def _collect_bilinear(self, expr, bilin, quad): if not expr.is_expression_type(): return if type(expr) is ProductExpression: if len(expr._numerator) != 2: for e in expr._numerator: self._collect_bilinear(e, bilin, quad) # No need to check denominator, as this is poly_degree==2 return if not isinstance(expr._numerator[0], _VarData) or \ not isinstance(expr._numerator[1], _VarData): raise RuntimeError("Cannot yet handle complex subexpressions") if expr._numerator[0] is expr._numerator[1]: quad.append((expr, expr._numerator[0])) else: bilin.append((expr, expr._numerator[0], expr._numerator[1])) return if type(expr) is PowExpression and value(expr._args[1]) == 2: # Note: directly testing the value of the exponent above is # safe: we have already verified that this expression is # polynominal, so the exponent must be constant. tmp = ProductExpression() tmp._numerator = [expr._args[0], expr._args[0]] tmp._denominator = [] expr._args = (tmp, as_numeric(1)) # THIS CODE DOES NOT WORK #quad.append( (tmp, tmp._args[0]) ) self._collect_bilinear(tmp, bilin, quad) return # All other expression types for e in expr._args: self._collect_bilinear(e, bilin, quad)
def __call__(self, *args): idxs = reversed(six.moves.xrange(len(args))) for i in idxs: if type(args[i]) is types.GeneratorType: args = args[:i] + tuple(args[i]) + args[i+1:] return _ExternalFunctionExpression( self, tuple( _external_fcn__clone_if_needed(x) if isinstance(x, _ExpressionBase) else x if isinstance(x, basestring) else as_numeric(x) for x in args ) )
def __init__(self, expr, component=None): # # These lines represent in-lining of the # following constructors: # - _ExpressionData # - ComponentData # - NumericValue self._component = weakref_ref(component) if (component is not None) \ else None self._expr = as_numeric(expr) if (expr is not None) else None
def substitute_template_with_value(expr): """A simple substituter to expand expression for current template This substituter will replace all _GetItemExpression / IndexTemplate nodes with the actual _ComponentData based on the current value of the IndexTamplate(s) """ if type(expr) is IndexTemplate: return as_numeric(expr()) else: return expr.resolve_template()
def add(self, var, name=None, rule=None, **kwds): """ Add `var` to this Port, casting it to a Pyomo numeric if necessary Arguments --------- var A variable or some `NumericValue` like an expression name: `str` Name to associate with this member of the Port rule: `function` Function implementing the desired expansion procedure for this member. `Port.Equality` by default, other options include `Port.Extensive`. Customs are allowed. kwds Keyword arguments that will be passed to rule """ if var is not None: try: # indexed components are ok, but as_numeric will error on them # make sure they have this attribute var.is_indexed() except AttributeError: var = as_numeric(var) if name is None: name = var.local_name if name in self.vars and self.vars[name] is not None: # don't throw warning if replacing an implicit (None) var logger.warning("Implicitly replacing variable '%s' in Port '%s'.\n" "To avoid this warning, use Port.remove() first." % (name, self.name)) self.vars[name] = var if rule is None: rule = Port.Equality if rule is Port.Extensive: # avoid name collisions if (name.endswith("_split") or name.endswith("_equality") or name == "splitfrac"): raise ValueError( "Extensive variable '%s' on Port '%s' may not end " "with '_split' or '_equality'" % (name, self.name)) self._rules[name] = (rule, kwds)
def __init__(self, expr, sense=minimize, component=None): # # These lines represent in-lining of the # following constructors: # - _ObjectiveData, # - ActiveComponentData # - ComponentData self._component = weakref_ref(component) if (component is not None) \ else None self._active = True # don't call set_value or set_sense here (it causes issues with # SimpleObjective initialization) self._expr = as_numeric(expr) if (expr is not None) else None self._sense = sense if (self._sense != minimize) and \ (self._sense != maximize): raise ValueError("Objective sense must be set to one of " "'minimize' (%s) or 'maximize' (%s). Invalid " "value: %s'" % (minimize, maximize, sense))
def set_value(self, expr): """Set the expression on this constraint.""" if expr is None: self._body = None self._lower = None self._upper = None self._equality = False return _expr_type = expr.__class__ if _expr_type is tuple: # or expr_type is list: # # Form equality expression # if len(expr) == 2: arg0 = expr[0] if arg0 is not None: arg0 = as_numeric(arg0) arg1 = expr[1] if arg1 is not None: arg1 = as_numeric(arg1) self._equality = True if arg1 is None or (not arg1._potentially_variable()): self._lower = self._upper = arg1 self._body = arg0 elif arg0 is None or (not arg0._potentially_variable()): self._lower = self._upper = arg0 self._body = arg1 else: with EXPR.bypass_clone_check(): self._lower = self._upper = ZeroConstant self._body = arg0 self._body -= arg1 #self._body = EXPR.generate_expression_bypassCloneCheck( # _sub, arg0, arg1) # # Form inequality expression # elif len(expr) == 3: arg0 = expr[0] if arg0 is not None: arg0 = as_numeric(arg0) if arg0._potentially_variable(): raise ValueError( "Constraint '%s' found a 3-tuple (lower," " expression, upper) but the lower " "value was not data or an expression " "restricted to storage of data." % (self.name)) arg1 = expr[1] if arg1 is not None: arg1 = as_numeric(arg1) arg2 = expr[2] if arg2 is not None: arg2 = as_numeric(arg2) if arg2._potentially_variable(): raise ValueError( "Constraint '%s' found a 3-tuple (lower," " expression, upper) but the upper " "value was not data or an expression " "restricted to storage of data." % (self.name)) self._lower = arg0 self._body = arg1 self._upper = arg2 else: raise ValueError( "Constructor rule for constraint '%s' returned " "a tuple of length %d. Expecting a tuple of " "length 2 or 3:\n" "Equality: (left, right)\n" "Inequality: (lower, expression, upper)" % (self.name, len(expr))) relational_expr = False else: try: relational_expr = expr.is_relational() if not relational_expr: raise ValueError( "Constraint '%s' does not have a proper " "value. Found '%s'\nExpecting a tuple or " "equation. Examples:" "\n summation(model.costs) == model.income" "\n (0, model.price[item], 50)" % (self.name, str(expr))) except AttributeError: msg = ("Constraint '%s' does not have a proper " "value. Found '%s'\nExpecting a tuple or " "equation. Examples:" "\n summation(model.costs) == model.income" "\n (0, model.price[item], 50)" % (self.name, str(expr))) if type(expr) is bool: msg += ("\nNote: constant Boolean expressions " "are not valid constraint expressions. " "Some apparently non-constant compound " "inequalities (e.g. 'expr >= 0 <= 1') " "can return boolean values; the proper " "form for compound inequalities is " "always 'lb <= expr <= ub'.") raise ValueError(msg) # # Special check for chainedInequality errors like "if var < # 1:" within rules. Catching them here allows us to provide # the user with better (and more immediate) debugging # information. We don't want to check earlier because we # want to provide a specific debugging message if the # construction rule returned True/False; for example, if the # user did ( var < 1 > 0 ) (which also results in a non-None # chainedInequality value) # if EXPR.generate_relational_expression.chainedInequality is not None: raise TypeError(EXPR.chainedInequalityErrorMessage()) # # Process relational expressions # (i.e. explicit '==', '<', and '<=') # if relational_expr: if _expr_type is EXPR._EqualityExpression: # Equality expression: only 2 arguments! self._equality = True _args = expr._args # Explicitly dereference the original arglist (otherwise # this runs afoul of the getrefcount logic) expr._args = [] if not _args[1]._potentially_variable(): self._lower = self._upper = _args[1] self._body = _args[0] elif not _args[0]._potentially_variable(): self._lower = self._upper = _args[0] self._body = _args[1] else: with EXPR.bypass_clone_check(): self._lower = self._upper = ZeroConstant self._body = _args[0] self._body -= _args[1] #self._body = EXPR.generate_expression_bypassCloneCheck( # _sub, _args[0], _args[1] ) else: # Inequality expression: 2 or 3 arguments if expr._strict: try: _strict = any(expr._strict) except: _strict = True if _strict: # # We can relax this when: # (a) we have a need for this # (b) we have problem writer that # explicitly handles this # (c) we make sure that all problem writers # that don't handle this make it known # to the user through an error or # warning # raise ValueError( "Constraint '%s' encountered a strict " "inequality expression ('>' or '<'). All" " constraints must be formulated using " "using '<=', '>=', or '=='." % (self.name)) _args = expr._args # Explicitly dereference the original arglist (otherwise # this runs afoul of the getrefcount logic) expr._args = [] if len(_args) == 3: if _args[0]._potentially_variable(): raise ValueError( "Constraint '%s' found a double-sided " "inequality expression (lower <= " "expression <= upper) but the lower " "bound was not data or an expression " "restricted to storage of data." % (self.name)) if _args[2]._potentially_variable(): raise ValueError( "Constraint '%s' found a double-sided "\ "inequality expression (lower <= " "expression <= upper) but the upper " "bound was not data or an expression " "restricted to storage of data." % (self.name)) self._lower = _args[0] self._body = _args[1] self._upper = _args[2] else: if not _args[1]._potentially_variable(): self._lower = None self._body = _args[0] self._upper = _args[1] elif not _args[0]._potentially_variable(): self._lower = _args[0] self._body = _args[1] self._upper = None else: with EXPR.bypass_clone_check(): self._lower = None self._body = _args[0] self._body -= _args[1] self._upper = ZeroConstant #self._body = EXPR.generate_expression_bypassCloneCheck( # _sub, _args[0], _args[1]) # # Replace numeric bound values with a NumericConstant object, # and reset the values to 'None' if they are 'infinite' # if (self._lower is not None) and is_constant(self._lower): val = self._lower() if not pyutilib.math.is_finite(val): if val > 0: raise ValueError( "Constraint '%s' created with a +Inf lower " "bound." % (self.name)) self._lower = None elif bool(val > 0) == bool(val <= 0): raise ValueError("Constraint '%s' created with a non-numeric " "lower bound." % (self.name)) if (self._upper is not None) and is_constant(self._upper): val = self._upper() if not pyutilib.math.is_finite(val): if val < 0: raise ValueError( "Constraint '%s' created with a -Inf upper " "bound." % (self.name)) self._upper = None elif bool(val > 0) == bool(val <= 0): raise ValueError("Constraint '%s' created with a non-numeric " "upper bound." % (self.name)) # # Error check, to ensure that we don't have a constraint that # doesn't depend on any variables / parameters. # # Error check, to ensure that we don't have an equality # constraint with 'infinite' RHS # if self._equality: if self._lower is None: raise ValueError("Equality constraint '%s' defined with " "non-finite term." % (self.name)) assert self._lower is self._upper
def __init__(self, expr=None): self._expr = as_numeric(expr) if (expr is not None) else None self._is_owned = True
def set_value(self, expr): """Set the expression on this expression.""" self._expr = as_numeric(expr) if (expr is not None) else None
def __init__(self, expr): self._expr = as_numeric(expr) if (expr is not None) else None if safe_mode: self._parent_expr = None
def _convert_external_setup_without_cleanup(worker, scenario, output_directory, firststage_var_suffix, enforce_derived_nonanticipativity, io_options): import pyomo.environ assert os.path.exists(output_directory) io_options = dict(io_options) scenario_tree = worker.scenario_tree reference_model = scenario._instance rootnode = scenario_tree.findRootNode() firststage = scenario_tree.stages[0] secondstage = scenario_tree.stages[1] constraint_name_buffer = {} objective_name_buffer = {} variable_name_buffer = {} all_constraints = list(con for con in reference_model.component_data_objects( Constraint, active=True, descend_into=True)) # # Check for model annotations # stochastic_rhs = locate_annotations(reference_model, StochasticConstraintBoundsAnnotation, max_allowed=1) if len(stochastic_rhs) == 0: stochastic_rhs = None stochastic_rhs_entries = {} empty_rhs_annotation = False else: assert len(stochastic_rhs) == 1 stochastic_rhs = stochastic_rhs[0][1] if stochastic_rhs.has_declarations: empty_rhs_annotation = False stochastic_rhs_entries = stochastic_rhs.expand_entries() stochastic_rhs_entries.sort( key=lambda x: x[0].getname(True, constraint_name_buffer)) if len(stochastic_rhs_entries) == 0: raise RuntimeError( "The %s annotation was declared " "with external entries but no active Constraint " "objects were recovered from those entries." % (StochasticConstraintBoundsAnnotation.__name__)) else: empty_rhs_annotation = True stochastic_rhs_entries = tuple( (con, stochastic_rhs.default) for con in all_constraints) stochastic_matrix = locate_annotations(reference_model, StochasticConstraintBodyAnnotation, max_allowed=1) if len(stochastic_matrix) == 0: stochastic_matrix = None stochastic_matrix_entries = {} empty_matrix_annotation = False else: assert len(stochastic_matrix) == 1 stochastic_matrix = stochastic_matrix[0][1] if stochastic_matrix.has_declarations: empty_matrix_annotation = False stochastic_matrix_entries = stochastic_matrix.expand_entries() stochastic_matrix_entries.sort( key=lambda x: x[0].getname(True, constraint_name_buffer)) if len(stochastic_matrix_entries) == 0: raise RuntimeError( "The %s annotation was declared " "with external entries but no active Constraint " "objects were recovered from those entries." % (StochasticConstraintBoundsAnnotation.__name__)) else: empty_matrix_annotation = True stochastic_matrix_entries = tuple( (con, stochastic_matrix.default) for con in all_constraints) stochastic_constraint_ids = set() stochastic_constraint_ids.update( id(con) for con, _ in stochastic_rhs_entries) stochastic_constraint_ids.update( id(con) for con, _ in stochastic_matrix_entries) stochastic_objective = locate_annotations(reference_model, StochasticObjectiveAnnotation, max_allowed=1) if len(stochastic_objective) == 0: stochastic_objective = None else: assert len(stochastic_objective) == 1 stochastic_objective = stochastic_objective[0][1] stochastic_varbounds = locate_annotations( reference_model, StochasticVariableBoundsAnnotation) if len(stochastic_varbounds) > 0: raise ValueError( "The DDSIP writer does not currently support " "stochastic variable bounds. Invalid annotation type: %s" % (StochasticVariableBoundsAnnotation.__name__)) if (stochastic_rhs is None) and \ (stochastic_matrix is None) and \ (stochastic_objective is None): raise RuntimeError("No stochastic annotations found. DDSIP " "conversion requires at least one of the following " "annotation types:\n - %s\n - %s\n - %s" % (StochasticConstraintBoundsAnnotation.__name__, StochasticConstraintBodyAnnotation.__name__, StochasticObjectiveAnnotation.__name__)) assert not hasattr(reference_model, "_repn") repn_cache = build_repns(reference_model) assert hasattr(reference_model, "_repn") assert not reference_model._gen_obj_repn assert not reference_model._gen_con_repn # compute values for block_repns in repn_cache.values(): for repn in block_repns.values(): repn.constant = value(repn.constant) repn.linear_coefs = [value(c) for c in repn.linear_coefs] repn.quadratic_coefs = [value(c) for c in repn.quadratic_coefs] # # Write the LP file once to obtain the symbol map # output_filename = os.path.join(output_directory, scenario.name + ".lp.setup") with WriterFactory("lp") as writer: assert 'column_order' not in io_options assert 'row_order' not in io_options output_fname, symbol_map = writer(reference_model, output_filename, lambda x: True, io_options) assert output_fname == output_filename _safe_remove_file(output_filename) StageToVariableMap = map_variable_stages( scenario, scenario_tree, symbol_map, enforce_derived_nonanticipativity=enforce_derived_nonanticipativity) firststage_variable_ids = \ set(id(var) for symbol, var, scenario_tree_id in StageToVariableMap[firststage.name]) secondstage_variable_ids = \ set(id(var) for symbol, var, scenario_tree_id in StageToVariableMap[secondstage.name]) StageToConstraintMap = \ map_constraint_stages( scenario, scenario_tree, symbol_map, stochastic_constraint_ids, firststage_variable_ids, secondstage_variable_ids) secondstage_constraint_ids = \ set(id(con) for symbols, con in StageToConstraintMap[secondstage.name]) assert len(scenario_tree.stages) == 2 firststage = scenario_tree.stages[0] secondstage = scenario_tree.stages[1] # # Make sure the objective references all first stage variables. # We do this by directly modifying the _repn of the # objective which the LP/MPS writer will reference next time we call # it. In addition, make sure that the first second-stage variable # in our column ordering also appears in the objective so that # ONE_VAR_CONSTANT does not get identified as the first # second-stage variable. # ** Just do NOT preprocess again until we call the writer ** # objective_object = scenario._instance_objective assert objective_object is not None objective_block = objective_object.parent_block() objective_repn = repn_cache[id(objective_block)][objective_object] # # Create column (variable) ordering maps for LP/MPS files # column_order = ComponentMap() firststage_variable_count = 0 secondstage_variable_count = 0 # first-stage variables for column_index, (symbol, var, scenario_tree_id) \ in enumerate(StageToVariableMap[firststage.name]): column_order[var] = column_index firststage_variable_count += 1 # second-stage variables for column_index, (symbol, var, scenario_tree_id) \ in enumerate(StageToVariableMap[secondstage.name], len(column_order)): column_order[var] = column_index secondstage_variable_count += 1 # account for the ONE_VAR_CONSTANT second-stage variable # added by the LP writer secondstage_variable_count += 1 # # Create row (constraint) ordering maps for LP/MPS files # firststage_constraint_count = 0 secondstage_constraint_count = 0 row_order = ComponentMap() # first-stage constraints for row_index, (symbols, con) \ in enumerate(StageToConstraintMap[firststage.name]): row_order[con] = row_index firststage_constraint_count += len(symbols) # second-stage constraints for row_index, (symbols, con) \ in enumerate(StageToConstraintMap[secondstage.name], len(row_order)): row_order[con] = row_index secondstage_constraint_count += len(symbols) # account for the ONE_VAR_CONSTANT = 1 second-stage constraint # added by the LP writer secondstage_constraint_count += 1 # # Create a custom labeler that allows DDSIP to identify # first-stage variables # if io_options.pop('symbolic_solver_labels', False): _labeler = TextLabeler() else: _labeler = NumericLabeler('x') labeler = lambda x: _labeler(x) + \ ("" if ((not isinstance(x, _VarData)) or \ (id(x) not in firststage_variable_ids)) else \ firststage_var_suffix) # # Write the ordered LP/MPS file # output_filename = os.path.join(output_directory, scenario.name + ".lp") symbols_filename = os.path.join(output_directory, scenario.name + ".lp.symbols") with WriterFactory("lp") as writer: assert 'column_order' not in io_options assert 'row_order' not in io_options assert 'labeler' not in io_options assert 'force_objective_constant' not in io_options io_options['column_order'] = column_order io_options['row_order'] = row_order io_options['force_objective_constant'] = True io_options['labeler'] = labeler output_fname, symbol_map = writer(reference_model, output_filename, lambda x: True, io_options) assert output_fname == output_filename # write the lp file symbol paired with the scenario # tree id for each variable in the root node with open(symbols_filename, "w") as f: st_symbol_map = reference_model._ScenarioTreeSymbolMap lines = [] for id_ in sorted(rootnode._variable_ids): var = st_symbol_map.bySymbol[id_] if not var.is_expression_type(): lp_label = symbol_map.byObject[id(var)] lines.append("%s %s\n" % (lp_label, id_)) f.writelines(lines) # re-generate these maps as the LP/MPS symbol map # is likely different StageToVariableMap = map_variable_stages( scenario, scenario_tree, symbol_map, enforce_derived_nonanticipativity=enforce_derived_nonanticipativity) StageToConstraintMap = map_constraint_stages(scenario, scenario_tree, symbol_map, stochastic_constraint_ids, firststage_variable_ids, secondstage_variable_ids) # generate a few data structures that are used # when writing the .sc files constraint_symbols = ComponentMap( (con, symbols) for stage_name in StageToConstraintMap for symbols, con in StageToConstraintMap[stage_name]) # # Write the body of the .sc files # modified_constraint_lb = ComponentMap() modified_constraint_ub = ComponentMap() # # Stochastic RHS # # **NOTE: In the code that follows we assume the LP # writer always moves constraint body # constants to the rhs and that the lower part # of any range constraints are written before # the upper part. # stochastic_rhs_count = 0 with open(os.path.join(output_directory, scenario.name + ".rhs.sc.struct"), 'w') as f_rhs_struct: with open(os.path.join(output_directory, scenario.name + ".rhs.sc"), 'w') as f_rhs: scenario_probability = scenario.probability rhs_struct_template = " %s\n" rhs_template = " %.17g\n" f_rhs.write("scen\n%.17g\n" % (_no_negative_zero(scenario_probability))) if stochastic_rhs is not None: for con, include_bound in stochastic_rhs_entries: assert isinstance(con, _ConstraintData) if not empty_rhs_annotation: # verify that this constraint was # flagged by PySP or the user as second-stage if id(con) not in secondstage_constraint_ids: raise RuntimeError( "The constraint %s has been declared " "in the %s annotation but it was not identified as " "a second-stage constraint. To correct this issue, " "remove the constraint from this annotation." % (con.name, StochasticConstraintBoundsAnnotation.__name__) ) constraint_repn = \ repn_cache[id(con.parent_block())][con] if not constraint_repn.is_linear(): raise RuntimeError( "Only linear constraints are " "accepted for conversion to DDSIP format. " "Constraint %s is not linear." % (con.name)) body_constant = constraint_repn.constant # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. constraint_repn.constant = 0 if body_constant is None: body_constant = 0.0 symbols = constraint_symbols[con] assert len(symbols) > 0 for con_label in symbols: if con_label.startswith('c_e_') or \ con_label.startswith('c_l_'): assert (include_bound is True) or \ (include_bound[0] is True) stochastic_rhs_count += 1 f_rhs_struct.write(rhs_struct_template % (con_label)) f_rhs.write(rhs_template % (_no_negative_zero( value(con.lower) - \ value(body_constant)))) # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. modified_constraint_lb[con] = con.lower con._lower = _deterministic_check_constant if con_label.startswith('c_e_'): modified_constraint_ub[con] = con.upper con._upper = _deterministic_check_constant elif con_label.startswith('r_l_'): if (include_bound is True) or \ (include_bound[0] is True): stochastic_rhs_count += 1 f_rhs_struct.write(rhs_struct_template % (con_label)) f_rhs.write(rhs_template % (_no_negative_zero( value(con.lower) - \ value(body_constant)))) # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. modified_constraint_lb[con] = con.lower con._lower = _deterministic_check_constant elif con_label.startswith('c_u_'): assert (include_bound is True) or \ (include_bound[1] is True) stochastic_rhs_count += 1 f_rhs_struct.write(rhs_struct_template % (con_label)) f_rhs.write(rhs_template % (_no_negative_zero( value(con.upper) - \ value(body_constant)))) # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. modified_constraint_ub[con] = con.upper con._upper = _deterministic_check_constant elif con_label.startswith('r_u_'): if (include_bound is True) or \ (include_bound[1] is True): stochastic_rhs_count += 1 f_rhs_struct.write(rhs_struct_template % (con_label)) f_rhs.write(rhs_template % (_no_negative_zero( value(con.upper) - \ value(body_constant)))) # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. modified_constraint_ub[con] = con.upper con._upper = _deterministic_check_constant else: assert False # # Stochastic Matrix # stochastic_matrix_count = 0 with open( os.path.join(output_directory, scenario.name + ".matrix.sc.struct"), 'w') as f_mat_struct: with open(os.path.join(output_directory, scenario.name + ".matrix.sc"), 'w') as f_mat: scenario_probability = scenario.probability matrix_struct_template = " %s %s\n" matrix_template = " %.17g\n" f_mat.write("scen\n") if stochastic_matrix is not None: for con, var_list in stochastic_matrix_entries: assert isinstance(con, _ConstraintData) if not empty_matrix_annotation: # verify that this constraint was # flagged by PySP or the user as second-stage if id(con) not in secondstage_constraint_ids: raise RuntimeError( "The constraint %s has been declared " "in the %s annotation but it was not identified as " "a second-stage constraint. To correct this issue, " "remove the constraint from this annotation." % (con.name, StochasticConstraintBodyAnnotation.__name__)) constraint_repn = \ repn_cache[id(con.parent_block())][con] if not constraint_repn.is_linear(): raise RuntimeError( "Only linear constraints are " "accepted for conversion to DDSIP format. " "Constraint %s is not linear." % (con.name)) assert len(constraint_repn.linear_vars) > 0 if var_list is None: var_list = constraint_repn.linear_vars assert len(var_list) > 0 symbols = constraint_symbols[con] # sort the variable list by the column ordering # so that we have deterministic output var_list = list(var_list) var_list.sort(key=lambda _v: column_order[_v]) new_coefs = list(constraint_repn.linear_coefs) for var in var_list: assert isinstance(var, _VarData) assert not var.fixed var_coef = None for i, (_var, coef) in enumerate( zip(constraint_repn.linear_vars, constraint_repn.linear_coefs)): if _var is var: var_coef = coef # We are going to rewrite with core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. new_coefs[i] = _deterministic_check_value break if var_coef is None: raise RuntimeError( "The coefficient for variable %s has " "been marked as stochastic in constraint %s using " "the %s annotation, but the variable does not appear" " in the canonical constraint expression." % (var.name, con.name, StochasticConstraintBodyAnnotation.__name__)) var_label = symbol_map.byObject[id(var)] for con_label in symbols: stochastic_matrix_count += 1 f_mat_struct.write(matrix_struct_template % (con_label, var_label)) f_mat.write(matrix_template % (_no_negative_zero(value(var_coef)))) constraint_repn.linear_coefs = tuple(new_coefs) # # Stochastic Objective # stochastic_cost_count = 0 with open( os.path.join(output_directory, scenario.name + ".cost.sc.struct"), 'w') as f_obj_struct: with open(os.path.join(output_directory, scenario.name + ".cost.sc"), 'w') as f_obj: obj_struct_template = " %s\n" obj_template = " %.17g\n" f_obj.write("scen\n") if stochastic_objective is not None: if stochastic_objective.has_declarations: sorted_values = stochastic_objective.expand_entries() assert len(sorted_values) <= 1 if len(sorted_values) == 0: raise RuntimeError( "The %s annotation was declared " "with external entries but no active Objective " "objects were recovered from those entries." % (StochasticObjectiveAnnotation.__name__)) obj, (objective_variables, include_constant) = \ sorted_values[0] assert obj is objective_object else: objective_variables, include_constant = \ stochastic_objective.default if not objective_repn.is_linear(): raise RuntimeError( "Only linear stochastic objectives are " "accepted for conversion to DDSIP format. " "Objective %s is not linear." % (objective_object.name)) if objective_variables is None: objective_variables = objective_repn.linear_vars stochastic_objective_label = symbol_map.byObject[id( objective_object)] # sort the variable list by the column ordering # so that we have deterministic output objective_variables = list(objective_variables) objective_variables.sort(key=lambda _v: column_order[_v]) assert (len(objective_variables) > 0) or include_constant new_coefs = list(objective_repn.linear_coefs) for var in objective_variables: assert isinstance(var, _VarData) var_coef = None for i, (_var, coef) in enumerate( zip(objective_repn.linear_vars, objective_repn.linear_coefs)): if _var is var: var_coef = coef # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. new_coefs[i] = _deterministic_check_value break if var_coef is None: raise RuntimeError( "The coefficient for variable %s has " "been marked as stochastic in objective %s using " "the %s annotation, but the variable does not appear" " in the canonical objective expression." % (var.name, objective_object.name, StochasticObjectiveAnnotation.__name__)) var_label = symbol_map.byObject[id(var)] stochastic_cost_count += 1 f_obj_struct.write(obj_struct_template % (var_label)) f_obj.write(obj_template % (_no_negative_zero(value(var_coef)))) objective_repn.linear_coefs = tuple(new_coefs) if include_constant: obj_constant = objective_repn.constant # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. objective_repn.constant = _deterministic_check_value if obj_constant is None: obj_constant = 0.0 stochastic_cost_count += 1 f_obj_struct.write(obj_struct_template % ("ONE_VAR_CONSTANT")) f_obj.write(obj_template % (_no_negative_zero(obj_constant))) # # Write the deterministic part of the LP/MPS-file to its own # file for debugging purposes # reference_model_name = reference_model.name reference_model._name = "ZeroStochasticData" det_output_filename = os.path.join(output_directory, scenario.name + ".lp.det") with WriterFactory("lp") as writer: output_fname, symbol_map = writer(reference_model, det_output_filename, lambda x: True, io_options) assert output_fname == det_output_filename reference_model._name = reference_model_name # reset bounds on any constraints that were modified for con, lower in iteritems(modified_constraint_lb): con._lower = as_numeric(lower) for con, upper in iteritems(modified_constraint_ub): con._upper = as_numeric(upper) return (firststage_variable_count, secondstage_variable_count, firststage_constraint_count, secondstage_constraint_count, stochastic_cost_count, stochastic_rhs_count, stochastic_matrix_count)
def set_value(self, expr): """Set the expression on this constraint.""" if expr is None: self._body = None self._lower = None self._upper = None self._equality = False return _expr_type = expr.__class__ if _expr_type is tuple: # or expr_type is list: # # Form equality expression # if len(expr) == 2: arg0 = expr[0] if arg0 is not None: arg0 = as_numeric(arg0) arg1 = expr[1] if arg1 is not None: arg1 = as_numeric(arg1) self._equality = True if arg1 is None or (not arg1._potentially_variable()): self._lower = self._upper = arg1 self._body = arg0 elif arg0 is None or (not arg0._potentially_variable()): self._lower = self._upper = arg0 self._body = arg1 else: self._lower = self._upper = ZeroConstant self._body = EXPR.generate_expression_bypassCloneCheck( _sub, arg0, arg1) # # Form inequality expression # elif len(expr) == 3: arg0 = expr[0] if arg0 is not None: arg0 = as_numeric(arg0) if arg0._potentially_variable(): raise ValueError( "Constraint '%s' found a 3-tuple (lower," " expression, upper) but the lower " "value was not data or an expression " "restricted to storage of data." % (self.name)) arg1 = expr[1] if arg1 is not None: arg1 = as_numeric(arg1) arg2 = expr[2] if arg2 is not None: arg2 = as_numeric(arg2) if arg2._potentially_variable(): raise ValueError( "Constraint '%s' found a 3-tuple (lower," " expression, upper) but the upper " "value was not data or an expression " "restricted to storage of data." % (self.name)) self._lower = arg0 self._body = arg1 self._upper = arg2 else: raise ValueError( "Constructor rule for constraint '%s' returned " "a tuple of length %d. Expecting a tuple of " "length 2 or 3:\n" "Equality: (left, right)\n" "Inequality: (lower, expression, upper)" % (self.name, len(expr))) relational_expr = False else: try: relational_expr = expr.is_relational() if not relational_expr: raise ValueError( "Constraint '%s' does not have a proper " "value. Found '%s'\nExpecting a tuple or " "equation. Examples:" "\n summation(model.costs) == model.income" "\n (0, model.price[item], 50)" % (self.name, str(expr))) except AttributeError: msg = ("Constraint '%s' does not have a proper " "value. Found '%s'\nExpecting a tuple or " "equation. Examples:" "\n summation(model.costs) == model.income" "\n (0, model.price[item], 50)" % (self.name, str(expr))) if type(expr) is bool: msg += ("\nNote: constant Boolean expressions " "are not valid constraint expressions. " "Some apparently non-constant compound " "inequalities (e.g. 'expr >= 0 <= 1') " "can return boolean values; the proper " "form for compound inequalities is " "always 'lb <= expr <= ub'.") raise ValueError(msg) # # Special check for chainedInequality errors like "if var < # 1:" within rules. Catching them here allows us to provide # the user with better (and more immediate) debugging # information. We don't want to check earlier because we # want to provide a specific debugging message if the # construction rule returned True/False; for example, if the # user did ( var < 1 > 0 ) (which also results in a non-None # chainedInequality value) # if EXPR.generate_relational_expression.chainedInequality is not None: raise TypeError(EXPR.chainedInequalityErrorMessage()) # # Process relational expressions # (i.e. explicit '==', '<', and '<=') # if relational_expr: if _expr_type is EXPR._EqualityExpression: # Equality expression: only 2 arguments! self._equality = True _args = expr._args # Explicitly dereference the original arglist (otherwise # this runs afoul of the getrefcount logic) expr._args = [] if not _args[1]._potentially_variable(): self._lower = self._upper = _args[1] self._body = _args[0] elif not _args[0]._potentially_variable(): self._lower = self._upper = _args[0] self._body = _args[1] else: self._lower = self._upper = ZeroConstant self._body = EXPR.generate_expression_bypassCloneCheck( _sub, _args[0], _args[1] ) else: # Inequality expression: 2 or 3 arguments if expr._strict: try: _strict = any(expr._strict) except: _strict = True if _strict: # # We can relax this when: # (a) we have a need for this # (b) we have problem writer that # explicitly handles this # (c) we make sure that all problem writers # that don't handle this make it known # to the user through an error or # warning # raise ValueError( "Constraint '%s' encountered a strict " "inequality expression ('>' or '<'). All" " constraints must be formulated using " "using '<=', '>=', or '=='." % (self.name)) _args = expr._args # Explicitly dereference the original arglist (otherwise # this runs afoul of the getrefcount logic) expr._args = [] if len(_args) == 3: if _args[0]._potentially_variable(): raise ValueError( "Constraint '%s' found a double-sided " "inequality expression (lower <= " "expression <= upper) but the lower " "bound was not data or an expression " "restricted to storage of data." % (self.name)) if _args[2]._potentially_variable(): raise ValueError( "Constraint '%s' found a double-sided "\ "inequality expression (lower <= " "expression <= upper) but the upper " "bound was not data or an expression " "restricted to storage of data." % (self.name)) self._lower = _args[0] self._body = _args[1] self._upper = _args[2] else: if not _args[1]._potentially_variable(): self._lower = None self._body = _args[0] self._upper = _args[1] elif not _args[0]._potentially_variable(): self._lower = _args[0] self._body = _args[1] self._upper = None else: self._lower = None self._body = EXPR.generate_expression_bypassCloneCheck( _sub, _args[0], _args[1]) self._upper = ZeroConstant # # Replace numeric bound values with a NumericConstant object, # and reset the values to 'None' if they are 'infinite' # if (self._lower is not None) and is_constant(self._lower): val = self._lower() if not pyutilib.math.is_finite(val): if val > 0: raise ValueError( "Constraint '%s' created with a +Inf lower " "bound." % (self.name)) self._lower = None elif bool(val > 0) == bool(val <= 0): raise ValueError( "Constraint '%s' created with a non-numeric " "lower bound." % (self.name)) if (self._upper is not None) and is_constant(self._upper): val = self._upper() if not pyutilib.math.is_finite(val): if val < 0: raise ValueError( "Constraint '%s' created with a -Inf upper " "bound." % (self.name)) self._upper = None elif bool(val > 0) == bool(val <= 0): raise ValueError( "Constraint '%s' created with a non-numeric " "upper bound." % (self.name)) # # Error check, to ensure that we don't have a constraint that # doesn't depend on any variables / parameters. # # Error check, to ensure that we don't have an equality # constraint with 'infinite' RHS # if self._equality: if self._lower is None: raise ValueError( "Equality constraint '%s' defined with " "non-finite term." % (self.name)) assert self._lower is self._upper
def _write_equations_section(self, model, output_file, all_blocks_list, active_components_data_var, symbol_map, labeler, create_symbol_func, create_symbols_func, alias_symbol_func, object_symbol_dictionary, output_fixed_variable_bounds, skip_trivial_constraints, sorter): referenced_variable_ids = set() def _skip_trivial(constraint_data): if skip_trivial_constraints: if constraint_data._linear_canonical_form: repn = constraint_data.canonical_form() if (repn.variables is None) or \ (len(repn.variables) == 0): return True elif isinstance(constraint_data, LinearCanonicalRepn): repn = constraint_data if (repn.variables is None) or \ (len(repn.variables) == 0): return True else: if constraint_data.body.polynomial_degree() == 0: return True return False # # Check for active suffixes to export # if isinstance(model, IBlockStorage): suffix_gen = lambda b: pyomo.core.kernel.component_suffix.\ export_suffix_generator(b, active=True, return_key=True, descend_into=False) else: suffix_gen = lambda b: pyomo.core.base.suffix.\ active_export_suffix_generator(b) r_o_eqns = [] c_eqns = [] l_eqns = [] branching_priorities_suffixes = [] for block in all_blocks_list: for name, suffix in suffix_gen(block): if name == 'branching_priorities': branching_priorities_suffixes.append(suffix) elif name == 'constraint_types': for constraint_data, constraint_type in iteritems(suffix): if not _skip_trivial(constraint_data): if constraint_type.lower() == 'relaxationonly': r_o_eqns.append(constraint_data) elif constraint_type.lower() == 'convex': c_eqns.append(constraint_data) elif constraint_type.lower() == 'local': l_eqns.append(constraint_data) else: raise ValueError( "A suffix '%s' contained an invalid value: %s\n" "Choices are: [relaxationonly, convex, local]" % (suffix.name, constraint_type)) else: raise ValueError( "The BARON writer can not export suffix with name '%s'. " "Either remove it from block '%s' or deactivate it." % (block.name, name)) non_standard_eqns = r_o_eqns + c_eqns + l_eqns # GAH 1/5/15: Substituting all non-alphanumeric characters for underscore # in labeler so this manual update should no longer be needed # # If the text labeler is used, correct the labels to be # baron-allowed variable names # Change '(' and ')' to '__' # This way, for simple variable names like 'x(1_2)' --> 'x__1_2__' # FIXME: 7/21/14 This may break if users give variable names # with two or more underscores together #if symbolic_solver_labels: # for key,label in iteritems(object_symbol_dictionary): # label = label.replace('(','___') # object_symbol_dictionary[key] = label.replace(')','__') # # EQUATIONS # #Equation Declaration n_roeqns = len(r_o_eqns) n_ceqns = len(c_eqns) n_leqns = len(l_eqns) eqns = [] # Alias the constraints by declaration order since Baron does not # include the constraint names in the solution file. It is important # that this alias not clash with any real constraint labels, hence # the use of the ".c<integer>" template. It is not possible to declare # a component having this type of name when using standard syntax. # There are ways to do it, but it is unlikely someone will. order_counter = 0 alias_template = ".c%d" output_file.write('EQUATIONS ') output_file.write("c_e_FIX_ONE_VAR_CONST__") order_counter += 1 for block in all_blocks_list: for constraint_data in block.component_data_objects( Constraint, active=True, sort=sorter, descend_into=False): if (not constraint_data.has_lb()) and \ (not constraint_data.has_ub()): assert not constraint_data.equality continue # non-binding, so skip if (not _skip_trivial(constraint_data)) and \ (constraint_data not in non_standard_eqns): eqns.append(constraint_data) con_symbol = \ create_symbol_func(symbol_map, constraint_data, labeler) assert not con_symbol.startswith('.') assert con_symbol != "c_e_FIX_ONE_VAR_CONST__" alias_symbol_func(symbol_map, constraint_data, alias_template % order_counter) output_file.write(", " + str(con_symbol)) order_counter += 1 output_file.write(";\n\n") if n_roeqns > 0: output_file.write('RELAXATION_ONLY_EQUATIONS ') for i, constraint_data in enumerate(r_o_eqns): con_symbol = create_symbol_func(symbol_map, constraint_data, labeler) assert not con_symbol.startswith('.') assert con_symbol != "c_e_FIX_ONE_VAR_CONST__" alias_symbol_func(symbol_map, constraint_data, alias_template % order_counter) if i == n_roeqns - 1: output_file.write(str(con_symbol) + ';\n\n') else: output_file.write(str(con_symbol) + ', ') order_counter += 1 if n_ceqns > 0: output_file.write('CONVEX_EQUATIONS ') for i, constraint_data in enumerate(c_eqns): con_symbol = create_symbol_func(symbol_map, constraint_data, labeler) assert not con_symbol.startswith('.') assert con_symbol != "c_e_FIX_ONE_VAR_CONST__" alias_symbol_func(symbol_map, constraint_data, alias_template % order_counter) if i == n_ceqns - 1: output_file.write(str(con_symbol) + ';\n\n') else: output_file.write(str(con_symbol) + ', ') order_counter += 1 if n_leqns > 0: output_file.write('LOCAL_EQUATIONS ') for i, constraint_data in enumerate(l_eqns): con_symbol = create_symbol_func(symbol_map, constraint_data, labeler) assert not con_symbol.startswith('.') assert con_symbol != "c_e_FIX_ONE_VAR_CONST__" alias_symbol_func(symbol_map, constraint_data, alias_template % order_counter) if i == n_leqns - 1: output_file.write(str(con_symbol) + ';\n\n') else: output_file.write(str(con_symbol) + ', ') order_counter += 1 # Create a dictionary of baron variable names to match to the # strings that constraint.to_string() prints. An important # note is that the variable strings are padded by spaces so # that whole variable names are recognized, and simple # variable names are not identified inside longer names. # Example: ' x[1] ' -> ' x3 ' #FIXME: 7/18/14 CLH: This may cause mistakes if spaces in # variable names are allowed if isinstance(model, IBlockStorage): mutable_param_gen = lambda b: \ b.components(ctype=Param, descend_into=False) else: def mutable_param_gen(b): for param in block.component_objects(Param): if param._mutable and param.is_indexed(): param_data_iter = \ (param_data for index, param_data in iteritems(param)) elif not param.is_indexed(): param_data_iter = iter([param]) else: param_data_iter = iter([]) for param_data in param_data_iter: yield param_data vstring_to_var_dict = {} vstring_to_bar_dict = {} pstring_to_bar_dict = {} _val_template = ' %' + self._precision_string + ' ' for block in all_blocks_list: for var_data in active_components_data_var[id(block)]: variable_stream = StringIO() var_data.to_string(ostream=variable_stream, verbose=False) variable_string = variable_stream.getvalue() variable_string = ' ' + variable_string + ' ' vstring_to_var_dict[variable_string] = var_data if output_fixed_variable_bounds or (not var_data.fixed): vstring_to_bar_dict[variable_string] = \ ' '+object_symbol_dictionary[id(var_data)]+' ' else: assert var_data.value is not None vstring_to_bar_dict[variable_string] = \ (_val_template % (var_data.value,)) for param_data in mutable_param_gen(block): param_stream = StringIO() param_data.to_string(ostream=param_stream, verbose=False) param_string = param_stream.getvalue() param_string = ' ' + param_string + ' ' pstring_to_bar_dict[param_string] = \ (_val_template % (param_data(),)) # Equation Definition string_template = '%' + self._precision_string output_file.write('c_e_FIX_ONE_VAR_CONST__: ONE_VAR_CONST__ == 1;\n') for constraint_data in itertools.chain(eqns, r_o_eqns, c_eqns, l_eqns): ######################### #CLH: The section below is kind of a hack-y way to use # the expr.to_string function to print # expressions. A stream is created, writen to, and # then the string is recovered and stored in # eqn_body. Then the variable names are converted # to match the variable names that are used in the # bar file. # Fill in the body of the equation body_string_buffer = StringIO() if constraint_data.body is None: continue as_numeric(constraint_data.body).to_string( ostream=body_string_buffer, verbose=False) eqn_body = body_string_buffer.getvalue() # First, pad the equation so that if there is a # variable name at the start or end of the equation, # it can still be identified as padded with spaces. # Second, change pyomo's ** to baron's ^, also with # padding so that variable can always be found with # space around them # Third, add more padding around multiplication. Pyomo # already has spaces between variable on variable # multiplication, but not for constants on variables eqn_body = ' ' + eqn_body + ' ' eqn_body = eqn_body.replace('**', ' ^ ') eqn_body = eqn_body.replace('*', ' * ') # # FIXME: The following block of code is extremely inefficient. # We are looping through every parameter and variable in # the model each time we write a constraint expression. # ################################################ vnames = [(variable_string, bar_string) for variable_string, bar_string in iteritems(vstring_to_bar_dict) if variable_string in eqn_body] for variable_string, bar_string in vnames: var_data = vstring_to_var_dict[variable_string] if output_fixed_variable_bounds or (not var_data.fixed): referenced_variable_ids.add(id(var_data)) eqn_body = eqn_body.replace(variable_string, bar_string) for param_string, bar_string in iteritems(pstring_to_bar_dict): eqn_body = eqn_body.replace(param_string, bar_string) ################################################ if len(vnames) == 0: assert not skip_trivial_constraints eqn_body += "+ 0 * ONE_VAR_CONST__ " # 7/29/14 CLH: #FIXME: Baron doesn't handle many of the # intrinsic_functions available in pyomo. The # error message given by baron is also very # weak. Either a function here to re-write # unallowed expressions or a way to track solver # capability by intrinsic_expression would be # useful. ########################## con_symbol = object_symbol_dictionary[id(constraint_data)] output_file.write(str(con_symbol) + ': ') # Fill in the left and right hand side (constants) of # the equations # Equality constraint if constraint_data.equality: eqn_lhs = '' eqn_rhs = ' == ' + \ str(string_template % self._get_bound(constraint_data.upper)) # Greater than constraint elif not constraint_data.has_ub(): eqn_rhs = ' >= ' + \ str(string_template % self._get_bound(constraint_data.lower)) eqn_lhs = '' # Less than constraint elif not constraint_data.has_lb(): eqn_rhs = ' <= ' + \ str(string_template % self._get_bound(constraint_data.upper)) eqn_lhs = '' # Double-sided constraint elif constraint_data.has_lb() and \ constraint_data.has_ub(): eqn_lhs = str(string_template % self._get_bound(constraint_data.lower)) + \ ' <= ' eqn_rhs = ' <= ' + \ str(string_template % self._get_bound(constraint_data.upper)) eqn_string = eqn_lhs + eqn_body + eqn_rhs + ';\n' output_file.write(eqn_string) # # OBJECTIVE # output_file.write("\nOBJ: ") n_objs = 0 for block in all_blocks_list: for objective_data in block.component_data_objects( Objective, active=True, sort=sorter, descend_into=False): n_objs += 1 if n_objs > 1: raise ValueError( "The BARON writer has detected multiple active " "objective functions on model %s, but " "currently only handles a single objective." % (model.name)) # create symbol create_symbol_func(symbol_map, objective_data, labeler) alias_symbol_func(symbol_map, objective_data, "__default_objective__") if objective_data.is_minimizing(): output_file.write("minimize ") else: output_file.write("maximize ") #FIXME 7/18/14 See above, constraint writing # section. Will cause problems if there # are spaces in variables # Similar to the constraints section above, the # objective is generated from the expr.to_string # function. obj_stream = StringIO() objective_data.expr.to_string(ostream=obj_stream, verbose=False) obj_string = ' ' + obj_stream.getvalue() + ' ' obj_string = obj_string.replace('**', ' ^ ') obj_string = obj_string.replace('*', ' * ') # # FIXME: The following block of code is extremely inefficient. # We are looping through every parameter and variable in # the model each time we write an expression. # ################################################ vnames = [(variable_string, bar_string) for variable_string, bar_string in iteritems(vstring_to_bar_dict) if variable_string in obj_string] for variable_string, bar_string in vnames: var_data = var_data = vstring_to_var_dict[variable_string] if output_fixed_variable_bounds or (not var_data.fixed): referenced_variable_ids.add(id(var_data)) obj_string = obj_string.replace(variable_string, bar_string) for param_string, bar_string in iteritems(pstring_to_bar_dict): obj_string = obj_string.replace(param_string, bar_string) ################################################ output_file.write(obj_string + ";\n\n") return referenced_variable_ids, branching_priorities_suffixes
def _convert_external_setup_without_cleanup( worker, scenario, output_directory, firststage_var_suffix, enforce_derived_nonanticipativity, io_options): import pyomo.environ assert os.path.exists(output_directory) io_options = dict(io_options) scenario_tree = worker.scenario_tree reference_model = scenario._instance rootnode = scenario_tree.findRootNode() firststage = scenario_tree.stages[0] secondstage = scenario_tree.stages[1] constraint_name_buffer = {} objective_name_buffer = {} variable_name_buffer = {} all_constraints = list( con for con in reference_model.component_data_objects( Constraint, active=True, descend_into=True)) # # Check for model annotations # stochastic_rhs = locate_annotations( reference_model, StochasticConstraintBoundsAnnotation, max_allowed=1) if len(stochastic_rhs) == 0: stochastic_rhs = None stochastic_rhs_entries = {} empty_rhs_annotation = False else: assert len(stochastic_rhs) == 1 stochastic_rhs = stochastic_rhs[0][1] if stochastic_rhs.has_declarations: empty_rhs_annotation = False stochastic_rhs_entries = stochastic_rhs.expand_entries() stochastic_rhs_entries.sort( key=lambda x: x[0].getname(True, constraint_name_buffer)) if len(stochastic_rhs_entries) == 0: raise RuntimeError( "The %s annotation was declared " "with external entries but no active Constraint " "objects were recovered from those entries." % (StochasticConstraintBoundsAnnotation.__name__)) else: empty_rhs_annotation = True stochastic_rhs_entries = tuple((con, stochastic_rhs.default) for con in all_constraints) stochastic_matrix = locate_annotations( reference_model, StochasticConstraintBodyAnnotation, max_allowed=1) if len(stochastic_matrix) == 0: stochastic_matrix = None stochastic_matrix_entries = {} empty_matrix_annotation = False else: assert len(stochastic_matrix) == 1 stochastic_matrix = stochastic_matrix[0][1] if stochastic_matrix.has_declarations: empty_matrix_annotation = False stochastic_matrix_entries = stochastic_matrix.expand_entries() stochastic_matrix_entries.sort( key=lambda x: x[0].getname(True, constraint_name_buffer)) if len(stochastic_matrix_entries) == 0: raise RuntimeError( "The %s annotation was declared " "with external entries but no active Constraint " "objects were recovered from those entries." % (StochasticConstraintBoundsAnnotation.__name__)) else: empty_matrix_annotation = True stochastic_matrix_entries = tuple((con,stochastic_matrix.default) for con in all_constraints) stochastic_constraint_ids = set() stochastic_constraint_ids.update(id(con) for con,_ in stochastic_rhs_entries) stochastic_constraint_ids.update(id(con) for con,_ in stochastic_matrix_entries) stochastic_objective = locate_annotations( reference_model, StochasticObjectiveAnnotation, max_allowed=1) if len(stochastic_objective) == 0: stochastic_objective = None else: assert len(stochastic_objective) == 1 stochastic_objective = stochastic_objective[0][1] stochastic_varbounds = locate_annotations( reference_model, StochasticVariableBoundsAnnotation) if len(stochastic_varbounds) > 0: raise ValueError( "The DDSIP writer does not currently support " "stochastic variable bounds. Invalid annotation type: %s" % (StochasticVariableBoundsAnnotation.__name__)) if (stochastic_rhs is None) and \ (stochastic_matrix is None) and \ (stochastic_objective is None): raise RuntimeError( "No stochastic annotations found. DDSIP " "conversion requires at least one of the following " "annotation types:\n - %s\n - %s\n - %s" % (StochasticConstraintBoundsAnnotation.__name__, StochasticConstraintBodyAnnotation.__name__, StochasticObjectiveAnnotation.__name__)) assert not hasattr(reference_model, "_repn") repn_cache = build_repns(reference_model) assert hasattr(reference_model, "_repn") assert not reference_model._gen_obj_repn assert not reference_model._gen_con_repn # compute values for block_repns in repn_cache.values(): for repn in block_repns.values(): repn.constant = value(repn.constant) repn.linear_coefs = [value(c) for c in repn.linear_coefs] repn.quadratic_coefs = [value(c) for c in repn.quadratic_coefs] # # Write the LP file once to obtain the symbol map # output_filename = os.path.join(output_directory, scenario.name+".lp.setup") with WriterFactory("lp") as writer: assert 'column_order' not in io_options assert 'row_order' not in io_options output_fname, symbol_map = writer(reference_model, output_filename, lambda x: True, io_options) assert output_fname == output_filename _safe_remove_file(output_filename) StageToVariableMap = map_variable_stages( scenario, scenario_tree, symbol_map, enforce_derived_nonanticipativity=enforce_derived_nonanticipativity) firststage_variable_ids = \ set(id(var) for symbol, var, scenario_tree_id in StageToVariableMap[firststage.name]) secondstage_variable_ids = \ set(id(var) for symbol, var, scenario_tree_id in StageToVariableMap[secondstage.name]) StageToConstraintMap = \ map_constraint_stages( scenario, scenario_tree, symbol_map, stochastic_constraint_ids, firststage_variable_ids, secondstage_variable_ids) secondstage_constraint_ids = \ set(id(con) for symbols, con in StageToConstraintMap[secondstage.name]) assert len(scenario_tree.stages) == 2 firststage = scenario_tree.stages[0] secondstage = scenario_tree.stages[1] # # Make sure the objective references all first stage variables. # We do this by directly modifying the _repn of the # objective which the LP/MPS writer will reference next time we call # it. In addition, make sure that the first second-stage variable # in our column ordering also appears in the objective so that # ONE_VAR_CONSTANT does not get identified as the first # second-stage variable. # ** Just do NOT preprocess again until we call the writer ** # objective_object = scenario._instance_objective assert objective_object is not None objective_block = objective_object.parent_block() objective_repn = repn_cache[id(objective_block)][objective_object] # # Create column (variable) ordering maps for LP/MPS files # column_order = ComponentMap() firststage_variable_count = 0 secondstage_variable_count = 0 # first-stage variables for column_index, (symbol, var, scenario_tree_id) \ in enumerate(StageToVariableMap[firststage.name]): column_order[var] = column_index firststage_variable_count += 1 # second-stage variables for column_index, (symbol, var, scenario_tree_id) \ in enumerate(StageToVariableMap[secondstage.name], len(column_order)): column_order[var] = column_index secondstage_variable_count += 1 # account for the ONE_VAR_CONSTANT second-stage variable # added by the LP writer secondstage_variable_count += 1 # # Create row (constraint) ordering maps for LP/MPS files # firststage_constraint_count = 0 secondstage_constraint_count = 0 row_order = ComponentMap() # first-stage constraints for row_index, (symbols, con) \ in enumerate(StageToConstraintMap[firststage.name]): row_order[con] = row_index firststage_constraint_count += len(symbols) # second-stage constraints for row_index, (symbols, con) \ in enumerate(StageToConstraintMap[secondstage.name], len(row_order)): row_order[con] = row_index secondstage_constraint_count += len(symbols) # account for the ONE_VAR_CONSTANT = 1 second-stage constraint # added by the LP writer secondstage_constraint_count += 1 # # Create a custom labeler that allows DDSIP to identify # first-stage variables # if io_options.pop('symbolic_solver_labels', False): _labeler = TextLabeler() else: _labeler = NumericLabeler('x') labeler = lambda x: _labeler(x) + \ ("" if ((not isinstance(x, _VarData)) or \ (id(x) not in firststage_variable_ids)) else \ firststage_var_suffix) # # Write the ordered LP/MPS file # output_filename = os.path.join(output_directory, scenario.name+".lp") symbols_filename = os.path.join(output_directory, scenario.name+".lp.symbols") with WriterFactory("lp") as writer: assert 'column_order' not in io_options assert 'row_order' not in io_options assert 'labeler' not in io_options assert 'force_objective_constant' not in io_options io_options['column_order'] = column_order io_options['row_order'] = row_order io_options['force_objective_constant'] = True io_options['labeler'] = labeler output_fname, symbol_map = writer(reference_model, output_filename, lambda x: True, io_options) assert output_fname == output_filename # write the lp file symbol paired with the scenario # tree id for each variable in the root node with open(symbols_filename, "w") as f: st_symbol_map = reference_model._ScenarioTreeSymbolMap lines = [] for id_ in sorted(rootnode._variable_ids): var = st_symbol_map.bySymbol[id_] if not var.is_expression_type(): lp_label = symbol_map.byObject[id(var)] lines.append("%s %s\n" % (lp_label, id_)) f.writelines(lines) # re-generate these maps as the LP/MPS symbol map # is likely different StageToVariableMap = map_variable_stages( scenario, scenario_tree, symbol_map, enforce_derived_nonanticipativity=enforce_derived_nonanticipativity) StageToConstraintMap = map_constraint_stages( scenario, scenario_tree, symbol_map, stochastic_constraint_ids, firststage_variable_ids, secondstage_variable_ids) # generate a few data structures that are used # when writing the .sc files constraint_symbols = ComponentMap( (con, symbols) for stage_name in StageToConstraintMap for symbols, con in StageToConstraintMap[stage_name]) # # Write the body of the .sc files # modified_constraint_lb = ComponentMap() modified_constraint_ub = ComponentMap() # # Stochastic RHS # # **NOTE: In the code that follows we assume the LP # writer always moves constraint body # constants to the rhs and that the lower part # of any range constraints are written before # the upper part. # stochastic_rhs_count = 0 with open(os.path.join(output_directory, scenario.name+".rhs.sc.struct"),'w') as f_rhs_struct: with open(os.path.join(output_directory, scenario.name+".rhs.sc"),'w') as f_rhs: scenario_probability = scenario.probability rhs_struct_template = " %s\n" rhs_template = " %.17g\n" f_rhs.write("scen\n%.17g\n" % (_no_negative_zero(scenario_probability))) if stochastic_rhs is not None: for con, include_bound in stochastic_rhs_entries: assert isinstance(con, _ConstraintData) if not empty_rhs_annotation: # verify that this constraint was # flagged by PySP or the user as second-stage if id(con) not in secondstage_constraint_ids: raise RuntimeError( "The constraint %s has been declared " "in the %s annotation but it was not identified as " "a second-stage constraint. To correct this issue, " "remove the constraint from this annotation." % (con.name, StochasticConstraintBoundsAnnotation.__name__)) constraint_repn = \ repn_cache[id(con.parent_block())][con] if not constraint_repn.is_linear(): raise RuntimeError("Only linear constraints are " "accepted for conversion to DDSIP format. " "Constraint %s is not linear." % (con.name)) body_constant = constraint_repn.constant # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. constraint_repn.constant = 0 if body_constant is None: body_constant = 0.0 symbols = constraint_symbols[con] assert len(symbols) > 0 for con_label in symbols: if con_label.startswith('c_e_') or \ con_label.startswith('c_l_'): assert (include_bound is True) or \ (include_bound[0] is True) stochastic_rhs_count += 1 f_rhs_struct.write(rhs_struct_template % (con_label)) f_rhs.write(rhs_template % (_no_negative_zero( value(con.lower) - \ value(body_constant)))) # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. modified_constraint_lb[con] = con.lower con._lower = _deterministic_check_constant if con_label.startswith('c_e_'): modified_constraint_ub[con] = con.upper con._upper = _deterministic_check_constant elif con_label.startswith('r_l_') : if (include_bound is True) or \ (include_bound[0] is True): stochastic_rhs_count += 1 f_rhs_struct.write(rhs_struct_template % (con_label)) f_rhs.write(rhs_template % (_no_negative_zero( value(con.lower) - \ value(body_constant)))) # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. modified_constraint_lb[con] = con.lower con._lower = _deterministic_check_constant elif con_label.startswith('c_u_'): assert (include_bound is True) or \ (include_bound[1] is True) stochastic_rhs_count += 1 f_rhs_struct.write(rhs_struct_template % (con_label)) f_rhs.write(rhs_template % (_no_negative_zero( value(con.upper) - \ value(body_constant)))) # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. modified_constraint_ub[con] = con.upper con._upper = _deterministic_check_constant elif con_label.startswith('r_u_'): if (include_bound is True) or \ (include_bound[1] is True): stochastic_rhs_count += 1 f_rhs_struct.write(rhs_struct_template % (con_label)) f_rhs.write(rhs_template % (_no_negative_zero( value(con.upper) - \ value(body_constant)))) # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. modified_constraint_ub[con] = con.upper con._upper = _deterministic_check_constant else: assert False # # Stochastic Matrix # stochastic_matrix_count = 0 with open(os.path.join(output_directory, scenario.name+".matrix.sc.struct"),'w') as f_mat_struct: with open(os.path.join(output_directory, scenario.name+".matrix.sc"),'w') as f_mat: scenario_probability = scenario.probability matrix_struct_template = " %s %s\n" matrix_template = " %.17g\n" f_mat.write("scen\n") if stochastic_matrix is not None: for con, var_list in stochastic_matrix_entries: assert isinstance(con, _ConstraintData) if not empty_matrix_annotation: # verify that this constraint was # flagged by PySP or the user as second-stage if id(con) not in secondstage_constraint_ids: raise RuntimeError( "The constraint %s has been declared " "in the %s annotation but it was not identified as " "a second-stage constraint. To correct this issue, " "remove the constraint from this annotation." % (con.name, StochasticConstraintBodyAnnotation.__name__)) constraint_repn = \ repn_cache[id(con.parent_block())][con] if not constraint_repn.is_linear(): raise RuntimeError("Only linear constraints are " "accepted for conversion to DDSIP format. " "Constraint %s is not linear." % (con.name)) assert len(constraint_repn.linear_vars) > 0 if var_list is None: var_list = constraint_repn.linear_vars assert len(var_list) > 0 symbols = constraint_symbols[con] # sort the variable list by the column ordering # so that we have deterministic output var_list = list(var_list) var_list.sort(key=lambda _v: column_order[_v]) new_coefs = list(constraint_repn.linear_coefs) for var in var_list: assert isinstance(var, _VarData) assert not var.fixed var_coef = None for i, (_var, coef) in enumerate(zip(constraint_repn.linear_vars, constraint_repn.linear_coefs)): if _var is var: var_coef = coef # We are going to rewrite with core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. new_coefs[i] = _deterministic_check_value break if var_coef is None: raise RuntimeError( "The coefficient for variable %s has " "been marked as stochastic in constraint %s using " "the %s annotation, but the variable does not appear" " in the canonical constraint expression." % (var.name, con.name, StochasticConstraintBodyAnnotation.__name__)) var_label = symbol_map.byObject[id(var)] for con_label in symbols: stochastic_matrix_count += 1 f_mat_struct.write(matrix_struct_template % (con_label, var_label)) f_mat.write(matrix_template % (_no_negative_zero(value(var_coef)))) constraint_repn.linear_coefs = tuple(new_coefs) # # Stochastic Objective # stochastic_cost_count = 0 with open(os.path.join(output_directory, scenario.name+".cost.sc.struct"),'w') as f_obj_struct: with open(os.path.join(output_directory, scenario.name+".cost.sc"),'w') as f_obj: obj_struct_template = " %s\n" obj_template = " %.17g\n" f_obj.write("scen\n") if stochastic_objective is not None: if stochastic_objective.has_declarations: sorted_values = stochastic_objective.expand_entries() assert len(sorted_values) <= 1 if len(sorted_values) == 0: raise RuntimeError( "The %s annotation was declared " "with external entries but no active Objective " "objects were recovered from those entries." % (StochasticObjectiveAnnotation.__name__)) obj, (objective_variables, include_constant) = \ sorted_values[0] assert obj is objective_object else: objective_variables, include_constant = \ stochastic_objective.default if not objective_repn.is_linear(): raise RuntimeError("Only linear stochastic objectives are " "accepted for conversion to DDSIP format. " "Objective %s is not linear." % (objective_object.name)) if objective_variables is None: objective_variables = objective_repn.linear_vars stochastic_objective_label = symbol_map.byObject[id(objective_object)] # sort the variable list by the column ordering # so that we have deterministic output objective_variables = list(objective_variables) objective_variables.sort(key=lambda _v: column_order[_v]) assert (len(objective_variables) > 0) or include_constant new_coefs = list(objective_repn.linear_coefs) for var in objective_variables: assert isinstance(var, _VarData) var_coef = None for i, (_var, coef) in enumerate(zip(objective_repn.linear_vars, objective_repn.linear_coefs)): if _var is var: var_coef = coef # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. new_coefs[i] = _deterministic_check_value break if var_coef is None: raise RuntimeError( "The coefficient for variable %s has " "been marked as stochastic in objective %s using " "the %s annotation, but the variable does not appear" " in the canonical objective expression." % (var.name, objective_object.name, StochasticObjectiveAnnotation.__name__)) var_label = symbol_map.byObject[id(var)] stochastic_cost_count += 1 f_obj_struct.write(obj_struct_template % (var_label)) f_obj.write(obj_template % (_no_negative_zero(value(var_coef)))) objective_repn.linear_coefs = tuple(new_coefs) if include_constant: obj_constant = objective_repn.constant # We are going to rewrite the core problem file # with all stochastic values set to zero. This will # allow an easy test for missing user annotations. objective_repn.constant = _deterministic_check_value if obj_constant is None: obj_constant = 0.0 stochastic_cost_count += 1 f_obj_struct.write(obj_struct_template % ("ONE_VAR_CONSTANT")) f_obj.write(obj_template % (_no_negative_zero(obj_constant))) # # Write the deterministic part of the LP/MPS-file to its own # file for debugging purposes # reference_model_name = reference_model.name reference_model._name = "ZeroStochasticData" det_output_filename = os.path.join(output_directory, scenario.name+".lp.det") with WriterFactory("lp") as writer: output_fname, symbol_map = writer(reference_model, det_output_filename, lambda x: True, io_options) assert output_fname == det_output_filename reference_model._name = reference_model_name # reset bounds on any constraints that were modified for con, lower in iteritems(modified_constraint_lb): con._lower = as_numeric(lower) for con, upper in iteritems(modified_constraint_ub): con._upper = as_numeric(upper) return (firststage_variable_count, secondstage_variable_count, firststage_constraint_count, secondstage_constraint_count, stochastic_cost_count, stochastic_rhs_count, stochastic_matrix_count)