def sindy(n, p, a, thres):
    if n == 2:
        functions = [
            lambda x1, y1, x2, y2: (x2 - x1) / (
                (x2 - x1)**2 + (y2 - y1)**2)**(3 / 2), lambda x1, y1, x2, y2:
            (y2 - y1) / ((x2 - x1)**2 + (y2 - y1)**2)**(3 / 2)
        ]

        lib_custom = CustomLibrary(library_functions=functions)
        optimizer = ps.STLSQ(threshold=thres)

        t = np.arange(0, p.shape[0], 1)

        model = ps.SINDy(feature_library=lib_custom,
                         optimizer=optimizer,
                         feature_names=['x0', 'y0', 'x1', 'y1', 'x2', 'y2'])

        model.fit(p, t=t, x_dot=a)
        model.print(lhs=["x0''", "y0''", "x1''", "y1''"])
        coef = model.coefficients()
        print(coef)
        return coef
    elif n == 3:
        functions = [
            lambda x0, y0, x1, y1, x2, y2: (x1 - x0) / ((x1 - x0)**2 +
                                                        (y1 - y0)**2)**(3 / 2),
            lambda x0, y0, x1, y1, x2, y2: (y1 - y0) / ((x1 - x0)**2 +
                                                        (y1 - y0)**2)**(3 / 2),
            lambda x0, y0, x1, y1, x2, y2: (x2 - x0) / ((x2 - x0)**2 +
                                                        (y2 - y0)**2)**(3 / 2),
            lambda x0, y0, x1, y1, x2, y2: (y2 - y0) / ((x2 - x0)**2 +
                                                        (y2 - y0)**2)**(3 / 2),
            lambda x0, y0, x1, y1, x2, y2: (x2 - x1) / ((x2 - x1)**2 +
                                                        (y2 - y1)**2)**(3 / 2),
            lambda x0, y0, x1, y1, x2, y2: (y2 - y1) / ((x2 - x1)**2 +
                                                        (y2 - y1)**2)**(3 / 2)
        ]

        lib_custom = CustomLibrary(library_functions=functions)
        optimizer = ps.STLSQ(threshold=thres)

        t = np.arange(0, p.shape[0], 1)

        model = ps.SINDy(feature_library=lib_custom,
                         optimizer=optimizer,
                         feature_names=['x0', 'y0', 'x1', 'y1', 'x2', 'y2'])

        model.fit(p, t=t, x_dot=a)
        model.print(lhs=["x0''", "y0''", "x1''", "y1''", "x2''", "y2''"])
        coef = model.coefficients()
        print(coef)
        return coef
    else:
        print('Number of bodies not supported')
def test_form_custom_library():
    library_functions = [lambda x: x, lambda x: x ** 2, lambda x: 0 * x]
    function_names = [
        lambda s: str(s),
        lambda s: "{}^2".format(s),
        lambda s: "0",
    ]

    # Test with user-supplied function names
    CustomLibrary(library_functions=library_functions, function_names=function_names)

    # Test without user-supplied function names
    CustomLibrary(library_functions=library_functions, function_names=None)
Exemple #3
0
def data_custom_library():
    library_functions = [lambda x: x, lambda x: x ** 2, lambda x: 0 * x]
    function_names = [lambda s: str(s), lambda s: str(s) + "^2", lambda s: "0"]

    return CustomLibrary(
        library_functions=library_functions, function_names=function_names
    )
Exemple #4
0
def data_custom_library():
    library_functions = [
        lambda x: x,
        lambda x: x**2,
        lambda x: 0 * x,
        lambda x, y: x * y,
    ]
    function_names = [
        lambda s: str(s),
        lambda s: str(s) + "^2",
        lambda s: "0",
        lambda s, t: str(s) + " " + str(t),
    ]

    return CustomLibrary(library_functions=library_functions,
                         function_names=function_names)
def test_trapping_quadratic_library(params):
    x = np.random.standard_normal((10, 3))
    library_functions = [
        lambda x: x,
        lambda x, y: x * y,
        lambda x: x**2,
    ]
    library_function_names = [
        lambda x: str(x),
        lambda x, y: "{} * {}".format(x, y),
        lambda x: "{}^2".format(x),
    ]
    sindy_library = CustomLibrary(library_functions=library_functions,
                                  function_names=library_function_names)
    opt = TrappingSR3(**params)
    model = SINDy(optimizer=opt, feature_library=sindy_library)
    model.fit(x)
    assert opt.PL.shape == (3, 3, 3, 9)
    assert opt.PQ.shape == (3, 3, 3, 3, 9)
    check_is_fitted(model)
def test_bad_parameters():
    with pytest.raises(ValueError):
        PolynomialLibrary(degree=-1)
    with pytest.raises(ValueError):
        PolynomialLibrary(degree=1.5)
    with pytest.raises(ValueError):
        PolynomialLibrary(include_interaction=False, interaction_only=True)
    with pytest.raises(ValueError):
        FourierLibrary(n_frequencies=-1)
    with pytest.raises(ValueError):
        FourierLibrary(n_frequencies=-1)
    with pytest.raises(ValueError):
        FourierLibrary(n_frequencies=2.2)
    with pytest.raises(ValueError):
        FourierLibrary(include_sin=False, include_cos=False)
    with pytest.raises(ValueError):
        library_functions = [lambda x: x, lambda x: x**2, lambda x: 0 * x]
        function_names = [lambda s: str(s), lambda s: "{}^2".format(s)]
        CustomLibrary(library_functions=library_functions,
                      function_names=function_names)
def test_trapping_cubic_library(params):
    x = np.random.standard_normal((10, 3))
    library_functions = [
        lambda x: x,
        lambda x, y: x * y,
        lambda x: x**2,
        lambda x, y, z: x * y * z,
        lambda x, y: x**2 * y,
        lambda x: x**3,
    ]
    library_function_names = [
        lambda x: str(x),
        lambda x, y: "{} * {}".format(x, y),
        lambda x: "{}^2".format(x),
        lambda x, y, z: "{} * {} * {}".format(x, y, z),
        lambda x, y: "{}^2 * {}".format(x, y),
        lambda x: "{}^3".format(x),
    ]
    sindy_library = CustomLibrary(library_functions=library_functions,
                                  function_names=library_function_names)
    with pytest.raises(ValueError):
        opt = TrappingSR3(**params)
        model = SINDy(optimizer=opt, feature_library=sindy_library)
        model.fit(x)
def compressible_Framework(inner_prod, time, poly_order, threshold, r, tfac,
                           SR3Enhanced, make_3Dphaseplots):
    """
    Performs the entire vector_POD + SINDy framework for a given polynomial
    order and thresholding for the SINDy method.

    Parameters
    ----------
    inner_prod: 2D numpy array of floats
    (M = number of time samples, M = number of time samples)
        The scaled matrix of inner products X*X

    time: numpy array of floats
    (M = number of time samples)
        Time in microseconds

    poly_order: int
    (1)
        Highest polynomial order to use in the SINDy library

    threshold: float
    (1)
        Threshold in the SINDy algorithm, below which coefficients
        will be zeroed out.

    r: int
    (1)
        Truncation number of the SVD

    tfac: float
    (1)
        Fraction of the data to treat as training data

    SR3Enhanced: SINDy optimizer object
    (1)
        The SR3 optimizer with linear equality constraints

    make_3Dphaseplots: bool
    (1)
        Flag to make 3D phase plots or not

    Returns
    -------
    t_test: numpy array of floats
    (M_test = number of time samples in the test data region)
        Time in microseconds in the test data region

    x_true: 2D numpy array of floats
    (M_test = number of time samples in the test data region,
    r = truncation number of the SVD)
        The true evolution of the temporal BOD modes

    x_sim: 2D numpy array of floats
    (M_test = number of time samples in the test data region,
    r = truncation number of the SVD)
        The model evolution of the temporal BOD modes

    S2: 2D numpy array of floats
    (M = number of time samples, M = number of time samples)
        The singular value matrix

    """
    plt.clf()
    plt.close('all')
    M_train = int(len(time) * tfac)
    t_train = time[:M_train]
    t_test = time[M_train:]
    x, feature_names, S2, Vh, = vector_POD(inner_prod, time, r)
    print('Now fitting SINDy model')
    if poly_order == 1:
        library_functions = [lambda x: x]
        library_function_names = [lambda x: x]
    if poly_order == 2:
        library_functions = [lambda x: x, lambda x, y: x * y, lambda x: x**2]
        library_function_names = [
            lambda x: x, lambda x, y: x + y, lambda x: x + x
        ]
    if poly_order == 3:
        library_functions = [
            lambda x: x, lambda x, y: x * y, lambda x: x**2,
            lambda x, y, z: x * y * z, lambda x, y: x**2 * y,
            lambda x, y: x * y**2, lambda x: x**3
        ]
        library_function_names = [
            lambda x: x, lambda x, y: x + y, lambda x: x + x,
            lambda x, y, z: x + y + z, lambda x, y: x + x + y,
            lambda x, y: x + y + y, lambda x: x + x + x
        ]
    if poly_order == 4:
        library_functions = [
            lambda x: x, lambda x, y: x * y, lambda x: x**2,
            lambda x, y, z: x * y * z, lambda x, y: x**2 * y,
            lambda x, y: x * y**2, lambda x: x**3,
            lambda x, y, z, w: x * y * z * w, lambda x, y, z: x * y * z**2,
            lambda x, y: x**2 * y**2, lambda x, y: x**3 * y, lambda x: x**4
        ]
        library_function_names = [
            lambda x: x, lambda x, y: x + y, lambda x: x + x,
            lambda x, y, z: x + y + z, lambda x, y: x + x + y,
            lambda x, y: x + y + y, lambda x: x + x + x,
            lambda x, y, z, w: x + y + z + w, lambda x, y, z: x + y + z + z,
            lambda x, y: x + x + y + y, lambda x, y: x + x + x + y,
            lambda x: x + x + x + x
        ]
    sindy_library = CustomLibrary(library_functions=library_functions, \
        function_names=library_function_names)
    constraint_zeros = np.zeros(int(r * (r + 1) / 2))
    if poly_order == 1:
        constraint_matrix = np.zeros((int(r * (r + 1) / 2), r**2))
        for i in range(r):
            constraint_matrix[i, i * (r + 1)] = 1.0
        q = r
        for i in range(r):
            counter = 1
            for j in range(i + 1, r):
                constraint_matrix[q, i * r + j] = 1.0
                constraint_matrix[q, i * r + j + counter * (r - 1)] = 1.0
                counter = counter + 1
                q = q + 1
    else:
        if poly_order == 2:
            #constraint_zeros = np.zeros(6+int(r*(r+1)/2))
            #constraint_matrix = np.zeros((6+int(r*(r+1)/2),int(r*(r**2+3*r)/2)))
            constraint_matrix = np.zeros(
                (int(r * (r + 1) / 2), int(r * (r**2 + 3 * r) / 2)))
        if poly_order == 3:
            #constraint_matrix = np.zeros((int(r*(r+1)/2),int(r*(r**2+3*r)/2)+336))
            constraint_matrix = np.zeros(
                (int(r * (r + 1) / 2),
                 int(r * (r**2 + 3 * r) / 2) + 588))  # 30
        if poly_order == 4:
            constraint_matrix = np.zeros(
                (int(r * (r + 1) / 2), int(r * (r**2 + 3 * r) / 2) + 60))
        for i in range(r):
            constraint_matrix[i, i * (r + 1)] = 1.0
        q = r
        for i in range(r):
            counter = 1
            for j in range(i + 1, r):
                constraint_matrix[q, i * r + j] = 1.0
                constraint_matrix[q, i * r + j + counter * (r - 1)] = 1.0
                counter = counter + 1
                q = q + 1
    # linear_r4_mat or linear_r12_mat are initial guesses
    # for the optimization
    linear_r4_mat = np.zeros((r, r))
    linear_r4_mat[0, 1] = 0.091
    linear_r4_mat[1, 0] = -0.091
    linear_r4_mat[2, 3] = 0.182
    linear_r4_mat[3, 2] = -0.182
    linear_r4_mat[5, 4] = -3 * 0.091
    linear_r4_mat[4, 5] = 3 * 0.091
    #linear_r4_mat[8,7] = -4*0.091
    #linear_r4_mat[7,8] = 4*0.091
    #linear_r4_mat[6,7] = 4*0.091
    #linear_r4_mat[7,6] = -4*0.091
    linear_r12_mat = np.zeros((12, 90))
    linear_r12_mat[0, 1] = 0.089
    linear_r12_mat[1, 0] = -0.089
    linear_r12_mat[2, 3] = 0.172
    linear_r12_mat[3, 2] = -0.172
    linear_r12_mat[2, 5] = 0.03
    linear_r12_mat[5, 2] = -0.03
    linear_r12_mat[2, 6] = 0.022
    linear_r12_mat[6, 2] = -0.022
    linear_r12_mat[6, 4] = 0.022
    linear_r12_mat[4, 6] = 0.023
    linear_r12_mat[7, 5] = -0.023
    linear_r12_mat[5, 7] = -0.123
    linear_r12_mat[7, 5] = 0.123
    sindy_opt = SR3Enhanced(threshold=threshold, nu=1, max_iter=20000, \
        constraint_lhs=constraint_matrix,constraint_rhs=constraint_zeros, \
        tol=1e-6,thresholder='l0',initial_guess=linear_r4_mat)
    model = SINDy(optimizer=sindy_opt, \
        feature_library=sindy_library, \
        differentiation_method=FiniteDifference(drop_endpoints=True), \
        feature_names=feature_names)
    x_train = x[:M_train, :]
    x0_train = x[0, :]
    x_true = x[M_train:, :]
    x0_test = x[M_train, :]
    model.fit(x_train, t=t_train, unbias=False)
    t_cycle = np.linspace(time[M_train], time[M_train] * 1.3,
                          int(len(time) / 2.0))
    print(model.coefficients())
    x_sim,output = model.simulate(x0_test,t_test, \
        integrator=odeint,stop_condition=None,full_output=True, \
        rtol=1e-20,h0=1e-5) #h0=1e-20
    x_sim1,output = model.simulate(-0.4*np.ones(r),t_cycle, \
        integrator=odeint,stop_condition=None,full_output=True, \
        rtol=1e-20,h0=1e-5)
    x_sim2,output = model.simulate(0.15*np.ones(r),t_cycle, \
        integrator=odeint,stop_condition=None,full_output=True, \
        rtol=1e-20,h0=1e-5)
    x_dot = model.differentiate(x, t=time)
    x_dot_train = model.predict(x_train)
    x_dot_sim = model.predict(x_true)
    print('Model score: %f' % model.score(x, t=time))
    make_evo_plots(x_dot,x_dot_train, \
        x_dot_sim,x_true,x_sim,time,t_train,t_test)
    make_table(model, feature_names)
    # Makes 3D phase space plots
    if make_3Dphaseplots:
        make_3d_plots(x_true, x_sim, t_test, 'sim', 0, 1, 2)
        make_3d_plots(x_true, x_sim, t_test, 'sim', 0, 1, 3)
        make_3d_plots(x_true, x_sim, t_test, 'sim', 0, 1, 4)
        make_3d_plots(x_true, x_sim, t_test, 'sim', 0, 1, 5)
        make_3d_plots(x_true, x_sim, t_test, 'sim', 0, 1, 6)
        make_3d_plots(x_true, x_sim, t_test, 'sim', 3, 4, 5)
        make_3d_plots(x_true, x_sim, t_test, 'sim', 4, 5, 6)
        make_3d_plots(x_sim1, x_sim2, t_cycle, 'limitcycle')
    for i in range(r):
        x_sim[:, i] = x_sim[:, i] * sum(np.amax(abs(Vh), axis=1)[0:r])
        x_true[:, i] = x_true[:, i] * sum(np.amax(abs(Vh), axis=1)[0:r])
    return t_test, x_true, x_sim, S2
Exemple #9
0
# In[2]:


import pysindy as ps
import numpy as np
import matplotlib.pyplot as plt
from pysindy.feature_library import ConcatLibrary, CustomLibrary

x = np.load('t_earth_pos.npy')
v = np.load('t_earth_vel.npy')
a = np.load('t_earth_acc.npy')

t = np.arange(0, x.shape[0], 1) # timesteps in days

functions = [lambda x,y : x/(x**2+y**2)**(3/2), lambda x,y : y/(x**2+y**2)**(3/2)] # The specific functions we're looking for
lib_custom = CustomLibrary(library_functions=functions) # defines the custom library we want to use


# ## Model identification
# 
# The following cell includes the model optimization and model identification. 

# In[6]:


optimizer = ps.STLSQ(threshold=1)

model = ps.SINDy( 
        feature_library = lib_custom, 
        optimizer=optimizer,
        feature_names = ['x', 'y'])