def template_clustering(file, radius, order, show_dyn=False, show_conn=False, show_clusters=True, ena_conn_weight=False, ccore_flag=False): sample = read_sample(file) network = syncnet(sample, radius, enable_conn_weight=ena_conn_weight, ccore=ccore_flag) (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, order, solve_type.FAST, show_dyn) print("Sample: ", file, "\t\tExecution time: ", ticks, "\n") if (show_dyn == True): draw_dynamics(dyn_time, dyn_phase, x_title="Time", y_title="Phase", y_lim=[0, 2 * 3.14]) if (show_conn == True): network.show_network() if (show_clusters == True): clusters = network.get_clusters(0.1) draw_clusters(sample, clusters)
def template_clustering(start_centers, path, tolerance=0.25, ccore=True): sample = read_sample(path) kmeans_instance = kmeans(sample, start_centers, tolerance, ccore) (ticks, result) = timedcall(kmeans_instance.process) clusters = kmeans_instance.get_clusters() print("Sample: ", path, "\t\tExecution time: ", ticks, "\n") draw_clusters(sample, clusters)
def template_clustering(number_clusters, path, ccore=True): sample = read_sample(path) hierarchical_instance = hierarchical(sample, number_clusters, ccore) (ticks, result) = timedcall(hierarchical_instance.process) print("Sample: ", path, "\t\tExecution time: ", ticks, "\n") clusters = hierarchical_instance.get_clusters() draw_clusters(sample, clusters)
def template_clustering(number_clusters, path, branching_factor = 5, max_node_entries = 5, initial_diameter = 0.0, type_measurement = measurement_type.CENTROID_EUCLIDIAN_DISTANCE, entry_size_limit = 200, ccore = True): sample = read_sample(path); birch_instance = birch(sample, number_clusters, branching_factor, max_node_entries, initial_diameter, type_measurement, entry_size_limit, ccore) (ticks, result) = timedcall(birch_instance.process); print("Sample: ", path, "\t\tExecution time: ", ticks, "\n"); clusters = birch_instance.get_clusters(); draw_clusters(sample, clusters);
def template_clustering(start_medoids, path, tolerance = 0.25): sample = read_sample(path); kmedoids_instance = kmedoids(sample, start_medoids, tolerance); (ticks, result) = timedcall(kmedoids_instance.process); clusters = kmedoids_instance.get_clusters(); print("Sample: ", path, "\t\tExecution time: ", ticks, "\n"); draw_clusters(sample, clusters);
def template_clustering(file, number_clusters, arg_order = 0.999, arg_collect_dynamic = True, ccore_flag = False): sample = read_sample(file); network = hsyncnet(sample, number_clusters, ccore = ccore_flag); (time, dynamic) = network.process(arg_order, collect_dynamic = arg_collect_dynamic); clusters = network.get_clusters(); if (arg_collect_dynamic == True): draw_dynamics(time, dynamic, x_title = "Time", y_title = "Phase", y_lim = [0, 2 * 3.14]); draw_clusters(sample, clusters);
def template_clustering(file, number_clusters, arg_order = 0.999, arg_collect_dynamic = True, ccore_flag = False): sample = read_sample(file); network = hsyncnet(sample, number_clusters, ccore = ccore_flag); analyser = network.process(arg_order, collect_dynamic = arg_collect_dynamic); clusters = analyser.allocate_clusters(); if (arg_collect_dynamic == True): sync_visualizer.show_output_dynamic(analyser); draw_clusters(sample, clusters);
def template_clustering(radius, neighb, path, invisible_axes = False, ccore = True): sample = read_sample(path); dbscan_instance = dbscan(sample, radius, neighb, ccore); (ticks, result) = timedcall(dbscan_instance.process); clusters = dbscan_instance.get_clusters(); noise = dbscan_instance.get_noise(); print("Sample: ", path, "\t\tExecution time: ", ticks, "\n"); draw_clusters(sample, clusters, [], '.', hide_axes = invisible_axes);
def template_clustering(path, radius, cluster_numbers, threshold, draw = True, ccore = True): sample = read_sample(path); rock_instance = rock(sample, radius, cluster_numbers, threshold, ccore); (ticks, result) = timedcall(rock_instance.process); clusters = rock_instance.get_clusters(); print("Sample: ", path, "\t\tExecution time: ", ticks, "\n"); if (draw == True): draw_clusters(sample, clusters);
def template_clustering(number_clusters, path, number_represent_points = 5, compression = 0.5, draw = True, ccore_flag = False): sample = read_sample(path); cure_instance = cure(sample, number_clusters, number_represent_points, compression, ccore_flag); (ticks, result) = timedcall(cure_instance.process); clusters = cure_instance.get_clusters(); print("Sample: ", path, "\t\tExecution time: ", ticks, "\n"); if (draw is True): if (ccore_flag is True): draw_clusters(sample, clusters); else: draw_clusters(None, clusters);
def template_clustering(start_centers, path, tolerance = 0.025, criterion = splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore = False): sample = read_sample(path); xmeans_instance = xmeans(sample, start_centers, 20, tolerance, criterion, ccore); (ticks, result) = timedcall(xmeans_instance.process); clusters = xmeans_instance.get_clusters(); criterion_string = "UNKNOWN"; if (criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): criterion_string = "BAYESIAN_INFORMATION_CRITERION"; elif (criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): criterion_string = "MINIMUM_NOISELESS_DESCRIPTION_LENGTH"; print("Sample: ", path, "\tExecution time: ", ticks, "Number of clusters: ", len(clusters), criterion_string, "\n"); draw_clusters(sample, clusters);
def template_clustering(file, radius, order, show_dyn = False, show_conn = False, show_clusters = True, ena_conn_weight = False, ccore_flag = False): sample = read_sample(file); network = syncnet(sample, radius, enable_conn_weight = ena_conn_weight, ccore = ccore_flag); (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, order, solve_type.FAST, show_dyn); print("Sample: ", file, "\t\tExecution time: ", ticks, "\n"); if (show_dyn == True): draw_dynamics(dyn_time, dyn_phase, x_title = "Time", y_title = "Phase", y_lim = [0, 2 * 3.14]); if (show_conn == True): network.show_network(); if (show_clusters == True): clusters = network.get_clusters(0.1); draw_clusters(sample, clusters);
def template_clustering(radius, neighb, path, invisible_axes=False, ccore=True): sample = read_sample(path) dbscan_instance = dbscan(sample, radius, neighb, ccore) (ticks, result) = timedcall(dbscan_instance.process) clusters = dbscan_instance.get_clusters() noise = dbscan_instance.get_noise() print("Sample: ", path, "\t\tExecution time: ", ticks, "\n") draw_clusters(sample, clusters, [], '.', hide_axes=invisible_axes)
def template_clustering(file, radius, order, show_dyn = False, show_conn = False, show_clusters = True, ena_conn_weight = False, ccore_flag = True): sample = read_sample(file); network = syncnet(sample, radius, enable_conn_weight = ena_conn_weight, ccore = ccore_flag); (ticks, analyser) = timedcall(network.process, order, solve_type.FAST, show_dyn); print("Sample: ", file, "\t\tExecution time: ", ticks, "\n"); if (show_dyn == True): sync_visualizer.show_output_dynamic(analyser); sync_visualizer.animate_output_dynamic(analyser); if ( (show_conn == True) and (ccore_flag == False) ): network.show_network(); if (show_clusters == True): clusters = analyser.allocate_clusters(); draw_clusters(sample, clusters);
def template_clustering(path_sample, eps, minpts): sample = read_sample(path_sample) optics_instance = optics(sample, eps, minpts) optics_instance.process() clusters = optics_instance.get_clusters() noise = optics_instance.get_noise() draw_clusters(sample, clusters, [], '.') ordering = optics_instance.get_cluster_ordering() indexes = [i for i in range(0, len(ordering))] # visualization of cluster ordering in line with reachability distance. plt.bar(indexes, ordering) plt.show()
def template_clustering(path, radius, cluster_numbers, threshold, draw=True, ccore=True): sample = read_sample(path) rock_instance = rock(sample, radius, cluster_numbers, threshold, ccore) (ticks, result) = timedcall(rock_instance.process) clusters = rock_instance.get_clusters() print("Sample: ", path, "\t\tExecution time: ", ticks, "\n") if (draw == True): draw_clusters(sample, clusters)
def template_clustering(path_sample, eps, minpts): sample = read_sample(path_sample); optics_instance = optics(sample, eps, minpts); optics_instance.process(); clusters = optics_instance.get_clusters(); noise = optics_instance.get_noise(); draw_clusters(sample, clusters, [], '.'); ordering = optics_instance.get_cluster_ordering(); indexes = [i for i in range(0, len(ordering))]; # visualization of cluster ordering in line with reachability distance. plt.bar(indexes, ordering); plt.show();
def template_clustering( number_clusters, path, branching_factor=5, max_node_entries=5, initial_diameter=0.0, type_measurement=measurement_type.CENTROID_EUCLIDIAN_DISTANCE, entry_size_limit=200, ccore=True): sample = read_sample(path) birch_instance = birch(sample, number_clusters, branching_factor, max_node_entries, initial_diameter, type_measurement, entry_size_limit, ccore) (ticks, result) = timedcall(birch_instance.process) print("Sample: ", path, "\t\tExecution time: ", ticks, "\n") clusters = birch_instance.get_clusters() draw_clusters(sample, clusters)
def template_clustering(number_clusters, path, number_represent_points=5, compression=0.5, draw=True, ccore_flag=False): sample = read_sample(path) cure_instance = cure(sample, number_clusters, number_represent_points, compression, ccore_flag) (ticks, result) = timedcall(cure_instance.process) clusters = cure_instance.get_clusters() print("Sample: ", path, "\t\tExecution time: ", ticks, "\n") if (draw is True): if (ccore_flag is True): draw_clusters(sample, clusters) else: draw_clusters(None, clusters)
def template_clustering(file, number_clusters, arg_order=0.999, arg_collect_dynamic=True, ccore_flag=False): sample = read_sample(file) network = hsyncnet(sample, number_clusters, ccore=ccore_flag) (time, dynamic) = network.process(arg_order, collect_dynamic=arg_collect_dynamic) clusters = network.get_clusters() if (arg_collect_dynamic == True): draw_dynamics(time, dynamic, x_title="Time", y_title="Phase", y_lim=[0, 2 * 3.14]) draw_clusters(sample, clusters)
def template_clustering(file, map_size, trust_order, sync_order=0.999, show_dyn=False, show_layer1=False, show_layer2=False, show_clusters=True): # Read sample sample = read_sample(file) # Create network network = syncsom(sample, map_size[0], map_size[1]) # Run processing (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, trust_order, show_dyn, sync_order) print("Sample: ", file, "\t\tExecution time: ", ticks, "\n") # Show dynamic of the last layer. if (show_dyn == True): draw_dynamics(dyn_time, dyn_phase, x_title="Time", y_title="Phase", y_lim=[0, 2 * 3.14]) if (show_clusters == True): clusters = network.get_som_clusters() draw_clusters(network.som_layer.weights, clusters) # Show network stuff. if (show_layer1 == True): network.show_som_layer() if (show_layer2 == True): network.show_sync_layer() if (show_clusters == True): clusters = network.get_clusters() draw_clusters(sample, clusters)
def template_clustering( start_centers, path, tolerance=0.025, criterion=splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore=False): sample = read_sample(path) xmeans_instance = xmeans(sample, start_centers, 20, tolerance, criterion, ccore) (ticks, result) = timedcall(xmeans_instance.process) clusters = xmeans_instance.get_clusters() criterion_string = "UNKNOWN" if (criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): criterion_string = "BAYESIAN_INFORMATION_CRITERION" elif (criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): criterion_string = "MINIMUM_NOISELESS_DESCRIPTION_LENGTH" print("Sample: ", path, "\tExecution time: ", ticks, "Number of clusters: ", len(clusters), criterion_string, "\n") draw_clusters(sample, clusters)