def sindy(n, p, a, thres): if n == 2: functions = [ lambda x1, y1, x2, y2: (x2 - x1) / ( (x2 - x1)**2 + (y2 - y1)**2)**(3 / 2), lambda x1, y1, x2, y2: (y2 - y1) / ((x2 - x1)**2 + (y2 - y1)**2)**(3 / 2) ] lib_custom = CustomLibrary(library_functions=functions) optimizer = ps.STLSQ(threshold=thres) t = np.arange(0, p.shape[0], 1) model = ps.SINDy(feature_library=lib_custom, optimizer=optimizer, feature_names=['x0', 'y0', 'x1', 'y1', 'x2', 'y2']) model.fit(p, t=t, x_dot=a) model.print(lhs=["x0''", "y0''", "x1''", "y1''"]) coef = model.coefficients() print(coef) return coef elif n == 3: functions = [ lambda x0, y0, x1, y1, x2, y2: (x1 - x0) / ((x1 - x0)**2 + (y1 - y0)**2)**(3 / 2), lambda x0, y0, x1, y1, x2, y2: (y1 - y0) / ((x1 - x0)**2 + (y1 - y0)**2)**(3 / 2), lambda x0, y0, x1, y1, x2, y2: (x2 - x0) / ((x2 - x0)**2 + (y2 - y0)**2)**(3 / 2), lambda x0, y0, x1, y1, x2, y2: (y2 - y0) / ((x2 - x0)**2 + (y2 - y0)**2)**(3 / 2), lambda x0, y0, x1, y1, x2, y2: (x2 - x1) / ((x2 - x1)**2 + (y2 - y1)**2)**(3 / 2), lambda x0, y0, x1, y1, x2, y2: (y2 - y1) / ((x2 - x1)**2 + (y2 - y1)**2)**(3 / 2) ] lib_custom = CustomLibrary(library_functions=functions) optimizer = ps.STLSQ(threshold=thres) t = np.arange(0, p.shape[0], 1) model = ps.SINDy(feature_library=lib_custom, optimizer=optimizer, feature_names=['x0', 'y0', 'x1', 'y1', 'x2', 'y2']) model.fit(p, t=t, x_dot=a) model.print(lhs=["x0''", "y0''", "x1''", "y1''", "x2''", "y2''"]) coef = model.coefficients() print(coef) return coef else: print('Number of bodies not supported')
def test_form_custom_library(): library_functions = [lambda x: x, lambda x: x ** 2, lambda x: 0 * x] function_names = [ lambda s: str(s), lambda s: "{}^2".format(s), lambda s: "0", ] # Test with user-supplied function names CustomLibrary(library_functions=library_functions, function_names=function_names) # Test without user-supplied function names CustomLibrary(library_functions=library_functions, function_names=None)
def data_custom_library(): library_functions = [lambda x: x, lambda x: x ** 2, lambda x: 0 * x] function_names = [lambda s: str(s), lambda s: str(s) + "^2", lambda s: "0"] return CustomLibrary( library_functions=library_functions, function_names=function_names )
def data_custom_library(): library_functions = [ lambda x: x, lambda x: x**2, lambda x: 0 * x, lambda x, y: x * y, ] function_names = [ lambda s: str(s), lambda s: str(s) + "^2", lambda s: "0", lambda s, t: str(s) + " " + str(t), ] return CustomLibrary(library_functions=library_functions, function_names=function_names)
def test_trapping_quadratic_library(params): x = np.random.standard_normal((10, 3)) library_functions = [ lambda x: x, lambda x, y: x * y, lambda x: x**2, ] library_function_names = [ lambda x: str(x), lambda x, y: "{} * {}".format(x, y), lambda x: "{}^2".format(x), ] sindy_library = CustomLibrary(library_functions=library_functions, function_names=library_function_names) opt = TrappingSR3(**params) model = SINDy(optimizer=opt, feature_library=sindy_library) model.fit(x) assert opt.PL.shape == (3, 3, 3, 9) assert opt.PQ.shape == (3, 3, 3, 3, 9) check_is_fitted(model)
def test_bad_parameters(): with pytest.raises(ValueError): PolynomialLibrary(degree=-1) with pytest.raises(ValueError): PolynomialLibrary(degree=1.5) with pytest.raises(ValueError): PolynomialLibrary(include_interaction=False, interaction_only=True) with pytest.raises(ValueError): FourierLibrary(n_frequencies=-1) with pytest.raises(ValueError): FourierLibrary(n_frequencies=-1) with pytest.raises(ValueError): FourierLibrary(n_frequencies=2.2) with pytest.raises(ValueError): FourierLibrary(include_sin=False, include_cos=False) with pytest.raises(ValueError): library_functions = [lambda x: x, lambda x: x**2, lambda x: 0 * x] function_names = [lambda s: str(s), lambda s: "{}^2".format(s)] CustomLibrary(library_functions=library_functions, function_names=function_names)
def test_trapping_cubic_library(params): x = np.random.standard_normal((10, 3)) library_functions = [ lambda x: x, lambda x, y: x * y, lambda x: x**2, lambda x, y, z: x * y * z, lambda x, y: x**2 * y, lambda x: x**3, ] library_function_names = [ lambda x: str(x), lambda x, y: "{} * {}".format(x, y), lambda x: "{}^2".format(x), lambda x, y, z: "{} * {} * {}".format(x, y, z), lambda x, y: "{}^2 * {}".format(x, y), lambda x: "{}^3".format(x), ] sindy_library = CustomLibrary(library_functions=library_functions, function_names=library_function_names) with pytest.raises(ValueError): opt = TrappingSR3(**params) model = SINDy(optimizer=opt, feature_library=sindy_library) model.fit(x)
def compressible_Framework(inner_prod, time, poly_order, threshold, r, tfac, SR3Enhanced, make_3Dphaseplots): """ Performs the entire vector_POD + SINDy framework for a given polynomial order and thresholding for the SINDy method. Parameters ---------- inner_prod: 2D numpy array of floats (M = number of time samples, M = number of time samples) The scaled matrix of inner products X*X time: numpy array of floats (M = number of time samples) Time in microseconds poly_order: int (1) Highest polynomial order to use in the SINDy library threshold: float (1) Threshold in the SINDy algorithm, below which coefficients will be zeroed out. r: int (1) Truncation number of the SVD tfac: float (1) Fraction of the data to treat as training data SR3Enhanced: SINDy optimizer object (1) The SR3 optimizer with linear equality constraints make_3Dphaseplots: bool (1) Flag to make 3D phase plots or not Returns ------- t_test: numpy array of floats (M_test = number of time samples in the test data region) Time in microseconds in the test data region x_true: 2D numpy array of floats (M_test = number of time samples in the test data region, r = truncation number of the SVD) The true evolution of the temporal BOD modes x_sim: 2D numpy array of floats (M_test = number of time samples in the test data region, r = truncation number of the SVD) The model evolution of the temporal BOD modes S2: 2D numpy array of floats (M = number of time samples, M = number of time samples) The singular value matrix """ plt.clf() plt.close('all') M_train = int(len(time) * tfac) t_train = time[:M_train] t_test = time[M_train:] x, feature_names, S2, Vh, = vector_POD(inner_prod, time, r) print('Now fitting SINDy model') if poly_order == 1: library_functions = [lambda x: x] library_function_names = [lambda x: x] if poly_order == 2: library_functions = [lambda x: x, lambda x, y: x * y, lambda x: x**2] library_function_names = [ lambda x: x, lambda x, y: x + y, lambda x: x + x ] if poly_order == 3: library_functions = [ lambda x: x, lambda x, y: x * y, lambda x: x**2, lambda x, y, z: x * y * z, lambda x, y: x**2 * y, lambda x, y: x * y**2, lambda x: x**3 ] library_function_names = [ lambda x: x, lambda x, y: x + y, lambda x: x + x, lambda x, y, z: x + y + z, lambda x, y: x + x + y, lambda x, y: x + y + y, lambda x: x + x + x ] if poly_order == 4: library_functions = [ lambda x: x, lambda x, y: x * y, lambda x: x**2, lambda x, y, z: x * y * z, lambda x, y: x**2 * y, lambda x, y: x * y**2, lambda x: x**3, lambda x, y, z, w: x * y * z * w, lambda x, y, z: x * y * z**2, lambda x, y: x**2 * y**2, lambda x, y: x**3 * y, lambda x: x**4 ] library_function_names = [ lambda x: x, lambda x, y: x + y, lambda x: x + x, lambda x, y, z: x + y + z, lambda x, y: x + x + y, lambda x, y: x + y + y, lambda x: x + x + x, lambda x, y, z, w: x + y + z + w, lambda x, y, z: x + y + z + z, lambda x, y: x + x + y + y, lambda x, y: x + x + x + y, lambda x: x + x + x + x ] sindy_library = CustomLibrary(library_functions=library_functions, \ function_names=library_function_names) constraint_zeros = np.zeros(int(r * (r + 1) / 2)) if poly_order == 1: constraint_matrix = np.zeros((int(r * (r + 1) / 2), r**2)) for i in range(r): constraint_matrix[i, i * (r + 1)] = 1.0 q = r for i in range(r): counter = 1 for j in range(i + 1, r): constraint_matrix[q, i * r + j] = 1.0 constraint_matrix[q, i * r + j + counter * (r - 1)] = 1.0 counter = counter + 1 q = q + 1 else: if poly_order == 2: #constraint_zeros = np.zeros(6+int(r*(r+1)/2)) #constraint_matrix = np.zeros((6+int(r*(r+1)/2),int(r*(r**2+3*r)/2))) constraint_matrix = np.zeros( (int(r * (r + 1) / 2), int(r * (r**2 + 3 * r) / 2))) if poly_order == 3: #constraint_matrix = np.zeros((int(r*(r+1)/2),int(r*(r**2+3*r)/2)+336)) constraint_matrix = np.zeros( (int(r * (r + 1) / 2), int(r * (r**2 + 3 * r) / 2) + 588)) # 30 if poly_order == 4: constraint_matrix = np.zeros( (int(r * (r + 1) / 2), int(r * (r**2 + 3 * r) / 2) + 60)) for i in range(r): constraint_matrix[i, i * (r + 1)] = 1.0 q = r for i in range(r): counter = 1 for j in range(i + 1, r): constraint_matrix[q, i * r + j] = 1.0 constraint_matrix[q, i * r + j + counter * (r - 1)] = 1.0 counter = counter + 1 q = q + 1 # linear_r4_mat or linear_r12_mat are initial guesses # for the optimization linear_r4_mat = np.zeros((r, r)) linear_r4_mat[0, 1] = 0.091 linear_r4_mat[1, 0] = -0.091 linear_r4_mat[2, 3] = 0.182 linear_r4_mat[3, 2] = -0.182 linear_r4_mat[5, 4] = -3 * 0.091 linear_r4_mat[4, 5] = 3 * 0.091 #linear_r4_mat[8,7] = -4*0.091 #linear_r4_mat[7,8] = 4*0.091 #linear_r4_mat[6,7] = 4*0.091 #linear_r4_mat[7,6] = -4*0.091 linear_r12_mat = np.zeros((12, 90)) linear_r12_mat[0, 1] = 0.089 linear_r12_mat[1, 0] = -0.089 linear_r12_mat[2, 3] = 0.172 linear_r12_mat[3, 2] = -0.172 linear_r12_mat[2, 5] = 0.03 linear_r12_mat[5, 2] = -0.03 linear_r12_mat[2, 6] = 0.022 linear_r12_mat[6, 2] = -0.022 linear_r12_mat[6, 4] = 0.022 linear_r12_mat[4, 6] = 0.023 linear_r12_mat[7, 5] = -0.023 linear_r12_mat[5, 7] = -0.123 linear_r12_mat[7, 5] = 0.123 sindy_opt = SR3Enhanced(threshold=threshold, nu=1, max_iter=20000, \ constraint_lhs=constraint_matrix,constraint_rhs=constraint_zeros, \ tol=1e-6,thresholder='l0',initial_guess=linear_r4_mat) model = SINDy(optimizer=sindy_opt, \ feature_library=sindy_library, \ differentiation_method=FiniteDifference(drop_endpoints=True), \ feature_names=feature_names) x_train = x[:M_train, :] x0_train = x[0, :] x_true = x[M_train:, :] x0_test = x[M_train, :] model.fit(x_train, t=t_train, unbias=False) t_cycle = np.linspace(time[M_train], time[M_train] * 1.3, int(len(time) / 2.0)) print(model.coefficients()) x_sim,output = model.simulate(x0_test,t_test, \ integrator=odeint,stop_condition=None,full_output=True, \ rtol=1e-20,h0=1e-5) #h0=1e-20 x_sim1,output = model.simulate(-0.4*np.ones(r),t_cycle, \ integrator=odeint,stop_condition=None,full_output=True, \ rtol=1e-20,h0=1e-5) x_sim2,output = model.simulate(0.15*np.ones(r),t_cycle, \ integrator=odeint,stop_condition=None,full_output=True, \ rtol=1e-20,h0=1e-5) x_dot = model.differentiate(x, t=time) x_dot_train = model.predict(x_train) x_dot_sim = model.predict(x_true) print('Model score: %f' % model.score(x, t=time)) make_evo_plots(x_dot,x_dot_train, \ x_dot_sim,x_true,x_sim,time,t_train,t_test) make_table(model, feature_names) # Makes 3D phase space plots if make_3Dphaseplots: make_3d_plots(x_true, x_sim, t_test, 'sim', 0, 1, 2) make_3d_plots(x_true, x_sim, t_test, 'sim', 0, 1, 3) make_3d_plots(x_true, x_sim, t_test, 'sim', 0, 1, 4) make_3d_plots(x_true, x_sim, t_test, 'sim', 0, 1, 5) make_3d_plots(x_true, x_sim, t_test, 'sim', 0, 1, 6) make_3d_plots(x_true, x_sim, t_test, 'sim', 3, 4, 5) make_3d_plots(x_true, x_sim, t_test, 'sim', 4, 5, 6) make_3d_plots(x_sim1, x_sim2, t_cycle, 'limitcycle') for i in range(r): x_sim[:, i] = x_sim[:, i] * sum(np.amax(abs(Vh), axis=1)[0:r]) x_true[:, i] = x_true[:, i] * sum(np.amax(abs(Vh), axis=1)[0:r]) return t_test, x_true, x_sim, S2
# In[2]: import pysindy as ps import numpy as np import matplotlib.pyplot as plt from pysindy.feature_library import ConcatLibrary, CustomLibrary x = np.load('t_earth_pos.npy') v = np.load('t_earth_vel.npy') a = np.load('t_earth_acc.npy') t = np.arange(0, x.shape[0], 1) # timesteps in days functions = [lambda x,y : x/(x**2+y**2)**(3/2), lambda x,y : y/(x**2+y**2)**(3/2)] # The specific functions we're looking for lib_custom = CustomLibrary(library_functions=functions) # defines the custom library we want to use # ## Model identification # # The following cell includes the model optimization and model identification. # In[6]: optimizer = ps.STLSQ(threshold=1) model = ps.SINDy( feature_library = lib_custom, optimizer=optimizer, feature_names = ['x', 'y'])