', 'r') as fin:
            retrieved_data = retrieve_impedance_spectrum(fin)

        print(spectrum_data['impedance'] - retrieved_data['impedance'])
        print(retrieved_data)
        self.assertEqual(
            linalg.norm(
                spectrum_data['frequency'] - retrieved_data['frequency'], inf),
            0.0)
        # not sure why we don't get equality for the impedance
        self.assertLess(
            linalg.norm(
                spectrum_data['impedance'] - retrieved_data['impedance'], inf),
            1e-10)
Exemple #21
0
    def test_retrieve_data(self):
        ptree = PropertyTree()
        ptree.put_string('type', 'SeriesRC')
        ptree.put_double('series_resistance', 50e-3)
        ptree.put_double('capacitance', 3)
        device = EnergyStorageDevice(ptree)

        ptree = PropertyTree()
        ptree.put_string('type', 'RagoneAnalysis')
        ptree.put_double('discharge_power_lower_limit', 1e-1)
        ptree.put_double('discharge_power_upper_limit', 1e+1)
        ptree.put_int('steps_per_decade', 1)
        ptree.put_double('initial_voltage', 2.1)
        ptree.put_double('final_voltage', 0.7)
        ptree.put_double('time_step', 1.5)
        ptree.put_int('min_steps_per_discharge', 20)
        ptree.put_int('max_steps_per_discharge', 30)
        ragone = Experiment(ptree)

        with File('trash.hdf5', 'w') as fout:
            ragone.run(device, fout)
        performance_data = ragone._data

        fin = File('trash.hdf5', 'r')
        retrieved_data = retrieve_performance_data(fin)
        fin.close()
        # a few digits are lost when power is converted to string
        self.assertLess(
            linalg.norm(performance_data['power'] - retrieved_data['power'],
                        inf), 1e-12)
        self.assertEqual(
            linalg.norm(performance_data['energy'] - retrieved_data['energy'],
                        inf), 0.0)

        # TODO: probably want to move this into its own test
        ragoneplot = RagonePlot("ragone.png")
        ragoneplot.update(ragone)

        # check reset reinitialize the time step and empty the data
        ragone.reset()
        self.assertEqual(ragone._ptree.get_double('time_step'), 1.5)
        self.assertFalse(ragone._data['power'])
        self.assertFalse(ragone._data['energy'])
    def test_accuracy_pycap_simulation(self):
        #
        # tests the accuracy of a pycap simulation against a 
        # straight run dualfoil sim with different timesteps
        #
        df1 = Dualfoil(path=path)  # manual runs
        df2 = Dualfoil(path=path)  # pycap simulation
        im = df_manip.InputManager(path=path)

        # testing a charge-to-hold-const-voltage
        # manual 
        # use InputManager to set the input file
        c = -10.0  # constant charge current
        # charge for 5 minutes straight
        im.add_new_leg(c, 5, 1)
        df1.run()
        df1.outbot.update_output()
        v = 4.539  # expected voltage after 5 minutes
        # hold constant voltage for 3 minutes straight
        im.add_new_leg(v, 3.0, 0)
        df1.run()
        df1.outbot.update_output()

        # pycap simulation
        # build a ptree input
        ptree = PropertyTree()
        ptree.put_double('time_step', 30.0)  # 30 second time step
        ptree.put_string('charge_mode', 'constant_current')
        ptree.put_double('charge_current', 10.0)
        ptree.put_string('charge_stop_at_1', 'voltage_greater_than')
        ptree.put_double('charge_voltage_limit', v)
        ptree.put_bool('charge_voltage_finish', True)
        # hold end voltage after either 3 minutes have passed
        # OR current falls under 1 ampere
        ptree.put_double('charge_voltage_finish_max_time', 180.0)
        ptree.put_double('charge_voltage_finish_current_limit', 1.0)

        const_current_const_voltage = Charge(ptree)
        const_current_const_voltage.run(df2)

        o1 = df1.outbot.output     # contains sim1 output
        o2 = df2.outbot.output     # contains sim2 output

        # affirm we make it this far and have usable data
        self.assertTrue(len(o1['time']) > 0)
        self.assertTrue(len(o2['time']) > 0)
        # lengths of data should be different
        self.assertFalse(len(o1['time']) == len(o2['time']))

        # TEST LOGIC:
        #  -Merge the two outputs into one, sorted by
        #   increasing time stamps.
        #  -Compare the consistency of the two simulations
        #   by checking for smooth changes within the curves
        #   of the combined output lists
        o1['time'].extend(o2['time'])
        time = ar(o1['time'])  # nparray
        o1['voltage'].extend(o2['voltage'])
        voltage = ar(o1['voltage'])  # nparray
        o1['current'].extend(o2['current'])
        current = ar(o1['current'])  # np array
        # create a dictionary with the combined output lists
        output = {'time': time,
                  'voltage': voltage,
                  'current': current
                 }
        # sort based on time, keeping the three types aligned
        key = argsort(output['time'])
        # for using the key to sort the list
        tmp = {'time': [], 'voltage': [], 'current': []}
        for i in key:
            tmp['time'].append(output['time'][i])
            tmp['voltage'].append(output['voltage'][i])
            tmp['current'].append(output['current'][i])
        # reassign ordered set to `output` as nparrays
        output['time'] = ar(tmp['time'])
        output['voltage'] = ar(tmp['voltage'])
        output['current'] = ar(tmp['current'])

        # BELOW: first 20 seconds are identical time stamps;
        #     skip these to avoid errors from incorrect sorting
        # REASON FOR ERROR: Dualfoil only prints time data as 
        #     precice as minutes to three decimal places. So when
        #     the following is generated....
        #       Manual Run         |       Pycap Simulation
        #  (min)     (V)     (amp) |  (min)     (V)     (amp)
        #  .001   4.52345    10.0  |  .001   4.52345    10.0
        #  .001   4.52349    10.0  |  .001   4.52349    10.0
        #           ...                       ...
        #     ...python's `sorted()` function has no way of 
        #     distinguishing entries; it instead returns this:
        # [ 
        #   (.001, 4.52345, 10.0),
        #   (.001, 4.52349, 10.0),  <- these two should
        #   (.001, 4.52345, 10.0),  <-   be switched
        #   (.001, 4.52349, 10.0)
        # ] 
        # SOLUTION: consistency test affirms that the exact same
        #     time step will produce same current and voltage, so
        #     skip ahead to first instance where time stamps will 
        #     be out of alignment
        i = 0
        while output['time'][i] <= 0.4:  # 24 seconds
            i = i + 1
        index_limit = len(output['time'])-1  
        
        # go through and affirm smoothness of curve
        while i < index_limit:
            # Check if time values are the same to 3 decimal places.
            # If so, current and voltage are not guarunteed 
            #   to also be exactly the same, but should be close
            if output['time'][i] == output['time'][i-1]:
                # affirm that current is virtually the same
                self.assertAlmostEqual(output['current'][i],
                                       output['current'][i-1])
                # BELOW: delta is eased slightly
                # REASON: `sorted()` can't tell which entry came
                #   first from same time-stamp if from different
                #   simulations; allow for this with error
                error = 3e-5
                self.assertAlmostEqual(output['voltage'][i],
                                       output['voltage'][i-1],
                                       delta=error)
            else:  
                # Time values are different
                # Check to affirm that the variable NOT being held 
                # constant is steadily increasing / decreasing

                # First part happens in first 4 minutes
                if output['time'][i] <= 5.0:  # part 1, const currrent
                    # current should be equal
                    self.assertEqual(output['current'][i],
                                     output['current'][i-1])
                    # voltage should not have decreased
                    self.assertTrue(output['voltage'][i],
                                    output['voltage'][i-1])
                else:  # part 2, const voltage                
                    # current should be getting less positive
                    self.assertTrue(output['current'][i] <=
                                    output['current'][i-1],
                                    msg=(output['current'][i-2:i+10],
                                         output['time'][i-2:i+10]))
                    # voltage should decrease, then stay at 4.54
                    if output['voltage'][i-1] == 4.54:
                        self.assertEqual(output['voltage'][i],
                                         output['voltage'][i-1])
                    else:
                        self.assertTrue(output['voltage'][i] <=
                                        output['voltage'][i-1])
            # update index
            i = i + 1
Exemple #23
0
def run_discharge(device, ptree):
    data = initialize_data()

    # (re)charge the device
    initial_voltage = ptree.get_double('initial_voltage')

    charge_database = PropertyTree()
    charge_database.put_string('charge_mode', 'constant_current')
    charge_database.put_double('charge_current', 10.0)
    charge_database.put_string('charge_stop_at_1', 'voltage_greater_than')
    charge_database.put_double('charge_voltage_limit', initial_voltage)
    charge_database.put_bool('charge_voltage_finish', True)
    charge_database.put_double('charge_voltage_finish_current_limit', 1e-2)
    charge_database.put_double('charge_voltage_finish_max_time', 600)
    charge_database.put_double('charge_rest_time', 0)
    charge_database.put_double('time_step', 10.0)

    charge = Charge(charge_database)
    start = time()
    charge.run(device, data)
    end = time()
    # used for tracking time of this substep
    print('Charge: %s min' % ((end - start) / 60))

    data['time'] -= data['time'][-1]

    # discharge at constant power
    discharge_power = ptree.get_double('discharge_power')
    final_voltage = ptree.get_double('final_voltage')
    time_step = ptree.get_double('time_step')

    discharge_database = PropertyTree()
    discharge_database.put_string('discharge_mode', 'constant_power')
    discharge_database.put_double('discharge_power', discharge_power)
    discharge_database.put_string('discharge_stop_at_1', 'voltage_less_than')
    discharge_database.put_double('discharge_voltage_limit', final_voltage)
    discharge_database.put_double('discharge_rest_time', 10 * time_step)
    discharge_database.put_double('time_step', time_step)

    discharge = Discharge(discharge_database)
    start = time()
    discharge.run(device, data)
    end = time()
    # used for tracking time of this substep
    print('Discharge: %s min' % ((end - start) / 60))

    return data
def run_discharge(device, ptree):
    data = initialize_data()

    # (re)charge the device
    initial_voltage = ptree.get_double('initial_voltage')

    charge_database = PropertyTree()
    charge_database.put_string('charge_mode', 'constant_current')
    charge_database.put_double('charge_current', 10.0)
    charge_database.put_string('charge_stop_at_1', 'voltage_greater_than')
    charge_database.put_double('charge_voltage_limit', initial_voltage)
    charge_database.put_bool('charge_voltage_finish', True)
    charge_database.put_double('charge_voltage_finish_current_limit', 1e-2)
    charge_database.put_double('charge_voltage_finish_max_time', 600)
    charge_database.put_double('charge_rest_time', 0)
    charge_database.put_double('time_step', 10.0)

    charge = Charge(charge_database)
    start = time()
    charge.run(device, data)
    end = time()
    # used for tracking time of this substep
    print('Charge: %s min' % ((end-start) / 60))

    data['time'] -= data['time'][-1]

    # discharge at constant power
    discharge_power = ptree.get_double('discharge_power')
    final_voltage = ptree.get_double('final_voltage')
    time_step = ptree.get_double('time_step')

    discharge_database = PropertyTree()
    discharge_database.put_string('discharge_mode', 'constant_power')
    discharge_database.put_double('discharge_power', discharge_power)
    discharge_database.put_string('discharge_stop_at_1', 'voltage_less_than')
    discharge_database.put_double('discharge_voltage_limit', final_voltage)
    discharge_database.put_double('discharge_rest_time', 10 * time_step)
    discharge_database.put_double('time_step', time_step)

    discharge = Discharge(discharge_database)
    start = time()
    discharge.run(device, data)
    end = time()
    # used for tracking time of this substep
    print('Discharge: %s min' % ((end-start) / 60))

    return data
Exemple #25
0
 def test_current_limit(self):
     # lower
     ptree = PropertyTree()
     ptree.put_string('end_criterion', 'current_less_than')
     ptree.put_double('current_limit', -5e-3)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 0.0)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 5e-3)
     current_limit = EndCriterion.factory(ptree)
     device.evolve_one_time_step_constant_current(5.0, 0.0)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 0.002)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, -0.001)
     self.assertTrue(current_limit.check(180.0, device))
     device.evolve_one_time_step_constant_current(5.0, 0.005)
     self.assertTrue(current_limit.check(180.0, device))
     device.evolve_one_time_step_constant_current(5.0, 0.007)
     self.assertFalse(current_limit.check(180.0, device))
     device.evolve_one_time_step_constant_current(5.0, -15e3)
     self.assertFalse(current_limit.check(180.0, device))
     # upper
     ptree.put_string('end_criterion', 'current_greater_than')
     ptree.put_double('current_limit', -5e-3)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 0.0)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 5e-3)
     current_limit = EndCriterion.factory(ptree)
     device.evolve_one_time_step_constant_current(5.0, -1e-3)
     self.assertFalse(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 0.002)
     self.assertFalse(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 0.005)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, -0.2)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 3.0)
     self.assertTrue(current_limit.check(NaN, device))
    parser.add_option('--param_'+str(p),type=float)
# parse the command line arguments
(options,args)=parser.parse_args()

# make device database
device_database=PropertyTree()
device_database.parse_xml('super_capacitor.xml')
# adjust the parameters in the database
options_dict=vars(options)
for var in options_dict:
    path=uq_database.get_string('uq.'+var+'.name')
    # next line is there to ensure that path already exists
    old_value=device_database.get_double(path)
    new_value=options_dict[var]
    print var,path,new_value
    device_database.put_double(path,new_value)
# build the energy storage device
device=EnergyStorageDevice(device_database.get_child('device'))

# parse the electrochmical impedance spectroscopy database
eis_database=PropertyTree()
eis_database.parse_xml('eis.xml')
# measure the impedance
impedance_spectrum_data=measure_impedance_spectrum(device,eis_database.get_child('eis'))
# extract the results
frequency=impedance_spectrum_data['frequency']
complex_impedance=impedance_spectrum_data['impedance']
resistance=real(complex_impedance)
reactance=imag(complex_impedance)
modulus=absolute(complex_impedance)
argument=angle(complex_impedance,deg=True)
Exemple #27
0
    def test_verification_with_equivalent_circuit(self):
        R = 50e-3  # ohm
        R_L = 500  # ohm
        C = 3  # farad
        U_i = 2.7  # volt
        U_f = 1.2  # volt
        # setup experiment
        ptree = PropertyTree()
        ptree.put_double('discharge_power_lower_limit', 1e-2)
        ptree.put_double('discharge_power_upper_limit', 1e+2)
        ptree.put_int('steps_per_decade', 5)
        ptree.put_double('initial_voltage', U_i)
        ptree.put_double('final_voltage', U_f)
        ptree.put_double('time_step', 15)
        ptree.put_int('min_steps_per_discharge', 2000)
        ptree.put_int('max_steps_per_discharge', 3000)
        ragone = RagoneAnalysis(ptree)
        # setup equivalent circuit database
        device_database = PropertyTree()
        device_database.put_double('series_resistance', R)
        device_database.put_double('parallel_resistance', R_L)
        device_database.put_double('capacitance', C)
        # analytical solutions
        E = {}

        def E_SeriesRC(P):
            U_0 = U_i / 2 + sqrt(U_i**2 / 4 - R * P)
            return C / 2 * (-R * P * log(U_0**2 / U_f**2) + U_0**2 - U_f**2)

        E['SeriesRC'] = E_SeriesRC

        def E_ParallelRC(P):
            U_0 = U_i / 2 + sqrt(U_i**2 / 4 - R * P)
            tmp = (U_f**2 / R_L + P * (1 + R / R_L)) / \
                (U_0**2 / R_L + P * (1 + R / R_L))
            return C / 2 * (-R_L * P * log(tmp) - R * R_L /
                            (R + R_L) * P * log(tmp * U_0**2 / U_f**2))

        E['ParallelRC'] = E_ParallelRC
        for device_type in ['SeriesRC', 'ParallelRC']:
            # create a device
            device_database.put_string('type', device_type)
            device = EnergyStorageDevice(device_database)
            # setup experiment and measure
            ragone.reset()
            ragone.run(device)
            P = ragone._data['power']
            E_computed = ragone._data['energy']
            # compute the exact solution
            E_exact = E[device_type](P)
            # ensure the error is small
            max_percent_error = 100 * linalg.norm(
                (E_computed - E_exact) / E_computed, inf)
            self.assertLess(max_percent_error, 0.1)
Exemple #28
0
 def test_current_limit(self):
     # lower
     ptree = PropertyTree()
     ptree.put_string('end_criterion', 'current_less_than')
     ptree.put_double('current_limit', -5e-3)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 0.0)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 5e-3)
     current_limit = EndCriterion.factory(ptree)
     device.evolve_one_time_step_constant_current(5.0, 0.0)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 0.002)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, -0.001)
     self.assertTrue(current_limit.check(180.0, device))
     device.evolve_one_time_step_constant_current(5.0, 0.005)
     self.assertTrue(current_limit.check(180.0, device))
     device.evolve_one_time_step_constant_current(5.0, 0.007)
     self.assertFalse(current_limit.check(180.0, device))
     device.evolve_one_time_step_constant_current(5.0, -15e3)
     self.assertFalse(current_limit.check(180.0, device))
     # upper
     ptree.put_string('end_criterion', 'current_greater_than')
     ptree.put_double('current_limit', -5e-3)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 0.0)
     self.assertRaises(RuntimeError, EndCriterion.factory, ptree)
     ptree.put_double('current_limit', 5e-3)
     current_limit = EndCriterion.factory(ptree)
     device.evolve_one_time_step_constant_current(5.0, -1e-3)
     self.assertFalse(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 0.002)
     self.assertFalse(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 0.005)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, -0.2)
     self.assertTrue(current_limit.check(NaN, device))
     device.evolve_one_time_step_constant_current(5.0, 3.0)
     self.assertTrue(current_limit.check(NaN, device))
Exemple #29
0
    def test_retrieve_data(self):
        ptree = PropertyTree()
        ptree.put_string('type', 'SeriesRC')
        ptree.put_double('series_resistance', 50e-3)
        ptree.put_double('capacitance', 3)
        device = EnergyStorageDevice(ptree)

        ptree = PropertyTree()
        ptree.put_string('type', 'RagoneAnalysis')
        ptree.put_double('discharge_power_lower_limit', 1e-1)
        ptree.put_double('discharge_power_upper_limit', 1e+1)
        ptree.put_int('steps_per_decade', 1)
        ptree.put_double('initial_voltage', 2.1)
        ptree.put_double('final_voltage', 0.7)
        ptree.put_double('time_step', 1.5)
        ptree.put_int('min_steps_per_discharge', 20)
        ptree.put_int('max_steps_per_discharge', 30)
        ragone = Experiment(ptree)

        with File('trash.hdf5', 'w') as fout:
            ragone.run(device, fout)
        performance_data = ragone._data

        fin = File('trash.hdf5', 'r')
        retrieved_data = retrieve_performance_data(fin)
        fin.close()
        # a few digits are lost when power is converted to string
        self.assertLess(linalg.norm(performance_data['power'] -
                                    retrieved_data['power'], inf), 1e-12)
        self.assertEqual(linalg.norm(performance_data['energy'] -
                                     retrieved_data['energy'], inf), 0.0)

        # TODO: probably want to move this into its own test
        ragoneplot = RagonePlot("ragone.png")
        ragoneplot.update(ragone)

        # check reset reinitialize the time step and empty the data
        ragone.reset()
        self.assertEqual(ragone._ptree.get_double('time_step'), 1.5)
        self.assertFalse(ragone._data['power'])
        self.assertFalse(ragone._data['energy'])
    def test_accuracy_pycap_simulation(self):
        #
        # tests the accuracy of a pycap simulation against a
        # straight run dualfoil sim with different timesteps
        #
        df1 = Dualfoil(path=path)  # manual runs
        df2 = Dualfoil(path=path)  # pycap simulation
        im = df_manip.InputManager(path=path)

        # testing a charge-to-hold-const-voltage
        # manual
        # use InputManager to set the input file
        c = -10.0  # constant charge current
        # charge for 5 minutes straight
        im.add_new_leg(c, 5, 1)
        df1.run()
        df1.outbot.update_output()
        v = 4.539  # expected voltage after 5 minutes
        # hold constant voltage for 3 minutes straight
        im.add_new_leg(v, 3.0, 0)
        df1.run()
        df1.outbot.update_output()

        # pycap simulation
        # build a ptree input
        ptree = PropertyTree()
        ptree.put_double('time_step', 30.0)  # 30 second time step
        ptree.put_string('charge_mode', 'constant_current')
        ptree.put_double('charge_current', 10.0)
        ptree.put_string('charge_stop_at_1', 'voltage_greater_than')
        ptree.put_double('charge_voltage_limit', v)
        ptree.put_bool('charge_voltage_finish', True)
        # hold end voltage after either 3 minutes have passed
        # OR current falls under 1 ampere
        ptree.put_double('charge_voltage_finish_max_time', 180.0)
        ptree.put_double('charge_voltage_finish_current_limit', 1.0)

        const_current_const_voltage = Charge(ptree)
        const_current_const_voltage.run(df2)

        o1 = df1.outbot.output  # contains sim1 output
        o2 = df2.outbot.output  # contains sim2 output

        # affirm we make it this far and have usable data
        self.assertTrue(len(o1['time']) > 0)
        self.assertTrue(len(o2['time']) > 0)
        # lengths of data should be different
        self.assertFalse(len(o1['time']) == len(o2['time']))

        # TEST LOGIC:
        #  -Merge the two outputs into one, sorted by
        #   increasing time stamps.
        #  -Compare the consistency of the two simulations
        #   by checking for smooth changes within the curves
        #   of the combined output lists
        o1['time'].extend(o2['time'])
        time = ar(o1['time'])  # nparray
        o1['voltage'].extend(o2['voltage'])
        voltage = ar(o1['voltage'])  # nparray
        o1['current'].extend(o2['current'])
        current = ar(o1['current'])  # np array
        # create a dictionary with the combined output lists
        output = {'time': time, 'voltage': voltage, 'current': current}
        # sort based on time, keeping the three types aligned
        key = argsort(output['time'])
        # for using the key to sort the list
        tmp = {'time': [], 'voltage': [], 'current': []}
        for i in key:
            tmp['time'].append(output['time'][i])
            tmp['voltage'].append(output['voltage'][i])
            tmp['current'].append(output['current'][i])
        # reassign ordered set to `output` as nparrays
        output['time'] = ar(tmp['time'])
        output['voltage'] = ar(tmp['voltage'])
        output['current'] = ar(tmp['current'])

        # BELOW: first 20 seconds are identical time stamps;
        #     skip these to avoid errors from incorrect sorting
        # REASON FOR ERROR: Dualfoil only prints time data as
        #     precice as minutes to three decimal places. So when
        #     the following is generated....
        #       Manual Run         |       Pycap Simulation
        #  (min)     (V)     (amp) |  (min)     (V)     (amp)
        #  .001   4.52345    10.0  |  .001   4.52345    10.0
        #  .001   4.52349    10.0  |  .001   4.52349    10.0
        #           ...                       ...
        #     ...python's `sorted()` function has no way of
        #     distinguishing entries; it instead returns this:
        # [
        #   (.001, 4.52345, 10.0),
        #   (.001, 4.52349, 10.0),  <- these two should
        #   (.001, 4.52345, 10.0),  <-   be switched
        #   (.001, 4.52349, 10.0)
        # ]
        # SOLUTION: consistency test affirms that the exact same
        #     time step will produce same current and voltage, so
        #     skip ahead to first instance where time stamps will
        #     be out of alignment
        i = 0
        while output['time'][i] <= 0.4:  # 24 seconds
            i = i + 1
        index_limit = len(output['time']) - 1

        # go through and affirm smoothness of curve
        while i < index_limit:
            # Check if time values are the same to 3 decimal places.
            # If so, current and voltage are not guarunteed
            #   to also be exactly the same, but should be close
            if output['time'][i] == output['time'][i - 1]:
                # affirm that current is virtually the same
                self.assertAlmostEqual(output['current'][i],
                                       output['current'][i - 1])
                # BELOW: delta is eased slightly
                # REASON: `sorted()` can't tell which entry came
                #   first from same time-stamp if from different
                #   simulations; allow for this with error
                error = 3e-5
                self.assertAlmostEqual(output['voltage'][i],
                                       output['voltage'][i - 1],
                                       delta=error)
            else:
                # Time values are different
                # Check to affirm that the variable NOT being held
                # constant is steadily increasing / decreasing

                # First part happens in first 4 minutes
                if output['time'][i] <= 5.0:  # part 1, const currrent
                    # current should be equal
                    self.assertEqual(output['current'][i],
                                     output['current'][i - 1])
                    # voltage should not have decreased
                    self.assertTrue(output['voltage'][i],
                                    output['voltage'][i - 1])
                else:  # part 2, const voltage
                    # current should be getting less positive
                    self.assertTrue(
                        output['current'][i] <= output['current'][i - 1],
                        msg=(output['current'][i - 2:i + 10],
                             output['time'][i - 2:i + 10]))
                    # voltage should decrease, then stay at 4.54
                    if output['voltage'][i - 1] == 4.54:
                        self.assertEqual(output['voltage'][i],
                                         output['voltage'][i - 1])
                    else:
                        self.assertTrue(
                            output['voltage'][i] <= output['voltage'][i - 1])
            # update index
            i = i + 1
Exemple #31
0
    def test_verification_with_equivalent_circuit(self):
        R = 50e-3  # ohm
        R_L = 500  # ohm
        C = 3      # farad
        U_i = 2.7  # volt
        U_f = 1.2  # volt
        # setup experiment
        ptree = PropertyTree()
        ptree.put_double('discharge_power_lower_limit', 1e-2)
        ptree.put_double('discharge_power_upper_limit', 1e+2)
        ptree.put_int('steps_per_decade', 5)
        ptree.put_double('initial_voltage', U_i)
        ptree.put_double('final_voltage', U_f)
        ptree.put_double('time_step', 15)
        ptree.put_int('min_steps_per_discharge', 2000)
        ptree.put_int('max_steps_per_discharge', 3000)
        ragone = RagoneAnalysis(ptree)
        # setup equivalent circuit database
        device_database = PropertyTree()
        device_database.put_double('series_resistance', R)
        device_database.put_double('parallel_resistance', R_L)
        device_database.put_double('capacitance', C)
        # analytical solutions
        E = {}

        def E_SeriesRC(P):
            U_0 = U_i / 2 + sqrt(U_i**2 / 4 - R * P)
            return C / 2 * (-R * P * log(U_0**2 / U_f**2) + U_0**2 - U_f**2)
        E['SeriesRC'] = E_SeriesRC

        def E_ParallelRC(P):
            U_0 = U_i / 2 + sqrt(U_i**2 / 4 - R * P)
            tmp = (U_f**2 / R_L + P * (1 + R / R_L)) / \
                (U_0**2 / R_L + P * (1 + R / R_L))
            return C / 2 * (-R_L * P * log(tmp) - R * R_L / (R + R_L) * P * log(tmp * U_0**2 / U_f**2))
        E['ParallelRC'] = E_ParallelRC
        for device_type in ['SeriesRC', 'ParallelRC']:
            # create a device
            device_database.put_string('type', device_type)
            device = EnergyStorageDevice(device_database)
            # setup experiment and measure
            ragone.reset()
            ragone.run(device)
            P = ragone._data['power']
            E_computed = ragone._data['energy']
            # compute the exact solution
            E_exact = E[device_type](P)
            # ensure the error is small
            max_percent_error = 100 * linalg.norm(
                (E_computed - E_exact) / E_computed,
                inf)
            self.assertLess(max_percent_error, 0.1)
    parser.add_option('--param_' + str(p), type=float)
# parse the command line arguments
(options, args) = parser.parse_args()

# make device database
device_database = PropertyTree()
device_database.parse_xml('super_capacitor.xml')
# adjust the parameters in the database
options_dict = vars(options)
for var in options_dict:
    path = uq_database.get_string('uq.' + var + '.name')
    # next line is there to ensure that path already exists
    old_value = device_database.get_double(path)
    new_value = options_dict[var]
    print var, path, new_value
    device_database.put_double(path, new_value)
# build the energy storage device
device = EnergyStorageDevice(device_database.get_child('device'))

# parse the electrochmical impedance spectroscopy database
eis_database = PropertyTree()
eis_database.parse_xml('eis.xml')
# measure the impedance
impedance_spectrum_data = measure_impedance_spectrum(
    device, eis_database.get_child('eis'))
# extract the results
frequency = impedance_spectrum_data['frequency']
complex_impedance = impedance_spectrum_data['impedance']
resistance = real(complex_impedance)
reactance = imag(complex_impedance)
modulus = absolute(complex_impedance)