'AUDUSD'],
                fields = ['close'],                             # which fields to download
                vendor_tickers = ['EURUSD BGN Curncy',          # ticker (Bloomberg)
                                  'GBPUSD BGN Curncy',
                                  'AUDUSD BGN Curncy'],
                vendor_fields = ['PX_LAST'],                    # which Bloomberg fields to download
                cache_algo = 'internet_load_return')                # how to return data

        ltsf = LightTimeSeriesFactory()

        df = None
        df = ltsf.harvest_time_series(time_series_request)

        tsc = TimeSeriesCalcs()
        df = tsc.calculate_returns(df)
        df = tsc.rolling_corr(df['EURUSD.close'], 20, data_frame2 = df[['GBPUSD.close', 'AUDUSD.close']])

        gp = GraphProperties()
        gp.title = "1M FX rolling correlations"
        gp.scale_factor = 3

        pf = PlotFactory()
        pf.plot_line_graph(df, adapter = 'pythalesians', gp = gp)

    ###### download daily data from Bloomberg for AUD/JPY, NZD/JPY spot with S&P500, then calculate correlation
    if True:
        time_series_request = TimeSeriesRequest(
                start_date="01 Jan 2015",  # start date
                finish_date=datetime.date.today(),  # finish date
                freq='daily',  # daily data
                data_source='bloomberg',  # use Bloomberg as data source
Exemple #2
0
                'EURUSD BGN Curncy',  # ticker (Bloomberg)
                'GBPUSD BGN Curncy',
                'AUDUSD BGN Curncy'
            ],
            vendor_fields=['PX_LAST'],  # which Bloomberg fields to download
            cache_algo='internet_load_return')  # how to return data

        ltsf = LightTimeSeriesFactory()

        df = None
        df = ltsf.harvest_time_series(time_series_request)

        tsc = TimeSeriesCalcs()
        df = tsc.calculate_returns(df)
        df = tsc.rolling_corr(df['EURUSD.close'],
                              20,
                              data_frame2=df[['GBPUSD.close', 'AUDUSD.close']])

        gp = GraphProperties()
        gp.title = "1M FX rolling correlations"
        gp.scale_factor = 3

        pf = PlotFactory()
        pf.plot_line_graph(df, adapter='pythalesians', gp=gp)

    ###### download daily data from Bloomberg for AUD/JPY, NZD/JPY spot with S&P500, then calculate correlation
    if True:
        time_series_request = TimeSeriesRequest(
            start_date="01 Jan 2015",  # start date
            finish_date=datetime.date.today(),  # finish date
            freq='daily',  # daily data
Exemple #3
0
        time_series_request = TimeSeriesRequest(
                start_date = "01 Jan 2014",                     # start date
                finish_date = datetime.date.today(),            # finish date
                freq = 'daily',                                 # daily data
                data_source = 'bloomberg',                      # use Bloomberg as data source
                tickers = ['EURUSD',                            # ticker (Thalesians)
                           'GBPUSD',
                           'AUDUSD'],
                fields = ['close'],                             # which fields to download
                vendor_tickers = ['EURUSD BGN Curncy',          # ticker (Bloomberg)
                                  'GBPUSD BGN Curncy',
                                  'AUDUSD BGN Curncy'],
                vendor_fields = ['PX_LAST'],                    # which Bloomberg fields to download
                cache_algo = 'internet_load_return')                # how to return data

        ltsf = LightTimeSeriesFactory()

        df = None
        df = ltsf.harvest_time_series(time_series_request)

        tsc = TimeSeriesCalcs()
        df = tsc.calculate_returns(df)
        df = tsc.rolling_corr(df['EURUSD.close'], 20, data_frame2 = df[['GBPUSD.close', 'AUDUSD.close']])

        gp = GraphProperties()
        gp.title = "1M FX rolling correlations"

        pf = PlotFactory()
        pf.plot_line_graph(df, adapter = 'pythalesians', gp = gp)