コード例 #1
0
def template_clustering(file,
                        radius,
                        order,
                        show_dyn=False,
                        show_conn=False,
                        show_clusters=True,
                        ena_conn_weight=False,
                        ccore_flag=False):
    sample = read_sample(file)
    network = syncnet(sample,
                      radius,
                      enable_conn_weight=ena_conn_weight,
                      ccore=ccore_flag)

    (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, order,
                                               solve_type.FAST, show_dyn)
    print("Sample: ", file, "\t\tExecution time: ", ticks, "\n")

    if (show_dyn == True):
        draw_dynamics(dyn_time,
                      dyn_phase,
                      x_title="Time",
                      y_title="Phase",
                      y_lim=[0, 2 * 3.14])

    if (show_conn == True):
        network.show_network()

    if (show_clusters == True):
        clusters = network.get_clusters(0.1)
        draw_clusters(sample, clusters)
コード例 #2
0
def template_clustering(start_centers, path, tolerance=0.25, ccore=True):
    sample = read_sample(path)

    kmeans_instance = kmeans(sample, start_centers, tolerance, ccore)
    (ticks, result) = timedcall(kmeans_instance.process)

    clusters = kmeans_instance.get_clusters()
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    draw_clusters(sample, clusters)
コード例 #3
0
def template_clustering(number_clusters, path, ccore=True):
    sample = read_sample(path)

    hierarchical_instance = hierarchical(sample, number_clusters, ccore)
    (ticks, result) = timedcall(hierarchical_instance.process)

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    clusters = hierarchical_instance.get_clusters()
    draw_clusters(sample, clusters)
コード例 #4
0
def template_clustering(number_clusters, path, branching_factor = 5, max_node_entries = 5, initial_diameter = 0.0, type_measurement = measurement_type.CENTROID_EUCLIDIAN_DISTANCE, entry_size_limit = 200, ccore = True):
    sample = read_sample(path);
    
    birch_instance = birch(sample, number_clusters, branching_factor, max_node_entries, initial_diameter, type_measurement, entry_size_limit, ccore)
    (ticks, result) = timedcall(birch_instance.process);
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
    
    clusters = birch_instance.get_clusters();
    draw_clusters(sample, clusters);
コード例 #5
0
def template_clustering(start_medoids, path, tolerance = 0.25):
    sample = read_sample(path);
    
    kmedoids_instance = kmedoids(sample, start_medoids, tolerance);
    (ticks, result) = timedcall(kmedoids_instance.process);
    
    clusters = kmedoids_instance.get_clusters();
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");

    draw_clusters(sample, clusters);
コード例 #6
0
def template_clustering(file, number_clusters, arg_order = 0.999, arg_collect_dynamic = True, ccore_flag = False):
        sample = read_sample(file);
        network = hsyncnet(sample, number_clusters, ccore = ccore_flag);
        
        (time, dynamic) = network.process(arg_order, collect_dynamic = arg_collect_dynamic);
        clusters = network.get_clusters();
        
        if (arg_collect_dynamic == True):
            draw_dynamics(time, dynamic, x_title = "Time", y_title = "Phase", y_lim = [0, 2 * 3.14]);
        
        draw_clusters(sample, clusters);
コード例 #7
0
def template_clustering(file, number_clusters, arg_order = 0.999, arg_collect_dynamic = True, ccore_flag = False):
        sample = read_sample(file);
        network = hsyncnet(sample, number_clusters, ccore = ccore_flag);
        
        analyser = network.process(arg_order, collect_dynamic = arg_collect_dynamic);
        clusters = analyser.allocate_clusters();
        
        if (arg_collect_dynamic == True):
            sync_visualizer.show_output_dynamic(analyser);
        
        draw_clusters(sample, clusters);
コード例 #8
0
def template_clustering(radius, neighb, path, invisible_axes = False, ccore = True):
    sample = read_sample(path);
    
    dbscan_instance = dbscan(sample, radius, neighb, ccore);
    (ticks, result) = timedcall(dbscan_instance.process);
    
    clusters = dbscan_instance.get_clusters();
    noise = dbscan_instance.get_noise();
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
    
    draw_clusters(sample, clusters, [], '.', hide_axes = invisible_axes);
コード例 #9
0
def template_clustering(path, radius, cluster_numbers, threshold, draw = True, ccore = True):
    sample = read_sample(path);
    
    rock_instance = rock(sample, radius, cluster_numbers, threshold, ccore);
    (ticks, result) = timedcall(rock_instance.process);
    
    clusters = rock_instance.get_clusters();
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");
    
    if (draw == True):
        draw_clusters(sample, clusters);
コード例 #10
0
def template_clustering(number_clusters, path, number_represent_points = 5, compression = 0.5, draw = True, ccore_flag = False):
    sample = read_sample(path);
    
    cure_instance = cure(sample, number_clusters, number_represent_points, compression, ccore_flag);
    (ticks, result) = timedcall(cure_instance.process);
    clusters = cure_instance.get_clusters();
    
    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n");

    if (draw is True):
        if (ccore_flag is True):
            draw_clusters(sample, clusters);
        else:
            draw_clusters(None, clusters);
コード例 #11
0
def template_clustering(start_centers, path, tolerance = 0.025, criterion = splitting_type.BAYESIAN_INFORMATION_CRITERION, ccore = False):
    sample = read_sample(path);
    
    xmeans_instance = xmeans(sample, start_centers, 20, tolerance, criterion, ccore);
    (ticks, result) = timedcall(xmeans_instance.process);
    
    clusters = xmeans_instance.get_clusters();

    criterion_string = "UNKNOWN";
    if (criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION): criterion_string = "BAYESIAN_INFORMATION_CRITERION";
    elif (criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH): criterion_string = "MINIMUM_NOISELESS_DESCRIPTION_LENGTH";
    
    print("Sample: ", path, "\tExecution time: ", ticks, "Number of clusters: ", len(clusters), criterion_string, "\n");

    draw_clusters(sample, clusters);
コード例 #12
0
def template_clustering(file, radius, order, show_dyn = False, show_conn = False, show_clusters = True, ena_conn_weight = False, ccore_flag = False):
    sample = read_sample(file);
    network = syncnet(sample, radius, enable_conn_weight = ena_conn_weight, ccore = ccore_flag);
    
    (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, order, solve_type.FAST, show_dyn);
    print("Sample: ", file, "\t\tExecution time: ", ticks, "\n");
    
    if (show_dyn == True):
        draw_dynamics(dyn_time, dyn_phase, x_title = "Time", y_title = "Phase", y_lim = [0, 2 * 3.14]);
    
    if (show_conn == True):
        network.show_network();
    
    if (show_clusters == True):
        clusters = network.get_clusters(0.1);
        draw_clusters(sample, clusters);
コード例 #13
0
def template_clustering(radius,
                        neighb,
                        path,
                        invisible_axes=False,
                        ccore=True):
    sample = read_sample(path)

    dbscan_instance = dbscan(sample, radius, neighb, ccore)
    (ticks, result) = timedcall(dbscan_instance.process)

    clusters = dbscan_instance.get_clusters()
    noise = dbscan_instance.get_noise()

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    draw_clusters(sample, clusters, [], '.', hide_axes=invisible_axes)
コード例 #14
0
def template_clustering(file, radius, order, show_dyn = False, show_conn = False, show_clusters = True, ena_conn_weight = False, ccore_flag = True):
    sample = read_sample(file);
    network = syncnet(sample, radius, enable_conn_weight = ena_conn_weight, ccore = ccore_flag);
    
    (ticks, analyser) = timedcall(network.process, order, solve_type.FAST, show_dyn);
    print("Sample: ", file, "\t\tExecution time: ", ticks, "\n");
    
    if (show_dyn == True):
        sync_visualizer.show_output_dynamic(analyser);
        sync_visualizer.animate_output_dynamic(analyser);
    
    if ( (show_conn == True) and (ccore_flag == False) ):
        network.show_network();
    
    if (show_clusters == True):
        clusters = analyser.allocate_clusters();
        draw_clusters(sample, clusters);
コード例 #15
0
def template_clustering(path_sample, eps, minpts):
    sample = read_sample(path_sample)

    optics_instance = optics(sample, eps, minpts)
    optics_instance.process()

    clusters = optics_instance.get_clusters()
    noise = optics_instance.get_noise()

    draw_clusters(sample, clusters, [], '.')

    ordering = optics_instance.get_cluster_ordering()
    indexes = [i for i in range(0, len(ordering))]

    # visualization of cluster ordering in line with reachability distance.
    plt.bar(indexes, ordering)
    plt.show()
コード例 #16
0
def template_clustering(path,
                        radius,
                        cluster_numbers,
                        threshold,
                        draw=True,
                        ccore=True):
    sample = read_sample(path)

    rock_instance = rock(sample, radius, cluster_numbers, threshold, ccore)
    (ticks, result) = timedcall(rock_instance.process)

    clusters = rock_instance.get_clusters()

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    if (draw == True):
        draw_clusters(sample, clusters)
コード例 #17
0
def template_clustering(path_sample, eps, minpts):
    sample = read_sample(path_sample);
    
    optics_instance = optics(sample, eps, minpts);
    optics_instance.process();
    
    clusters = optics_instance.get_clusters();
    noise = optics_instance.get_noise();
    
    draw_clusters(sample, clusters, [], '.');
    
    ordering = optics_instance.get_cluster_ordering();
    indexes = [i for i in range(0, len(ordering))];
    
    # visualization of cluster ordering in line with reachability distance.
    plt.bar(indexes, ordering);
    plt.show();
コード例 #18
0
def template_clustering(
        number_clusters,
        path,
        branching_factor=5,
        max_node_entries=5,
        initial_diameter=0.0,
        type_measurement=measurement_type.CENTROID_EUCLIDIAN_DISTANCE,
        entry_size_limit=200,
        ccore=True):
    sample = read_sample(path)

    birch_instance = birch(sample, number_clusters, branching_factor,
                           max_node_entries, initial_diameter,
                           type_measurement, entry_size_limit, ccore)
    (ticks, result) = timedcall(birch_instance.process)

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    clusters = birch_instance.get_clusters()
    draw_clusters(sample, clusters)
コード例 #19
0
def template_clustering(number_clusters,
                        path,
                        number_represent_points=5,
                        compression=0.5,
                        draw=True,
                        ccore_flag=False):
    sample = read_sample(path)

    cure_instance = cure(sample, number_clusters, number_represent_points,
                         compression, ccore_flag)
    (ticks, result) = timedcall(cure_instance.process)
    clusters = cure_instance.get_clusters()

    print("Sample: ", path, "\t\tExecution time: ", ticks, "\n")

    if (draw is True):
        if (ccore_flag is True):
            draw_clusters(sample, clusters)
        else:
            draw_clusters(None, clusters)
コード例 #20
0
def template_clustering(file,
                        number_clusters,
                        arg_order=0.999,
                        arg_collect_dynamic=True,
                        ccore_flag=False):
    sample = read_sample(file)
    network = hsyncnet(sample, number_clusters, ccore=ccore_flag)

    (time, dynamic) = network.process(arg_order,
                                      collect_dynamic=arg_collect_dynamic)
    clusters = network.get_clusters()

    if (arg_collect_dynamic == True):
        draw_dynamics(time,
                      dynamic,
                      x_title="Time",
                      y_title="Phase",
                      y_lim=[0, 2 * 3.14])

    draw_clusters(sample, clusters)
コード例 #21
0
def template_clustering(file,
                        map_size,
                        trust_order,
                        sync_order=0.999,
                        show_dyn=False,
                        show_layer1=False,
                        show_layer2=False,
                        show_clusters=True):
    # Read sample
    sample = read_sample(file)

    # Create network
    network = syncsom(sample, map_size[0], map_size[1])

    # Run processing
    (ticks, (dyn_time, dyn_phase)) = timedcall(network.process, trust_order,
                                               show_dyn, sync_order)
    print("Sample: ", file, "\t\tExecution time: ", ticks, "\n")

    # Show dynamic of the last layer.
    if (show_dyn == True):
        draw_dynamics(dyn_time,
                      dyn_phase,
                      x_title="Time",
                      y_title="Phase",
                      y_lim=[0, 2 * 3.14])

    if (show_clusters == True):
        clusters = network.get_som_clusters()
        draw_clusters(network.som_layer.weights, clusters)

    # Show network stuff.
    if (show_layer1 == True):
        network.show_som_layer()

    if (show_layer2 == True):
        network.show_sync_layer()

    if (show_clusters == True):
        clusters = network.get_clusters()
        draw_clusters(sample, clusters)
コード例 #22
0
def template_clustering(
        start_centers,
        path,
        tolerance=0.025,
        criterion=splitting_type.BAYESIAN_INFORMATION_CRITERION,
        ccore=False):
    sample = read_sample(path)

    xmeans_instance = xmeans(sample, start_centers, 20, tolerance, criterion,
                             ccore)
    (ticks, result) = timedcall(xmeans_instance.process)

    clusters = xmeans_instance.get_clusters()

    criterion_string = "UNKNOWN"
    if (criterion == splitting_type.BAYESIAN_INFORMATION_CRITERION):
        criterion_string = "BAYESIAN_INFORMATION_CRITERION"
    elif (criterion == splitting_type.MINIMUM_NOISELESS_DESCRIPTION_LENGTH):
        criterion_string = "MINIMUM_NOISELESS_DESCRIPTION_LENGTH"

    print("Sample: ", path, "\tExecution time: ", ticks,
          "Number of clusters: ", len(clusters), criterion_string, "\n")

    draw_clusters(sample, clusters)