def plot_with_pythreejs(cloud, **kwargs):
    if ipywidgets is None:
        raise ImportError(
            "ipywidgets is needed for plotting with pythreejs backend.")
    if pythreejs is None:
        raise ImportError(
            "pythreejs is needed for plotting with pythreejs backend.")
    if display is None:
        raise ImportError(
            "IPython is needed for plotting with pythreejs backend.")

    colors = get_colors(cloud, kwargs["use_as_color"], kwargs["cmap"])

    ptp = cloud.xyz.ptp()

    children = []
    widgets = []

    if kwargs["mesh"]:
        raise NotImplementedError(
            "Plotting mesh geometry with pythreejs backend is not supported yet."
        )

    if kwargs["polylines"]:
        lines = get_polylines_pythreejs(kwargs["polylines"])
        children.extend(lines)

    points = get_pointcloud_pythreejs(cloud.xyz, colors)
    children.append(points)

    initial_point_size = kwargs["initial_point_size"] or ptp / 10
    size = ipywidgets.FloatSlider(value=initial_point_size,
                                  min=0.0,
                                  max=initial_point_size * 10,
                                  step=initial_point_size / 100)
    ipywidgets.jslink((size, 'value'), (points.material, 'size'))
    widgets.append(ipywidgets.Label('Point size:'))
    widgets.append(size)

    if kwargs["scene"]:
        kwargs["scene"].children = [points] + list(kwargs["scene"].children)
    else:
        camera = get_camera_pythreejs(cloud.centroid, cloud.xyz,
                                      kwargs["width"], kwargs["height"])
        children.append(camera)

        controls = [get_orbit_controls(camera, cloud.centroid)]

        scene = pythreejs.Scene(children=children)

        renderer = pythreejs.Renderer(scene=scene,
                                      camera=camera,
                                      controls=controls,
                                      width=kwargs["width"],
                                      height=kwargs["height"])

        display(renderer)

        color = ipywidgets.ColorPicker(value=kwargs["background"])
        ipywidgets.jslink((color, 'value'), (scene, 'background'))
        widgets.append(ipywidgets.Label('Background color:'))
        widgets.append(color)

    display(ipywidgets.HBox(children=widgets))

    return scene if kwargs["return_scene"] else None
Exemple #2
0
def visualise(mesh,
              geometric_field,
              number_of_dimensions,
              xi_interpolation,
              dependent_field=None,
              variable=None,
              mechanics_animation=False,
              colour_map_dependent_component_number=None,
              cmap='gist_rainbow',
              resolution=1,
              node_labels=False):

    if number_of_dimensions != 3:
        print(
            'Warning: Only visualisation of 3D meshes is currently supported.')
        return

    if xi_interpolation != [1, 1, 1]:
        print(
            'Warning: Only visualisation of 3D elements with linear Lagrange \
            interpolation along all coordinate directions is currently \
            supported.')
        return

    view_width = 600
    view_height = 600

    debug = False
    if debug:
        vertices = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0],
                    [1, 0, 1], [1, 1, 0], [1, 1, 1]]

        faces = [[0, 1, 3], [0, 3, 2], [0, 2, 4], [2, 6, 4], [0, 4, 1],
                 [1, 4, 5], [2, 3, 6], [3, 7, 6], [1, 5, 3], [3, 5, 7],
                 [4, 6, 5], [5, 6, 7]]

        vertexcolors = [
            '#000000', '#0000ff', '#00ff00', '#ff0000', '#00ffff', '#ff00ff',
            '#ffff00', '#ffffff'
        ]
    else:
        # Get mesh topology information.
        num_nodes = mesh_tools.num_nodes_get(mesh, mesh_component=1)
        node_nums = list(range(1, num_nodes + 1))
        num_elements, element_nums = mesh_tools.num_element_get(
            mesh, mesh_component=1)

        # Convert geometric field to a morphic mesh and export to json
        mesh = mesh_tools.OpenCMISS_to_morphic(mesh,
                                               geometric_field,
                                               element_nums,
                                               node_nums,
                                               dimension=3,
                                               interpolation='linear')
        vertices, faces, _, xi_element_nums, xis = get_faces(
            mesh, res=resolution, exterior_only=True, include_xi=True)

        vertices = vertices.tolist()
        faces = faces.tolist()

    centroid = np.mean(vertices, axis=0)
    max_positions = np.max(vertices, axis=0)
    min_positions = np.min(vertices, axis=0)
    range_positions = max_positions - min_positions

    if (dependent_field is not None) and (colour_map_dependent_component_number
                                          is not None):

        solution = np.zeros(xis.shape[0])
        for idx, (xi, xi_element_num) in enumerate(zip(xis, xi_element_nums)):
            solution[idx] = mesh_tools.interpolate_opencmiss_field_xi(
                dependent_field,
                xi,
                element_ids=[xi_element_num],
                dimension=3,
                deriv=1)[colour_map_dependent_component_number - 1]

        minima = min(solution)
        maxima = max(solution)

        import matplotlib
        norm = matplotlib.colors.Normalize(vmin=minima, vmax=maxima, clip=True)
        mapper = cm.ScalarMappable(norm=norm, cmap=cm.get_cmap(name=cmap))

        vertex_colors = np.zeros((len(vertices), 3), dtype='float32')
        for idx, v in enumerate(solution):
            vertex_colors[idx, :] = mapper.to_rgba(v, alpha=None)[:3]
        # else:
        #     raise ValueError('Visualisation not supported.')
    else:
        vertex_colors = np.tile(np.array([0.5, 0.5, 0.5], dtype='float32'),
                                (len(vertices), 1))

    geometry = pjs.BufferGeometry(attributes=dict(
        position=pjs.BufferAttribute(vertices, normalized=False),
        index=pjs.BufferAttribute(
            np.array(faces).astype(dtype='uint16').ravel(), normalized=False),
        color=pjs.BufferAttribute(vertex_colors),
    ))

    if mechanics_animation:
        deformed_vertices = np.zeros((xis.shape[0], 3), dtype='float32')
        for idx, (xi, xi_element_num) in enumerate(zip(xis, xi_element_nums)):
            deformed_vertices[idx, :] = \
            mesh_tools.interpolate_opencmiss_field_xi(
                dependent_field, xi, element_ids=[xi_element_num],
                dimension=3,
                deriv=1)[0][:3]
        geometry.morphAttributes = {
            'position': [
                pjs.BufferAttribute(deformed_vertices),
            ]
        }

        geometry.exec_three_obj_method('computeFaceNormals')
        geometry.exec_three_obj_method('computeVertexNormals')

        surf1 = pjs.Mesh(geometry,
                         pjs.MeshPhongMaterial(color='#ff3333',
                                               shininess=150,
                                               morphTargets=True,
                                               side='FrontSide'),
                         name='A')
        surf2 = pjs.Mesh(geometry,
                         pjs.MeshPhongMaterial(color='#ff3333',
                                               shininess=150,
                                               morphTargets=True,
                                               side='BackSide'),
                         name='B')
        surf = pjs.Group(children=[surf1, surf2])

        # camera = pjs.PerspectiveCamera(
        #     fov=20, position=[range_positions[0] * 10,
        #                       range_positions[1] * 10,
        #                       range_positions[2] * 10],
        #     width=view_width,
        #     height=view_height, near=1,
        #     far=max(range_positions) * 10)

        camera = pjs.PerspectiveCamera(position=[
            range_positions[0] * 3, range_positions[1] * 3,
            range_positions[2] * 3
        ],
                                       aspect=view_width / view_height)
        camera.up = [0, 0, 1]
        camera.lookAt(centroid.tolist())

        scene3 = pjs.Scene(children=[
            surf1, surf2, camera,
            pjs.DirectionalLight(position=[3, 5, 1], intensity=0.6),
            pjs.AmbientLight(intensity=0.5)
        ])
        axes = pjs.AxesHelper(size=range_positions[0] * 2)
        scene3.add(axes)

        A_track = pjs.NumberKeyframeTrack(
            name='scene/A.morphTargetInfluences[0]',
            times=[0, 3],
            values=[0, 1])
        B_track = pjs.NumberKeyframeTrack(
            name='scene/B.morphTargetInfluences[0]',
            times=[0, 3],
            values=[0, 1])
        pill_clip = pjs.AnimationClip(tracks=[A_track, B_track])
        pill_action = pjs.AnimationAction(pjs.AnimationMixer(scene3),
                                          pill_clip, scene3)

        renderer3 = pjs.Renderer(
            camera=camera,
            scene=scene3,
            controls=[pjs.OrbitControls(controlling=camera)],
            width=view_width,
            height=view_height)

        display(renderer3, pill_action)

    else:
        geometry.exec_three_obj_method('computeFaceNormals')
        geometry.exec_three_obj_method('computeVertexNormals')

        surf1 = pjs.Mesh(geometry=geometry,
                         material=pjs.MeshLambertMaterial(
                             vertexColors='VertexColors',
                             side='FrontSide'))  # Center the cube.
        surf2 = pjs.Mesh(geometry=geometry,
                         material=pjs.MeshLambertMaterial(
                             vertexColors='VertexColors',
                             side='BackSide'))  # Center the cube.
        surf = pjs.Group(children=[surf1, surf2])

        camera = pjs.PerspectiveCamera(position=[
            range_positions[0] * 3, range_positions[1] * 3,
            range_positions[2] * 3
        ],
                                       aspect=view_width / view_height)

        camera.up = [0, 0, 1]
        camera.lookAt(centroid.tolist())

        # if perspective:
        #     camera.mode = 'perspective'
        # else:
        #     camera.mode = 'orthographic'

        lights = [
            pjs.DirectionalLight(position=[
                range_positions[0] * 16, range_positions[1] * 12,
                range_positions[2] * 17
            ],
                                 intensity=0.5),
            pjs.AmbientLight(intensity=0.8),
        ]
        orbit = pjs.OrbitControls(controlling=camera,
                                  screenSpacePanning=True,
                                  target=centroid.tolist())

        scene = pjs.Scene()
        axes = pjs.AxesHelper(size=max(range_positions) * 2)
        scene.add(axes)
        scene.add(surf1)
        scene.add(surf2)
        scene.add(lights)

        if node_labels:
            # Add text labels for each mesh node.
            v, ids = mesh.get_node_ids(group='_default')
            for idx, v in enumerate(v):
                text = make_text(str(ids[idx]), position=(v[0], v[1], v[2]))
                scene.add(text)

        # Add text for axes labels.
        x_axis_label = make_text('x',
                                 position=(max(range_positions) * 2, 0, 0))
        y_axis_label = make_text('y',
                                 position=(0, max(range_positions) * 2, 0))
        z_axis_label = make_text('z',
                                 position=(0, 0, max(range_positions) * 2))
        scene.add(x_axis_label)
        scene.add(y_axis_label)
        scene.add(z_axis_label)

        renderer = pjs.Renderer(scene=scene,
                                camera=camera,
                                controls=[orbit],
                                width=view_width,
                                height=view_height)
        camera.zoom = 1
        display(renderer)

    return vertices, faces
Exemple #3
0
def Plot3D(S,
           size=(800, 200),
           center=(0, 0, 0),
           rot=[(pi / 3., pi / 6., 0)],
           scale=1):
    """Function to create 3D interactive visualization widgets in a jupyter 
    notebook

    Args:
        S: (:class:`~pyoptools.raytrace.system.System`,
            :class:`~pyoptools.raytrace.component.Component` or
            :class:`~pyoptools.raytrace.component.Component`) Object to plot
        size: (Tuple(float,float)) Field of view in X and Y for the window
            shown in the notebook.
        center: (Tuple(float,float,float) Coordinate of the center of the
            visualization window given in the coordinate system of the object
            to plot.
        rot:   List of tuples. Each tuple describe an (Rx, Ry, Rz) rotation and
               are applied in order to generate the first view of the window. 
        scale: (float)  Scale factor applied to the rendered window

    Returns:
        pyjs renderer needed to show the image in the jupiter notebook.

    """
    width, height = size

    light = py3js.DirectionalLight(color='#ffffff',
                                   intensity=.7,
                                   position=[0, 1000, 0])
    alight = py3js.AmbientLight(color='#777777', )

    # Set up a scene and render it:
    #cam = py3js.PerspectiveCamera(position=[0, 0, 500], fov=70, children=[light], aspect=width / height)

    pos = array((0, 0, 500))

    for r in rot:
        pos = dot(rot_z(r[2]), pos)
        pos = dot(rot_y(r[1]), pos)
        pos = dot(rot_x(r[0]), pos)

    cam = py3js.OrthographicCamera(-width / 2 * scale,
                                   width / 2 * scale,
                                   height / 2 * scale,
                                   -height / 2 * scale,
                                   children=[light],
                                   position=list(pos),
                                   zoom=scale)

    if isinstance(S, System):
        c = sys2mesh(S)
    elif isinstance(S, Component):
        c = comp2mesh(S, (0, 0, 0), (0, 0, 0))
    else:
        c = surf2mesh(S, (0, 0, 0), (0, 0, 0))

    scene = py3js.Scene(children=[c, alight, cam], background="#000000")
    oc = py3js.OrbitControls(controlling=cam)
    oc.target = center
    renderer = py3js.Renderer(camera=cam,
                              background='black',
                              background_opacity=1,
                              scene=scene,
                              controls=[oc],
                              width=width * scale,
                              height=height * scale)

    return (renderer)
    def __init__(self,
                 obj,
                 width=512,
                 height=512,
                 textureMap=None,
                 scalarField=None,
                 vectorField=None,
                 superView=None,
                 transparent=False):
        # Note: subclass's constructor should define
        # self.MeshConstructor and self.isLineMesh, which will
        # determine how the geometry is interpreted.
        if (not hasattr(self, "isLineMesh")): self.isLineMesh = False
        if (not hasattr(self, "isPointCloud")): self.isPointCloud = False
        if (self.MeshConstructor is None):
            self.MeshConstructor = pythreejs.Mesh

        light = pythreejs.PointLight(color='white', position=[0, 0, 5])
        light.intensity = 0.6
        self.cam = pythreejs.PerspectiveCamera(position=[0, 0, 5],
                                               up=[0, 1, 0],
                                               aspect=width / height,
                                               children=[light])

        self.avoidRedrawFlicker = False

        self.objects = pythreejs.Group()
        self.meshes = pythreejs.Group()
        self.ghostMeshes = pythreejs.Group(
        )  # Translucent meshes kept around by preserveExisting
        self.ghostColor = 'red'

        self.materialLibrary = MaterialLibrary(self.isLineMesh,
                                               self.isPointCloud)

        # Sometimes we do not use a particular attribute buffer, e.g. the index buffer when displaying
        # per-face scalar fields. But to avoid reallocating these buffers when
        # switching away from these cases, we need to preserve the buffers
        # that may have previously been allocated. This is done with the bufferAttributeStash.
        # A buffer attribute, if it exists, must always be attached to the
        # current BufferGeometry or in this stash (but not both!).
        self.bufferAttributeStash = {}

        self.currMesh = None  # The main mesh being viewed
        self.wireframeMesh = None  # Wireframe for the main visualization mesh
        self.pointsMesh = None  # Points for the main visualization mesh
        self.vectorFieldMesh = None

        self.cachedWireframeMaterial = None
        self.cachedPointsMaterial = None

        self.shouldShowWireframe = False
        self.scalarField = None
        self.vectorField = None

        self.superView = superView
        if (superView is None):
            self.objects.add([self.meshes, self.ghostMeshes])
        else:
            superView.objects.add([self.meshes, self.ghostMeshes])
        self.subviews = []

        self._arrowMaterial = None  # Will hold this viewer's instance of the special vector field shader (shared/overridden by superView)
        self._arrowSize = 60

        # Camera needs to be part of the scene because the scene light is its child
        # (so that it follows the camera).
        self.scene = pythreejs.Scene(children=[
            self.objects, self.cam,
            pythreejs.AmbientLight(intensity=0.5)
        ])

        if (superView is None):
            # Sane trackball controls.
            self.controls = pythreejs.TrackballControls(controlling=self.cam)
            self.controls.staticMoving = True
            self.controls.rotateSpeed = 2.0
            self.controls.zoomSpeed = 2.0
            self.controls.panSpeed = 1.0
            self.renderer = pythreejs.Renderer(camera=self.cam,
                                               scene=self.scene,
                                               controls=[self.controls],
                                               width=width,
                                               height=height)
        else:
            self.controls = superView.controls
            self.renderer = superView.renderer

        self.update(True,
                    obj,
                    updateModelMatrix=True,
                    textureMap=textureMap,
                    scalarField=scalarField,
                    vectorField=vectorField,
                    transparent=transparent)
Exemple #5
0
def create_jsrenderer(scene,
                      height=400,
                      width=400,
                      background='gray',
                      orthographic=False,
                      camera_position=(0, 0, -10),
                      view=(10, -10, -10, 10),
                      fov=50):
    """
    
    Properties
    ----------
    orthographic : bool
        use orthographic camera (True) or perspective (False) 
    camera_position : tuple
        position of camera in scene
    view : tuple
        view extents: (top, bottom, left, right) (orthographic only)
    fov : float
        camera field of view (perspective only)
    
    Returns
    -------
    camera : pythreejs.Camera
    renderer : pythreejs.Renderer
                      
    Examples
    --------
    
    >>> import pythreejs as js
    >>> scene = js.Scene(children=[js.AmbientLight(color='#777777')])
    >>> camera, renderer = create_jsrenderer(scene,200,200, 'gray', (1,-1,-1,1))
    >>> type(renderer)
    <class 'pythreejs.pythreejs.Renderer'>
    >>> type(camera)
    <class 'pythreejs.pythreejs.OrthographicCamera'>
    
    """

    if orthographic:
        top, bottom, left, right = view
        camera = js.OrthographicCamera(position=camera_position,
                                       up=[0, 0, 1],
                                       top=top,
                                       bottom=bottom,
                                       left=left,
                                       right=right,
                                       near=.1,
                                       far=2000)
    else:
        camera = js.PerspectiveCamera(position=camera_position,
                                      up=[0, 0, 1],
                                      far=2000,
                                      near=.1,
                                      fov=fov,
                                      aspect=width / float(height))
    camera.children = [
        js.DirectionalLight(color='white', position=[3, 5, 1], intensity=0.5)
    ]
    control = js.OrbitControls(controlling=camera)
    renderer = js.Renderer(camera=camera,
                           background=background,
                           background_opacity=.1,
                           height=str(height),
                           width=str(width),
                           scene=scene,
                           controls=[control])
    return camera, renderer
Exemple #6
0
    def __init__(self,
                 scipp_obj_dict=None,
                 positions=None,
                 axes=None,
                 masks=None,
                 cmap=None,
                 log=None,
                 vmin=None,
                 vmax=None,
                 color=None,
                 aspect=None,
                 background=None,
                 nan_color=None,
                 pixel_size=None,
                 tick_size=None,
                 show_outline=True):

        super().__init__(scipp_obj_dict=scipp_obj_dict,
                         positions=positions,
                         axes=axes,
                         masks=masks,
                         cmap=cmap,
                         log=log,
                         vmin=vmin,
                         vmax=vmax,
                         color=color,
                         aspect=aspect,
                         button_options=['X', 'Y', 'Z'])

        self.vslice = None
        self.current_cut_surface_value = None
        self.cut_slider_steps = 10.
        self.cbar_image = widgets.Image()
        self.cut_options = {
            "Xplane": 0,
            "Yplane": 1,
            "Zplane": 2,
            "Xcylinder": 3,
            "Ycylinder": 4,
            "Zcylinder": 5,
            "Sphere": 6,
            "Value": 7
        }

        # Prepare colormaps
        self.cmap = copy(cm.get_cmap(self.params["values"][self.name]["cmap"]))
        self.cmap.set_bad(color=nan_color)
        self.scalar_map = cm.ScalarMappable(
            norm=self.params["values"][self.name]["norm"], cmap=self.cmap)
        self.masks_scalar_map = None
        if self.params["masks"][self.name]["show"]:
            self.masks_cmap = copy(
                cm.get_cmap(self.params["masks"][self.name]["cmap"]))
            self.masks_cmap.set_bad(color=nan_color)
            self.masks_scalar_map = cm.ScalarMappable(
                norm=self.params["values"][self.name]["norm"],
                cmap=self.masks_cmap)

        # Generate the colorbar image
        self.create_colorbar()

        # Useful variables
        self.permutations = {"x": ["y", "z"], "y": ["x", "z"], "z": ["x", "y"]}
        self.remaining_inds = [0, 1]

        # Search the coordinates to see if one contains vectors. If so, it will
        # be used as position vectors.
        self.axlabels = {"x": "", "y": "", "z": ""}
        self.positions = None
        self.pixel_size = pixel_size
        self.tick_size = tick_size
        if positions is not None:
            coord = self.data_array.coords[positions]
            self.positions = np.array(coord.values, dtype=np.float32)
            self.axlabels.update({
                "x": name_with_unit(coord, name="X"),
                "y": name_with_unit(coord, name="Y"),
                "z": name_with_unit(coord, name="Z")
            })
        else:
            # If no positions are supplied, create a meshgrid from coordinate
            # axes.
            coords = []
            labels = []
            for dim, val in self.slider.items():
                if val.disabled:
                    arr = self.slider_coord[self.name][dim]
                    if self.histograms[self.name][dim][dim]:
                        arr = to_bin_centers(arr, dim)
                    coords.append(arr.values)
                    labels.append(
                        name_with_unit(self.slider_coord[self.name][dim]))
            z, y, x = np.meshgrid(*coords, indexing='ij')
            self.positions = np.array(
                [x.ravel(), y.ravel(), z.ravel()], dtype=np.float32).T
            if self.pixel_size is None:
                self.pixel_size = coords[0][1] - coords[0][0]
            self.axlabels.update({
                "z": labels[0],
                "y": labels[1],
                "x": labels[2]
            })

        # Find spatial and value limits
        self.xminmax, self.center_of_mass = self.get_spatial_extents()
        self.vminmax = [
            sc.min(self.data_array.data).value,
            sc.max(self.data_array.data).value
        ]

        # Create the point cloud with pythreejs
        self.points_geometry, self.points_material, self.points = \
            self.create_points_geometry()

        # Create outline around point positions
        self.outline, self.axticks = self.create_outline()

        # Save the size of the outline box for later
        self.box_size = np.diff(list(self.xminmax.values()), axis=1).ravel()

        # Define camera: look at the centre of mass of the points
        camera_lookat = self.center_of_mass
        camera_pos = np.array(self.center_of_mass) + 1.2 * self.box_size
        self.camera = p3.PerspectiveCamera(position=list(camera_pos),
                                           aspect=config.plot.width /
                                           config.plot.height)

        # Add red/green/blue axes helper
        self.axes_3d = p3.AxesHelper(10.0 * np.linalg.norm(camera_pos))

        # Create the pythreejs scene
        self.scene = p3.Scene(children=[
            self.camera, self.axes_3d, self.points, self.outline, self.axticks
        ],
                              background=background)

        # Add camera controller
        self.controller = p3.OrbitControls(controlling=self.camera,
                                           target=camera_lookat)
        self.camera.lookAt(camera_lookat)

        # Render the scene into a widget
        self.renderer = p3.Renderer(camera=self.camera,
                                    scene=self.scene,
                                    controls=[self.controller],
                                    width=config.plot.width,
                                    height=config.plot.height)

        # Update visibility of outline according to keyword arg
        self.outline.visible = show_outline
        self.axticks.visible = show_outline

        # Opacity slider: top value controls opacity if no cut surface is
        # active. If a cut curface is present, the upper slider is the opacity
        # of the slice, while the lower slider value is the opacity of the
        # data not in the cut surface.
        self.opacity_slider = widgets.FloatRangeSlider(
            min=0.0,
            max=1.0,
            value=[0.1, 1],
            step=0.01,
            description="Opacity slider: When no cut surface is active, the "
            "max value of the range slider controls the overall opacity, "
            "and the lower value has no effect. When a cut surface is "
            "present, the max value is the opacity of the slice, while the "
            "min value is the opacity of the background.",
            continuous_update=True,
            style={'description_width': '60px'})
        self.opacity_slider.observe(self.update_opacity, names="value")
        self.opacity_checkbox = widgets.Checkbox(
            value=self.opacity_slider.continuous_update,
            description="Continuous update",
            indent=False,
            layout={"width": "20px"})
        self.opacity_checkbox_link = widgets.jslink(
            (self.opacity_checkbox, 'value'),
            (self.opacity_slider, 'continuous_update'))

        self.toggle_outline_button = widgets.ToggleButton(value=show_outline,
                                                          description='',
                                                          button_style='')
        self.toggle_outline_button.observe(self.toggle_outline, names="value")
        # Run a trigger to update button text
        self.toggle_outline({"new": show_outline})

        # Add buttons to provide a choice of different cut surfaces:
        # - Cartesian X, Y, Z
        # - Cylindrical X, Y, Z (cylinder major axis)
        # - Sperical R
        # - Value-based iso-surface
        # Note additional spaces required in cylindrical names because
        # options must be unique.
        self.cut_surface_buttons = widgets.ToggleButtons(
            options=[('X ', self.cut_options["Xplane"]),
                     ('Y ', self.cut_options["Yplane"]),
                     ('Z ', self.cut_options["Zplane"]),
                     ('R ', self.cut_options["Sphere"]),
                     (' X ', self.cut_options["Xcylinder"]),
                     (' Y ', self.cut_options["Ycylinder"]),
                     (' Z ', self.cut_options["Zcylinder"]),
                     ('', self.cut_options["Value"])],
            value=None,
            description='Cut surface:',
            button_style='',
            tooltips=[
                'X-plane', 'Y-plane', 'Z-plane', 'Sphere', 'Cylinder-X',
                'Cylinder-Y', 'Cylinder-Z', 'Value'
            ],
            icons=(['cube'] * 3) + ['circle-o'] + (['toggle-on'] * 3) +
            ['magic'],
            style={"button_width": "55px"},
            layout={'width': '350px'})
        self.cut_surface_buttons.observe(self.update_cut_surface_buttons,
                                         names="value")
        # Add a capture for a click event: if the active button is clicked,
        # this resets the togglebuttons value to None and deletes the cut
        # surface.
        self.cut_surface_buttons.on_msg(self.check_if_reset_needed)

        # Add slider to control position of cut surface
        self.cut_slider = widgets.FloatSlider(min=0,
                                              max=1,
                                              description="Position:",
                                              disabled=True,
                                              value=0.5,
                                              layout={"width": "350px"})
        self.cut_checkbox = widgets.Checkbox(value=True,
                                             description="Continuous update",
                                             indent=False,
                                             layout={"width": "20px"},
                                             disabled=True)
        self.cut_checkbox_link = widgets.jslink(
            (self.cut_checkbox, 'value'),
            (self.cut_slider, 'continuous_update'))
        self.cut_slider.observe(self.update_cut_surface, names="value")

        # Allow to change the thickness of the cut surface
        self.cut_surface_thickness = widgets.BoundedFloatText(
            value=0.05 * self.box_size.max(),
            min=0,
            layout={"width": "150px"},
            disabled=True,
            description="Thickness:",
            style={'description_width': 'initial'})
        self.cut_surface_thickness.observe(self.update_cut_surface,
                                           names="value")
        self.cut_thickness_link = widgets.jslink(
            (self.cut_slider, 'step'), (self.cut_surface_thickness, 'value'))
        self.cut_slider.observe(self.update_cut_surface, names="value")

        # Put widgets into boxes
        self.cut_surface_controls = widgets.HBox([
            self.cut_surface_buttons,
            widgets.VBox([
                widgets.HBox([self.cut_slider, self.cut_checkbox]),
                self.cut_surface_thickness
            ])
        ])

        self.box = widgets.VBox([
            widgets.HBox([self.renderer, self.cbar_image]),
            widgets.VBox(self.vbox),
            widgets.HBox([
                self.opacity_slider, self.opacity_checkbox,
                self.toggle_outline_button
            ]), self.cut_surface_controls
        ])

        # Update list of members to be returned in the SciPlot object
        self.members.update({
            "camera": self.camera,
            "scene": self.scene,
            "renderer": self.renderer
        })

        return
Exemple #7
0
def display_scene(lm_scene):
    """Display Lightmetrica scene."""

    # Scene
    scene = three.Scene()

    # Camera
    # Get lm camera information
    lm_main_camera = lm_scene.camera()
    lm_camera_params = lm_main_camera.underlying_value()
    camera = three.PerspectiveCamera(fov=lm_camera_params['vfov'],
                                     aspect=lm_camera_params['aspect'],
                                     near=0.1,
                                     far=10000)
    camera.position = lm_camera_params['eye']
    camera.up = lm_camera_params['up']

    scene.add(camera)

    # Mesh
    def add_lm_scene_mesh():
        # Default material
        mat_default = three.MeshBasicMaterial(color='#000000',
                                              wireframe=True,
                                              transparent=True,
                                              opacity=0.2,
                                              depthTest=False)

        # Convert lm mesh
        def traverse_func(node, trans):
            # Underlying mesh
            mesh = node.primitive.mesh
            if mesh is None:
                return

            # Iterate through all triangles
            vs = []

            def process_triangle(face_index, tri):
                vs.append(list(tri.p1.p))
                vs.append(list(tri.p2.p))
                vs.append(list(tri.p3.p))

            mesh.foreach_triangle(process_triangle)

            # Create geometry
            ps_attr = three.BufferAttribute(array=vs, normalized=False)
            geom = three.BufferGeometry(attributes={'position': ps_attr})

            # Create mesh
            mesh = three.Mesh(geometry=geom, material=mat_default)
            mesh.matrixAutoUpdate = False
            mesh.matrix = trans.T.flatten().tolist()
            scene.add(mesh)

        lm_scene.traverse_primitive_nodes(traverse_func)

    add_lm_scene_mesh()

    # View frustum
    def add_view_frustum():
        position = np.array(lm_camera_params['eye'])
        center = np.array(lm_camera_params['center'])
        up = np.array(lm_camera_params['up'])
        aspect = lm_camera_params['aspect']
        fov = math.radians(lm_camera_params['vfov'])

        M = lookat_matrix(position, center, up)
        z = 5
        half_fov = fov * .5
        y = math.tan(half_fov) * z
        x = aspect * y

        p = list(position)
        p1 = list(position + np.dot(M, [-x, -y, -z]))
        p2 = list(position + np.dot(M, [x, -y, -z]))
        p3 = list(position + np.dot(M, [x, y, -z]))
        p4 = list(position + np.dot(M, [-x, y, -z]))

        # Add mesh
        geom = three.Geometry(
            vertices=[p, p1, p2, p, p2, p3, p, p3, p4, p, p4, p1])
        mat = three.MeshBasicMaterial(color='#00ff00',
                                      wireframe=True,
                                      side='DoubleSide')
        mesh = three.Line(geometry=geom, material=mat)
        scene.add(mesh)

    add_view_frustum()

    # Axis
    axes = three.AxesHelper(size=1)
    scene.add(axes)

    # Renderer
    controls = three.OrbitControls(controlling=camera)

    # Rendered image size
    w = 1000
    h = w / lm_camera_params['aspect']

    # We need to set both target and lookAt in this order.
    # Otherwise the initial target position becomes wrong.
    # cf. https://github.com/jupyter-widgets/pythreejs/issues/200
    controls.target = lm_camera_params['center']
    camera.lookAt(lm_camera_params['center'])
    renderer = three.Renderer(camera=camera,
                              scene=scene,
                              width=w,
                              height=h,
                              controls=[controls])

    # Button to reset camera configuration
    # Note that we need to press the button twice to reset the control
    # to the correct target possibly due to the bug of pythreejs.
    reset_camera_button = widgets.Button(description="Reset Camera")

    @reset_camera_button.on_click
    def reset_camera_button_on_click(b):
        controls.reset()
        controls.target = lm_camera_params['center']
        camera.lookAt(lm_camera_params['center'])

    # Display all
    display(reset_camera_button)
    display(renderer)

    return scene, camera, renderer
Exemple #8
0
def generate_3js_render(
    element_groups,
    canvas_size,
    zoom,
    camera_fov=30,
    background_color="white",
    background_opacity=1.0,
    reuse_objects=False,
    use_atom_arrays=False,
    use_label_arrays=False,
):
    """Create a pythreejs scene of the elements.

    Regarding initialisation performance, see: https://github.com/jupyter-widgets/pythreejs/issues/154
    """
    import pythreejs as pjs

    key_elements = {}
    group_elements = pjs.Group()
    key_elements["group_elements"] = group_elements

    unique_atom_sets = {}
    for el in element_groups["atoms"]:
        element_hash = (
            ("radius", el.sradius),
            ("color", el.color),
            ("fill_opacity", el.fill_opacity),
            ("stroke_color", el.get("stroke_color", "black")),
            ("ghost", el.ghost),
        )
        unique_atom_sets.setdefault(element_hash, []).append(el)

    group_atoms = pjs.Group()
    group_ghosts = pjs.Group()

    atom_geometries = {}
    atom_materials = {}
    outline_materials = {}

    for el_hash, els in unique_atom_sets.items():
        el = els[0]
        data = dict(el_hash)

        if reuse_objects:
            atom_geometry = atom_geometries.setdefault(
                el.sradius,
                pjs.SphereBufferGeometry(radius=el.sradius,
                                         widthSegments=30,
                                         heightSegments=30),
            )
        else:
            atom_geometry = pjs.SphereBufferGeometry(radius=el.sradius,
                                                     widthSegments=30,
                                                     heightSegments=30)

        if reuse_objects:
            atom_material = atom_materials.setdefault(
                (el.color, el.fill_opacity),
                pjs.MeshLambertMaterial(color=el.color,
                                        transparent=True,
                                        opacity=el.fill_opacity),
            )
        else:
            atom_material = pjs.MeshLambertMaterial(color=el.color,
                                                    transparent=True,
                                                    opacity=el.fill_opacity)

        if use_atom_arrays:
            atom_mesh = pjs.Mesh(geometry=atom_geometry,
                                 material=atom_material)
            atom_array = pjs.CloneArray(
                original=atom_mesh,
                positions=[e.position.tolist() for e in els],
                merge=False,
            )
        else:
            atom_array = [
                pjs.Mesh(
                    geometry=atom_geometry,
                    material=atom_material,
                    position=e.position.tolist(),
                    name=e.info_string,
                ) for e in els
            ]

        data["geometry"] = atom_geometry
        data["material_body"] = atom_material

        if el.ghost:
            key_elements["group_ghosts"] = group_ghosts
            group_ghosts.add(atom_array)
        else:
            key_elements["group_atoms"] = group_atoms
            group_atoms.add(atom_array)

        if el.get("stroke_width", 1) > 0:
            if reuse_objects:
                outline_material = outline_materials.setdefault(
                    el.get("stroke_color", "black"),
                    pjs.MeshBasicMaterial(
                        color=el.get("stroke_color", "black"),
                        side="BackSide",
                        transparent=True,
                        opacity=el.get("stroke_opacity", 1.0),
                    ),
                )
            else:
                outline_material = pjs.MeshBasicMaterial(
                    color=el.get("stroke_color", "black"),
                    side="BackSide",
                    transparent=True,
                    opacity=el.get("stroke_opacity", 1.0),
                )
            # TODO use stroke width to dictate scale
            if use_atom_arrays:
                outline_mesh = pjs.Mesh(
                    geometry=atom_geometry,
                    material=outline_material,
                    scale=(1.05, 1.05, 1.05),
                )
                outline_array = pjs.CloneArray(
                    original=outline_mesh,
                    positions=[e.position.tolist() for e in els],
                    merge=False,
                )
            else:
                outline_array = [
                    pjs.Mesh(
                        geometry=atom_geometry,
                        material=outline_material,
                        position=e.position.tolist(),
                        scale=(1.05, 1.05, 1.05),
                    ) for e in els
                ]

            data["material_outline"] = outline_material

            if el.ghost:
                group_ghosts.add(outline_array)
            else:
                group_atoms.add(outline_array)

        key_elements.setdefault("atom_arrays", []).append(data)

    group_elements.add(group_atoms)
    group_elements.add(group_ghosts)

    group_labels = add_labels(element_groups, key_elements, use_label_arrays)
    group_elements.add(group_labels)

    if len(element_groups["cell_lines"]) > 0:
        cell_line_mat = pjs.LineMaterial(
            linewidth=1,
            color=element_groups["cell_lines"].group_properties["color"])
        cell_line_geo = pjs.LineSegmentsGeometry(positions=[
            el.position.tolist() for el in element_groups["cell_lines"]
        ])
        cell_lines = pjs.LineSegments2(geometry=cell_line_geo,
                                       material=cell_line_mat)
        key_elements["cell_lines"] = cell_lines
        group_elements.add(cell_lines)

    if len(element_groups["bond_lines"]) > 0:
        bond_line_mat = pjs.LineMaterial(
            linewidth=element_groups["bond_lines"].
            group_properties["stroke_width"],
            vertexColors="VertexColors",
        )
        bond_line_geo = pjs.LineSegmentsGeometry(
            positions=[
                el.position.tolist() for el in element_groups["bond_lines"]
            ],
            colors=[[Color(c).rgb for c in el.color]
                    for el in element_groups["bond_lines"]],
        )
        bond_lines = pjs.LineSegments2(geometry=bond_line_geo,
                                       material=bond_line_mat)
        key_elements["bond_lines"] = bond_lines
        group_elements.add(bond_lines)

    group_millers = pjs.Group()
    if len(element_groups["miller_lines"]) or len(
            element_groups["miller_planes"]):
        key_elements["group_millers"] = group_millers

    if len(element_groups["miller_lines"]) > 0:
        miller_line_mat = pjs.LineMaterial(
            linewidth=3,
            vertexColors="VertexColors"  # TODO use stroke_width
        )
        miller_line_geo = pjs.LineSegmentsGeometry(
            positions=[
                el.position.tolist() for el in element_groups["miller_lines"]
            ],
            colors=[[Color(el.stroke_color).rgb] * 2
                    for el in element_groups["miller_lines"]],
        )
        miller_lines = pjs.LineSegments2(geometry=miller_line_geo,
                                         material=miller_line_mat)
        group_millers.add(miller_lines)

    for el in element_groups["miller_planes"]:
        vertices = el.position.tolist()
        faces = [(
            0,
            1,
            2,
            triangle_normal(vertices[0], vertices[1], vertices[2]),
            "black",
            0,
        )]
        if len(vertices) == 4:
            faces.append((
                2,
                3,
                0,
                triangle_normal(vertices[2], vertices[3], vertices[0]),
                "black",
                0,
            ))
        elif len(vertices) != 3:
            raise NotImplementedError("polygons with more than 4 points")
        plane_geom = pjs.Geometry(vertices=vertices, faces=faces)
        plane_mat = pjs.MeshBasicMaterial(
            color=el.fill_color,
            transparent=True,
            opacity=el.fill_opacity,
            side="DoubleSide",
        )
        plane_mesh = pjs.Mesh(geometry=plane_geom, material=plane_mat)
        group_millers.add(plane_mesh)

    group_elements.add(group_millers)

    scene = pjs.Scene(background=None)
    scene.add([group_elements])

    view_width, view_height = canvas_size

    minp, maxp = element_groups.get_position_range()
    # compute a minimum camera distance, that is guaranteed to encapsulate all elements
    camera_dist = maxp[2] + sqrt(maxp[0]**2 + maxp[1]**2) / tan(
        radians(camera_fov / 2))

    camera = pjs.PerspectiveCamera(
        fov=camera_fov,
        position=[0, 0, camera_dist],
        aspect=view_width / view_height,
        zoom=zoom,
    )
    scene.add([camera])
    ambient_light = pjs.AmbientLight(color="lightgray")
    key_elements["ambient_light"] = ambient_light
    direct_light = pjs.DirectionalLight(position=(maxp * 2).tolist())
    key_elements["direct_light"] = direct_light
    scene.add([camera, ambient_light, direct_light])

    camera_control = pjs.OrbitControls(controlling=camera,
                                       screenSpacePanning=True)

    atom_picker = pjs.Picker(controlling=group_atoms, event="dblclick")
    key_elements["atom_picker"] = atom_picker
    material = pjs.SpriteMaterial(
        map=create_arrow_texture(right=False),
        transparent=True,
        depthWrite=False,
        depthTest=False,
    )
    atom_pointer = pjs.Sprite(material=material,
                              scale=(4, 3, 1),
                              visible=False)
    scene.add(atom_pointer)
    key_elements["atom_pointer"] = atom_pointer

    renderer = pjs.Renderer(
        camera=camera,
        scene=scene,
        controls=[camera_control, atom_picker],
        width=view_width,
        height=view_height,
        alpha=True,
        clearOpacity=background_opacity,
        clearColor=background_color,
    )
    return renderer, key_elements
Exemple #9
0
def create_world_axes(camera,
                      controls,
                      initial_rotation=np.eye(3),
                      length=30,
                      width=3,
                      camera_fov=10):
    """Create a renderer, containing an axes and camera that is synced to another camera.

    adapted from http://jsfiddle.net/aqnL1mx9/

    Parameters
    ----------
    camera : pythreejs.PerspectiveCamera
    controls : pythreejs.OrbitControls
    initial_rotation : list or numpy.array
        initial rotation of the axes
    length : int
        length of axes lines
    width : int
        line width of axes

    Returns
    -------
    pythreejs.Renderer

    """
    import pythreejs as pjs

    canvas_width = length * 2
    canvas_height = length * 2

    ax_scene = pjs.Scene()

    group_ax = pjs.Group()
    # NOTE: could use AxesHelper, but this does not allow for linewidth seletion
    # TODO: add arrow heads (ArrowHelper doesn't seem to work)
    ax_line_mat = pjs.LineMaterial(linewidth=width,
                                   vertexColors="VertexColors")
    ax_line_geo = pjs.LineSegmentsGeometry(
        positions=[[[0, 0, 0], length * r / np.linalg.norm(r)]
                   for r in initial_rotation],
        colors=[[Color(c).rgb] * 2 for c in ("red", "green", "blue")],
    )
    ax_lines = pjs.LineSegments2(geometry=ax_line_geo, material=ax_line_mat)
    group_ax.add(ax_lines)

    ax_scene.add([group_ax])

    camera_dist = length / tan(radians(camera_fov / 2))

    ax_camera = pjs.PerspectiveCamera(fov=camera_fov,
                                      aspect=canvas_width / canvas_height,
                                      near=1,
                                      far=1000)
    ax_camera.up = camera.up
    ax_renderer = pjs.Renderer(
        scene=ax_scene,
        camera=ax_camera,
        width=canvas_width,
        height=canvas_height,
        alpha=True,
        clearOpacity=0.0,
        clearColor="white",
    )

    def align_axes(change=None):
        """Align axes to world."""
        # TODO: this is not working correctly for TrackballControls, when rotated upside-down
        # (OrbitControls enforces the camera up direction,
        # so does not allow the camera to rotate upside-down).
        # TODO how could this be implemented on the client (js) side?
        new_position = np.array(camera.position) - np.array(controls.target)
        new_position = camera_dist * new_position / np.linalg.norm(
            new_position)
        ax_camera.position = new_position.tolist()
        ax_camera.lookAt(ax_scene.position)

    align_axes()

    camera.observe(align_axes, names="position")
    controls.observe(align_axes, names="target")
    ax_scene.observe(align_axes, names="position")

    return ax_renderer