def to3llh(self, datum=Datums.WGS84): '''Convert this (geocentric) Cartesian (x/y/z) point to (ellipsoidal, geodetic) lat-, longitude and height on the given datum. Uses B. R. Bowring’s formulation for μm precision in concise form: U{'The accuracy of geodetic latitude and height equations' <https://www.ResearchGate.net/publication/ 233668213_The_Accuracy_of_Geodetic_Latitude_and_Height_Equations>}, Survey Review, Vol 28, 218, Oct 1985. See also Ralph M. Toms U{'An Efficient Algorithm for Geocentric to Geodetic Coordinate Conversion'<https://www.OSTI.gov/scitech/biblio/110235>}, Sept 1995 and U{'An Improved Algorithm for Geocentric to Geodetic Coordinate Conversion'<https://www.OSTI.gov/scitech/servlets/purl/231228>}, Apr 1996, from Lawrence Livermore National Laboratory. @keyword datum: Optional datum to use (L{Datum}). @return: A L{LatLon3Tuple}C{(lat, lon, height)}. ''' E = datum.ellipsoid x, y, z = self.to3xyz() p = hypot(x, y) # distance from minor axis r = hypot(p, z) # polar radius if min(p, r) > EPS: # parametric latitude (Bowring eqn 17, replaced) t = (E.b * z) / (E.a * p) * (1 + E.e22 * E.b / r) c = 1 / hypot1(t) s = t * c # geodetic latitude (Bowring eqn 18) a = atan2(z + E.e22 * E.b * s**3, p - E.e2 * E.a * c**3) b = atan2(y, x) # ... and longitude # height above ellipsoid (Bowring eqn 7) sa, ca = sincos2(a) # r = E.a / E.e2s(sa) # length of normal terminated by minor axis # h = p * ca + z * sa - (E.a * E.a / r) h = fsum_(p * ca, z * sa, -E.a * E.e2s(sa)) a, b = degrees90(a), degrees180(b) # see <https://GIS.StackExchange.com/questions/28446> elif p > EPS: # latitude arbitrarily zero a, b, h = 0.0, degrees180(atan2(y, x)), p - E.a else: # polar latitude, longitude arbitrarily zero a, b, h = copysign(90.0, z), 0.0, abs(z) - E.b return self._xnamed(LatLon3Tuple(a, b, h))
def toNvector(self, datum=Datums.WGS84): '''Convert this cartesian to an (ellipsoidal) n-vector. @keyword datum: Optional datum to use (L{Datum}). @return: The ellipsoidal n-vector (L{Nvector}). @raise ValueError: The B{C{Cartesian}} at origin. @example: >>> from ellipsoidalNvector import LatLon >>> c = Cartesian(3980581, 97, 4966825) >>> n = c.toNvector() # (0.62282, 0.000002, 0.78237, +0.24) ''' if self._Nv is None or datum != self._Nv.datum: E = datum.ellipsoid x, y, z = self.to3xyz() # Kenneth Gade eqn 23 p = (x**2 + y**2) * E.a2_ q = (z**2 * E.e12) * E.a2_ r = fsum_(p, q, -E.e4) / 6 s = (p * q * E.e4) / (4 * r**3) t = cbrt(fsum_(1, s, sqrt(s * (2 + s)))) u = r * fsum_(1, t, 1 / t) v = sqrt(u**2 + E.e4 * q) w = E.e2 * fsum_(u, v, -q) / (2 * v) k = sqrt(fsum_(u, v, w**2)) - w if abs(k) < EPS: raise ValueError('%s: %r' % ('origin', self)) e = k / (k + E.e2) d = e * hypot(x, y) t = hypot(d, z) if t < EPS: raise ValueError('%s: %r' % ('origin', self)) h = fsum_(k, E.e2, -1) / k * t s = e / t self._Nv = Nvector(x * s, y * s, z / t, h=h, datum=datum, name=self.name) return self._Nv
def equirectangular(lat1, lon1, lat2, lon2, radius=R_M, **options): '''Compute the distance between two points using the U{Equirectangular Approximation / Projection <https://www.Movable-Type.co.UK/scripts/latlong.html#equirectangular>}. @arg lat1: Start latitude (C{degrees}). @arg lon1: Start longitude (C{degrees}). @arg lat2: End latitude (C{degrees}). @arg lon2: End longitude (C{degrees}). @kwarg radius: Mean earth radius (C{meter}). @kwarg options: Optional keyword arguments for function L{equirectangular_}. @return: Distance (C{meter}, same units as B{C{radius}}). @see: Function L{equirectangular_} for more details, the available B{C{options}}, errors, restrictions and other, approximate or accurate distance functions. ''' _, dy, dx, _ = equirectangular_(Lat(lat1, name='lat1'), Lon(lon1, name='lon1'), Lat(lat2, name='lat2'), Lon(lon2, name='lon2'), **options) # PYCHOK Distance4Tuple return degrees2m(hypot(dx, dy), radius=radius)
def _r3(a, f): '''(INTERNAL) Reduced cos, sin, tan. ''' t = (1 - f) * tan(radians(a)) c = 1 / hypot(1, t) s = t * c return c, s, t
def vincentys_(phi2, phi1, lam21): '''Compute the I{angular} distance between two (spherical) points using U{Vincenty's<https://WikiPedia.org/wiki/Great-circle_distance>} spherical formula. @arg phi2: End latitude (C{radians}). @arg phi1: Start latitude (C{radians}). @arg lam21: Longitudinal delta, M{end-start} (C{radians}). @return: Angular distance (C{radians}). @see: Functions L{vincentys}, L{cosineLaw_}, L{equirectangular_}, L{euclidean_}, L{flatLocal_}, L{flatPolar_} and L{haversine_}. @note: Functions L{vincentys_}, L{haversine_} and L{cosineLaw_} produce equivalent results, but L{vincentys_} is suitable for antipodal points but slightly more expensive (M{3 cos, 3 sin, 1 hypot, 1 atan2, 6 mul, 2 add}) than L{haversine_} (M{2 cos, 2 sin, 2 sqrt, 1 atan2, 5 mul, 1 add}) and L{cosineLaw_} (M{3 cos, 3 sin, 1 acos, 3 mul, 1 add}). ''' sa1, ca1, sa2, ca2, sb21, cb21 = sincos2(phi1, phi2, lam21) c = ca2 * cb21 x = sa1 * sa2 + ca1 * c y = ca1 * sa2 - sa1 * c return atan2(hypot(ca2 * sb21, y), x)
def to3lld(self, datum=None): '''Convert this L{Lcc} to a geodetic lat- and longitude. @keyword datum: Optional datum to use, otherwise use this B{C{Lcc}}'s conic.datum (C{Datum}). @return: A L{LatLonDatum3Tuple}C{(lat, lon, datum)}. @raise TypeError: If B{C{datum}} is not ellipsoidal. ''' c = self.conic if datum: c = c.toDatum(datum) e = self.easting - c._E0 n = c._r0 - self.northing + c._N0 r_ = copysign(hypot(e, n), c._n) t_ = pow(r_ / c._aF, c._n_) x = c._xdef(t_) # XXX c._lon0 while True: p, x = x, c._xdef(t_ * c._pdef(x)) if abs(x - p) < 1e-9: # XXX EPS too small? break # x, y == lon, lat a = degrees90(x) b = degrees180((atan(e / n) + c._opt3) * c._n_ + c._lon0) return LatLonDatum3Tuple(a, b, c.datum)
def flatLocal_(phi2, phi1, lam21, datum=Datums.WGS84): '''Compute the distance between two (ellipsoidal) points using the U{ellipsoidal Earth to plane projection <https://WikiPedia.org/wiki/Geographical_distance#Ellipsoidal_Earth_projected_to_a_plane>} fromula. @arg phi2: End latitude (C{radians}). @arg phi1: Start latitude (C{radians}). @arg lam21: Longitudinal delta, M{end-start} (C{radians}). @kwarg datum: Optional, (ellipsoidal) datum to use (L{Datum}). @return: Distance (C{meter}, same units as the B{C{datum}}'s ellipsoid axes). @raise TypeError: Invalid B{C{datum}}. @note: The meridional and prime_vertical radii of curvature are taken and scaled at the mean latitude. @see: Functions L{flatLocal}, L{cosineLaw_}, L{flatPolar_}, L{equirectangular_}, L{euclidean_}, L{haversine_} and L{vincentys_} and U{local, flat earth approximation <https://www.edwilliams.org/avform.htm#flat>}. ''' _xinstanceof(Datum, datum=datum) m, n = datum.ellipsoid.roc2_((phi2 + phi1) * 0.5, scaled=True) return hypot(m * (phi2 - phi1), n * lam21)
def flatLocal_(phi2, phi1, lam21, datum=Datums.WGS84): '''Compute the I{angular} distance between two (ellipsoidal) points using the U{ellipsoidal Earth to plane projection<https://WikiPedia.org/ wiki/Geographical_distance#Ellipsoidal_Earth_projected_to_a_plane>} aka U{Hubeny<https://www.OVG.AT/de/vgi/files/pdf/3781/>} formula. @arg phi2: End latitude (C{radians}). @arg phi1: Start latitude (C{radians}). @arg lam21: Longitudinal delta, M{end-start} (C{radians}). @kwarg datum: Ellipsoidal datum to use (L{Datum}). @return: Angular distance (C{radians}). @raise TypeError: Invalid B{C{datum}}. @note: The meridional and prime_vertical radii of curvature are taken and scaled I{at the mean latitude}. @see: Functions L{flatLocal}/L{hubeny}, L{cosineAndoyerLambert_}, L{cosineForsytheAndoyerLambert_}, L{cosineLaw_}, L{flatPolar_}, L{equirectangular_}, L{euclidean_}, L{haversine_}, L{thomas_} and L{vincentys_} and U{local, flat earth approximation <https://www.EdWilliams.org/avform.htm#flat>}. ''' _xinstanceof(Datum, datum=datum) m, n = datum.ellipsoid.roc2_((phi2 + phi1) * 0.5, scaled=True) return hypot(m * (phi2 - phi1), n * lam21)
def _direct(self, distance, bearing, llr, height=None): '''(INTERNAL) Direct Vincenty method. @raise TypeError: The B{C{other}} point is not L{LatLon}. @raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible. @raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit. ''' E = self.ellipsoid() c1, s1, t1 = _r3(self.lat, E.f) i = radians(bearing) # initial bearing (forward azimuth) si, ci = sincos2(i) s12 = atan2(t1, ci) * 2 sa = c1 * si c2a = 1 - sa**2 if c2a < EPS: c2a = 0 A, B = 1, 0 else: # e22 == (a / b)**2 - 1 A, B = _p2(c2a * E.e22) s = d = distance / (E.b * A) for self._iteration in range(1, self._iterations + 1): ss, cs = sincos2(s) c2sm = cos(s12 + s) s_, s = s, d + _ds(B, cs, ss, c2sm) if abs(s - s_) < self._epsilon: break else: raise VincentyError(_no_(_convergence_), txt=repr(self)) # self.toRepr() t = s1 * ss - c1 * cs * ci # final bearing (reverse azimuth +/- 180) r = atan2b(sa, -t) if llr: # destination latitude in [-90, 90) a = degrees90( atan2(s1 * cs + c1 * ss * ci, (1 - E.f) * hypot(sa, t))) # destination longitude in [-180, 180) b = degrees180( atan2(ss * si, c1 * cs - s1 * ss * ci) - _dl(E.f, c2a, sa, s, cs, ss, c2sm) + radians(self.lon)) h = self.height if height is None else height d = self.classof(a, b, height=h, datum=self.datum) else: d = None return Destination2Tuple(d, r)
def n_xyz2philam(x, y, z): '''Convert C{n-vector} components to lat- and longitude in C{radians}. @arg x: X component (C{scalar}). @arg y: Y component (C{scalar}). @arg z: Z component (C{scalar}). @return: A L{PhiLam2Tuple}C{(phi, lam)}. @see: Function L{n_xyz2latlon}. ''' return PhiLam2Tuple(atan2(z, hypot(x, y)), atan2(y, x))
def to2ab(self): '''Convert this vector to (geodetic) lat- and longitude in C{radians}. @return: A L{PhiLam2Tuple}C{(phi, lam)}. @example: >>> v = Vector3d(0.500, 0.500, 0.707) >>> a, b = v.to2ab() # 0.785323, 0.785398 ''' a = atan2(self.z, hypot(self.x, self.y)) b = atan2(self.y, self.x) return self._xnamed(PhiLam2Tuple(a, b))
def _sigmaInv0(self, xi, eta): '''Starting point for C{sigmaInv}. @return: 3-Tuple C{(u, v, trip)}. @see: C{bool TMExact::sigmainv0(real xi, real eta, real &u, real &v)}. ''' trip = False if eta > self._Ev_KE_5_4 or xi < min(- self._Eu_E_1_4, eta - self._Ev_KE): # sigma as a simple pole at # w = w0 = Eu.K() + i * Ev.K() # and sigma is approximated by # sigma = (Eu.E() + i * Ev.KE()) + 1/(w - w0) x = xi - self._Eu_E y = eta - self._Ev_KE d = x**2 + y**2 u = self._Eu_K + x / d v = self._Ev_K - y / d elif eta > self._Ev_KE or (eta > self._Ev_KE_3_4 and xi < self._Eu_E_1_4): # At w = w0 = i * Ev.K(), we have # sigma = sigma0 = i * Ev.KE() # sigma' = sigma'' = 0 # # including the next term in the Taylor series gives: # sigma = sigma0 - _mv / 3 * (w - w0)^3 # # When inverting this, we map arg(w - w0) = [-pi/2, -pi/6] # to arg(sigma - sigma0) = [-pi/2, pi/2] # mapping arg = [-pi/2, -pi/6] to [-pi/2, pi/2] d = eta - self._Ev_KE r = hypot(xi, d) # Error using this guess is about 0.068 * rad^(5/3) trip = r < _TAYTOL2 # Map the range [-90, 180] in sigma space to [-90, 0] in # w space. See discussion in zetainv0 on the cut for ang. r = cbrt(r * self._3_mv) a = atan2(d - xi, xi + d) / 3.0 - PI_4 s, c = sincos2(a) u = r * c v = r * s + self._Ev_K else: # use w = sigma * Eu.K/Eu.E (correct in the limit _e -> 0) r = self._Eu_K / self._Eu_E u = xi * r v = eta * r return u, v, trip
def toLatLon(self, LatLon=None, unfalse=True, **LatLon_kwds): '''Convert this UPS coordinate to an (ellipsoidal) geodetic point. @kwarg LatLon: Optional, ellipsoidal class to return the geodetic point (C{LatLon}) or C{None}. @kwarg unfalse: Unfalse B{C{easting}} and B{C{northing}} if falsed (C{bool}). @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword arguments, ignored if B{C{LatLon=None}}. @return: This UPS coordinate (B{C{LatLon}}) or if B{C{LatLon}} is C{None}, a L{LatLonDatum5Tuple}C{(lat, lon, datum, convergence, scale)}. @raise TypeError: If B{C{LatLon}} is not ellipsoidal. @raise UPSError: Invalid meridional radius or H-value. ''' if self._latlon and self._latlon_args == unfalse: return self._latlon5(LatLon) E = self.datum.ellipsoid # XXX vs LatLon.datum.ellipsoid x, y = self.to2en(falsed=not unfalse) r = hypot(x, y) t = (r / (2 * self.scale0 * E.a / E.es_c)) if r > 0 else EPS**2 t = E.es_tauf((1 / t - t) * 0.5) if self._pole == _N_: a, b, c = atan(t), atan2(x, -y), 1 else: a, b, c = -atan(t), atan2(x, y), -1 a, b = degrees90(a), degrees180(b) if not self._band: self._band = _Band(a, b) if not self._hemisphere: self._hemisphere = _hemi(a) ll = _LLEB(a, b, datum=self._datum, name=self.name) ll._convergence = b * c # gamma ll._scale = _scale(E, r, t) if r > 0 else self.scale0 self._latlon_to(ll, unfalse) return self._latlon5(LatLon, **LatLon_kwds)
def toLatLon(self, LatLon=None, eps=EPS, unfalse=True, **LatLon_kwds): '''Convert this UTM coordinate to an (ellipsoidal) geodetic point. @kwarg LatLon: Optional, ellipsoidal class to return the geodetic point (C{LatLon}) or C{None}. @kwarg eps: Optional convergence limit, L{EPS} or above (C{float}). @kwarg unfalse: Unfalse B{C{easting}} and B{C{northing}} if falsed (C{bool}). @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword arguments, ignored if B{C{LatLon=None}}. @return: This UTM coordinate (B{C{LatLon}}) or if B{C{LatLon}} is C{None}, a L{LatLonDatum5Tuple}C{(lat, lon, datum, convergence, scale)}. @raise TypeError: If B{C{LatLon}} is not ellipsoidal. @raise UTMError: Invalid meridional radius or H-value. @example: >>> u = Utm(31, 'N', 448251.795, 5411932.678) >>> from pygeodesy import ellipsoidalVincenty as eV >>> ll = u.toLatLon(eV.LatLon) # 48°51′29.52″N, 002°17′40.20″E ''' if eps < EPS: eps = EPS # less doesn't converge if self._latlon and self._latlon_args == (eps, unfalse): return self._latlon5(LatLon) E = self.datum.ellipsoid # XXX vs LatLon.datum.ellipsoid x, y = self.to2en(falsed=not unfalse) # from Karney 2011 Eq 15-22, 36 A0 = self.scale0 * E.A if A0 < EPS: raise self._Error(meridional=A0) x /= A0 # η eta y /= A0 # ξ ksi K = _Kseries(E.BetaKs, x, y) # Krüger series y = -K.ys(-y) # ξ' x = -K.xs(-x) # η' shx = sinh(x) sy, cy = sincos2(y) H = hypot(shx, cy) if H < EPS: raise self._Error(H=H) T = t0 = sy / H # τʹ S = Fsum(T) q = 1.0 / E.e12 P = 7 # -/+ toggle trips d = 1.0 + eps while abs(d) > eps and P > 0: p = -d # previous d, toggled h = hypot1(T) s = sinh(E.e * atanh(E.e * T / h)) t = T * hypot1(s) - s * h d = (t0 - t) / hypot1(t) * ((q + T**2) / h) T, d = S.fsum2_(d) # τi, (τi - τi-1) if d == p: # catch -/+ toggling of d P -= 1 # else: # P = 0 a = atan(T) # lat b = atan2(shx, cy) if unfalse and self.falsed: b += radians(_cmlon(self.zone)) ll = _LLEB(degrees90(a), degrees180(b), datum=self.datum, name=self.name) # convergence: Karney 2011 Eq 26, 27 p = -K.ps(-1) q = K.qs(0) ll._convergence = degrees(atan(tan(y) * tanh(x)) + atan2(q, p)) # scale: Karney 2011 Eq 28 ll._scale = E.e2s(sin(a)) * hypot1(T) * H * (A0 / E.a / hypot(p, q)) self._latlon_to(ll, eps, unfalse) return self._latlon5(LatLon, **LatLon_kwds)
def toUtm8(latlon, lon=None, datum=None, Utm=Utm, falsed=True, name=NN, zone=None, **cmoff): '''Convert a lat-/longitude point to a UTM coordinate. @arg latlon: Latitude (C{degrees}) or an (ellipsoidal) geodetic C{LatLon} point. @kwarg lon: Optional longitude (C{degrees}) or C{None}. @kwarg datum: Optional datum for this UTM coordinate, overriding B{C{latlon}}'s datum (L{Datum}, L{Ellipsoid}, L{Ellipsoid2} or L{a_f2Tuple}). @kwarg Utm: Optional class to return the UTM coordinate (L{Utm}) or C{None}. @kwarg falsed: False both easting and northing (C{bool}). @kwarg name: Optional B{C{Utm}} name (C{str}). @kwarg zone: Optional UTM zone to enforce (C{int} or C{str}). @kwarg cmoff: DEPRECATED, use B{C{falsed}}. Offset longitude from the zone's central meridian (C{bool}). @return: The UTM coordinate (B{C{Utm}}) or if B{C{Utm}} is C{None} or not B{C{falsed}}, a L{UtmUps8Tuple}C{(zone, hemipole, easting, northing, band, datum, convergence, scale)}. The C{hemipole} is the C{'N'|'S'} hemisphere. @raise RangeError: If B{C{lat}} outside the valid UTM bands or if B{C{lat}} or B{C{lon}} outside the valid range and L{rangerrors} set to C{True}. @raise TypeError: Invalid B{C{datum}} or B{C{latlon}} not ellipsoidal. @raise UTMError: Invalid B{C{zone}}. @raise ValueError: If B{C{lon}} value is missing or if B{C{latlon}} is invalid. @note: Implements Karney’s method, using 8-th order Krüger series, giving results accurate to 5 nm (or better) for distances up to 3900 km from the central meridian. @example: >>> p = LatLon(48.8582, 2.2945) # 31 N 448251.8 5411932.7 >>> u = toUtm(p) # 31 N 448252 5411933 >>> p = LatLon(13.4125, 103.8667) # 48 N 377302.4 1483034.8 >>> u = toUtm(p) # 48 N 377302 1483035 ''' z, B, lat, lon, d, f, name = _to7zBlldfn(latlon, lon, datum, falsed, name, zone, UTMError, **cmoff) d = _ellipsoidal_datum(d, name=name) E = d.ellipsoid a, b = radians(lat), radians(lon) # easting, northing: Karney 2011 Eq 7-14, 29, 35 sb, cb = sincos2(b) T = tan(a) T12 = hypot1(T) S = sinh(E.e * atanh(E.e * T / T12)) T_ = T * hypot1(S) - S * T12 H = hypot(T_, cb) y = atan2(T_, cb) # ξ' ksi x = asinh(sb / H) # η' eta A0 = E.A * getattr(Utm, '_scale0', _K0) # Utm is class or None K = _Kseries(E.AlphaKs, x, y) # Krüger series y = K.ys(y) * A0 # ξ x = K.xs(x) * A0 # η # convergence: Karney 2011 Eq 23, 24 p_ = K.ps(1) q_ = K.qs(0) c = degrees(atan(T_ / hypot1(T_) * tan(b)) + atan2(q_, p_)) # scale: Karney 2011 Eq 25 k = E.e2s(sin(a)) * T12 / H * (A0 / E.a * hypot(p_, q_)) return _toXtm8(Utm, z, lat, x, y, B, d, c, k, f, name, latlon, EPS)
def _zetaInv0(self, psi, lam): '''Starting point for C{zetaInv}. @return: 3-Tuple C{(u, v, trip)}. @see: C{bool TMExact::zetainv0(real psi, real lam, # radians real &u, real &v)}. ''' trip = False if (psi < -self._e_PI_4 and lam > self._1_e2_PI_2 and psi < lam - self._1_e_PI_2): # N.B. this branch is normally not taken because psi < 0 # is converted psi > 0 by Forward. # # There's a log singularity at w = w0 = Eu.K() + i * Ev.K(), # corresponding to the south pole, where we have, approximately # # psi = _e + i * pi/2 - _e * atanh(cos(i * (w - w0)/(1 + _mu/2))) # # Inverting this gives: h = sinh(1 - psi / self._e) a = (PI_2 - lam) / self._e s, c = sincos2(a) u = self._Eu_K - asinh(s / hypot(c, h)) * self._mu_2_1 v = self._Ev_K - atan2(c, h) * self._mu_2_1 elif (psi < self._e_PI_2 and lam > self._1_e2_PI_2): # At w = w0 = i * Ev.K(), we have # # zeta = zeta0 = i * (1 - _e) * pi/2 # zeta' = zeta'' = 0 # # including the next term in the Taylor series gives: # # zeta = zeta0 - (_mv * _e) / 3 * (w - w0)^3 # # When inverting this, we map arg(w - w0) = [-90, 0] to # arg(zeta - zeta0) = [-90, 180] d = lam - self._1_e_PI_2 r = hypot(psi, d) # Error using this guess is about 0.21 * (rad/e)^(5/3) trip = r < self._e_taytol_ # atan2(dlam-psi, psi+dlam) + 45d gives arg(zeta - zeta0) # in range [-135, 225). Subtracting 180 (since multiplier # is negative) makes range [-315, 45). Multiplying by 1/3 # (for cube root) gives range [-105, 15). In particular # the range [-90, 180] in zeta space maps to [-90, 0] in # w space as required. r = cbrt(r * self._3_mv_e) a = atan2(d - psi, psi + d) / 3.0 - PI_4 s, c = sincos2(a) u = r * c v = r * s + self._Ev_K else: # Use spherical TM, Lee 12.6 -- writing C{atanh(sin(lam) / # cosh(psi)) = asinh(sin(lam) / hypot(cos(lam), sinh(psi)))}. # This takes care of the log singularity at C{zeta = Eu.K()}, # corresponding to the north pole. s, c = sincos2(lam) h, r = sinh(psi), self._Eu_K / PI_2 # But scale to put 90, 0 on the right place u = r * atan2(h, c) v = r * asinh(s / hypot(c, h)) return u, v, trip
def _Lat_s_c3(name, s, c): L = Lat_(atan2d(s, c), name=name, Error=AlbersError) r = _1_0 / Float_(hypot(s, c), name=name, Error=AlbersError) return L, s * r, c * r
def reverse(self, x, y, lon0=0, name=NN, LatLon=None, **LatLon_kwds): '''Convert an east- and northing location to geodetic lat- and longitude. @arg x: Easting of the location (C{meter}). @arg y: Northing of the location (C{meter}). @kwarg lon0: Optional central meridian longitude (C{degrees}). @kwarg name: Optional name for the location (C{str}). @kwarg LatLon: Class to use (C{LatLon}) or C{None}. @kwarg LatLon_kwds: Optional, additional B{C{LatLon}} keyword arguments, ignored if C{B{LatLon}=None}. @return: The geodetic (C{LatLon}) or if B{C{LatLon}} is C{None} an L{Albers7Tuple}C{(x, y, lat, lon, gamma, scale, datum)}. @note: The origin latitude is returned by C{property lat0}. No false easting or northing is added. The returned value of C{lon} is in the range C{[-180..180] degrees} and C{lat} is in the range C{[-90..90] degrees}. If the given B{C{x}} or B{C{y}} point is outside the valid projected space the nearest pole is returned. ''' x = Meter(x=x) y = Meter(y=y) k0 = self._k0 n0 = self._n0 k0n0 = self._k0n0 nrho0 = self._nrho0 txi0 = self._txi0 y_ = self._sign * y nx = k0n0 * x ny = k0n0 * y_ y1 = nrho0 - ny drho = den = nrho0 + hypot(nx, y1) # 0 implies origin with polar aspect if den: drho = fsum_(x * nx, -_2_0 * y_ * nrho0, y_ * ny) * k0 / den # dsxia = scxi0 * dsxi dsxia = -self._scxi0 * (_2_0 * nrho0 + n0 * drho) * drho / self._qZa2 t = _1_0 - dsxia * (_2_0 * txi0 + dsxia) txi = (txi0 + dsxia) / (sqrt(t) if t > _EPS__4 else _EPS__2) ta = self._tanf(txi) lat = atand(ta * self._sign) th = atan2(nx, y1) lon = degrees(th / self._k02n0 if n0 else x / (y1 * k0)) if lon0: lon += _norm180(lon0) lon = _norm180(lon) if LatLon is None: g = degrees360(self._sign * th) if den: k0 = self._azik(nrho0 + n0 * drho, ta) r = Albers7Tuple(x, y, lat, lon, g, k0, self.datum) else: kwds = _xkwds(LatLon_kwds, datum=self.datum) r = LatLon(lat, lon, **kwds) return self._xnamed(r, name=name)
def _inverse(self, other, azis, wrap): '''(INTERNAL) Inverse Vincenty method. @raise TypeError: The B{C{other}} point is not L{LatLon}. @raise ValueError: If this and the B{C{other}} point's L{Datum} ellipsoids are not compatible. @raise VincentyError: Vincenty fails to converge for the current L{LatLon.epsilon} and L{LatLon.iterations} limit and/or if this and the B{C{other}} point are coincident or near-antipodal. ''' E = self.ellipsoids(other) c1, s1, _ = _r3(self.lat, E.f) c2, s2, _ = _r3(other.lat, E.f) c1c2, s1c2 = c1 * c2, s1 * c2 c1s2, s1s2 = c1 * s2, s1 * s2 dl, _ = unroll180(self.lon, other.lon, wrap=wrap) ll = dl = radians(dl) for self._iteration in range(1, self._iterations + 1): ll_ = ll sll, cll = sincos2(ll) ss = hypot(c2 * sll, c1s2 - s1c2 * cll) if ss < EPS: # coincident or antipodal, ... if self.isantipodeTo(other, eps=self._epsilon): t = '%r %sto %r' % (self, _antipodal_, other) raise VincentyError(_ambiguous_, txt=t) # return zeros like Karney, but unlike Veness return Distance3Tuple(0.0, 0, 0) cs = s1s2 + c1c2 * cll s = atan2(ss, cs) sa = c1c2 * sll / ss c2a = 1 - sa**2 if abs(c2a) < EPS: c2a = 0 # equatorial line ll = dl + E.f * sa * s else: c2sm = cs - 2 * s1s2 / c2a ll = dl + _dl(E.f, c2a, sa, s, cs, ss, c2sm) if abs(ll - ll_) < self._epsilon: break # # omitted and applied only after failure to converge below, see footnote # # under Inverse at <https://WikiPedia.org/wiki/Vincenty's_formulae> # # <https://GitHub.com/ChrisVeness/geodesy/blob/master/latlon-vincenty.js> # elif abs(ll) > PI and self.isantipodeTo(other, eps=self._epsilon): # raise VincentyError('%s, %r %sto %r' % ('ambiguous', self, # _antipodal_, other)) else: t = _antipodal_ if self.isantipodeTo(other, eps=self._epsilon) else NN t = _SPACE_(repr(self), NN(t, _to_), repr(other)) raise VincentyError(_no_(_convergence_), txt=t) if c2a: # e22 == (a / b)**2 - 1 A, B = _p2(c2a * E.e22) s = A * (s - _ds(B, cs, ss, c2sm)) b = E.b # if self.height or other.height: # b += self._havg(other) d = b * s if azis: # forward and reverse azimuth sll, cll = sincos2(ll) f = atan2b(c2 * sll, c1s2 - s1c2 * cll) r = atan2b(c1 * sll, -s1c2 + c1s2 * cll) else: f = r = 0 return Distance3Tuple(d, f, r)
def _Lat_s_c3(s, c, name): L = _Lat_(atan2d(s, c), name=name) r = 1.0 / Float_(hypot(s, c), Error=AlbersError, name=name) return L, s * r, c * r