def setUp(self,verbose=False):
        
        self.verbose = verbose
        
        #
        # PURE ELECTRONIC AGGREGATE
        #
    
        m1 = Molecule([0.0, 1.0])
        m2 = Molecule([0.0, 1.0])
        
        agg = Aggregate(molecules=[m1, m2])
        
        agg.set_resonance_coupling(0,1, 0.1)
        
        agg.build()
        
        self.ham = agg.get_Hamiltonian()
                
        KK12 = ProjectionOperator(1, 2, dim=self.ham.dim)
        KK21 = ProjectionOperator(2, 1, dim=self.ham.dim)
        
        self.rates = (1.0/100.0, 1.0/200.0)
        
        self.sbi = SystemBathInteraction([KK12,KK21],
                                          rates=self.rates)
        self.sbi.set_system(agg)

        #
        #  VIBRONIC AGGREGATE
        #
        
        vm1 = Molecule([0.0, 1.0])
        vm2 = Molecule([0.0, 1.0])
        mod1 = Mode(0.01)
        mod2 = Mode(0.01)
        vm1.add_Mode(mod1)
        vm2.add_Mode(mod2)
                
        mod1.set_nmax(0, 3)
        mod1.set_nmax(1, 3)
        
        mod2.set_nmax(0, 3)
        mod2.set_nmax(1, 3)
        
        vagg = Aggregate(molecules=[vm1, vm2])
        vagg.set_resonance_coupling(0, 1, 0.1)
        
        vagg.build()
        
        self.vham = vagg.get_Hamiltonian()
        
        self.vsbi = SystemBathInteraction([KK12, KK21], rates=self.rates)
        self.vsbi.set_system(vagg)       
Exemple #2
0
    def setUp(self, verbose=False):

        self.verbose = verbose

        #
        # PURE ELECTRONIC AGGREGATE
        #

        m1 = Molecule([0.0, 1.0])
        m2 = Molecule([0.0, 1.0])

        agg = Aggregate(molecules=[m1, m2])

        agg.set_resonance_coupling(0, 1, 0.1)

        agg.build()

        self.ham = agg.get_Hamiltonian()

        KK12 = ProjectionOperator(1, 2, dim=self.ham.dim)
        KK21 = ProjectionOperator(2, 1, dim=self.ham.dim)

        self.rates = (1.0 / 100.0, 1.0 / 200.0)

        self.sbi = SystemBathInteraction([KK12, KK21], rates=self.rates)
        self.sbi.set_system(agg)

        #
        #  VIBRONIC AGGREGATE
        #

        vm1 = Molecule([0.0, 1.0])
        vm2 = Molecule([0.0, 1.0])
        mod1 = Mode(0.01)
        mod2 = Mode(0.01)
        vm1.add_Mode(mod1)
        vm2.add_Mode(mod2)

        mod1.set_nmax(0, 3)
        mod1.set_nmax(1, 3)

        mod2.set_nmax(0, 3)
        mod2.set_nmax(1, 3)

        vagg = Aggregate(molecules=[vm1, vm2])
        vagg.set_resonance_coupling(0, 1, 0.1)

        vagg.build()

        self.vham = vagg.get_Hamiltonian()

        self.vsbi = SystemBathInteraction([KK12, KK21], rates=self.rates)
        self.vsbi.set_system(vagg)
Exemple #3
0
    def test_abs_calculator(self):
        """Testing some basic methods of the AbsSpectrumCalculator class
        
        """
        
        #Calculations for monomer are already performed. Now testing that
        #absorption spectrum can be calculated for an aggregate.
        try:
            mol1 = Molecule(elenergies=[0.0, 12000.0])
            mol2 = Molecule(elenergies=[0.0, 12000.0])

            params = dict(ftype="OverdampedBrownian", reorg=20, cortime=100,
                          T=300)
            mol1.set_dipole(0,1,[0.0, 1.0, 0.0])
            mol2.set_dipole(0,1,[0.0, 1.0, 0.0])

            cf = CorrelationFunction(self.ta, params)
            mol1.set_transition_environment((0,1),cf)
            mol2.set_transition_environment((0,1),cf)

            agg = Aggregate(name="tester_dim", molecules=[mol1, mol2])
            agg.build()
            HH = agg.get_Hamiltonian()
            
        
            abs_calc = AbsSpectrumCalculator(self.ta,
                 system=agg,
                 dynamics="secular",
                 relaxation_tensor=None,
                 rate_matrix=None)
            abs_calc.bootstrap(rwa=12000)           
            abs_calc = abs_calc.calculate()
        except:
            raise Exception('Absorption not calculatable for aggregate')
Exemple #4
0
    def test_abs_calculator(self):
        """Testing some basic methods of the AbsSpectrumCalculator class
        
        """
        
        #Calculations for monomer are already performed. Now testing that
        #absorption spectrum can be calculated for an aggregate.
        try:
            mol1 = Molecule(elenergies=[0.0, 12000.0])
            mol2 = Molecule(elenergies=[0.0, 12000.0])

            params = dict(ftype="OverdampedBrownian", reorg=20, cortime=100,
                          T=300)
            mol1.set_dipole(0,1,[0.0, 1.0, 0.0])
            mol2.set_dipole(0,1,[0.0, 1.0, 0.0])

            cf = CorrelationFunction(self.ta, params)
            mol1.set_transition_environment((0,1),cf)
            mol2.set_transition_environment((0,1),cf)

            agg = Aggregate(name="tester_dim", molecules=[mol1, mol2])
            agg.build()
            HH = agg.get_Hamiltonian()
            
        
            abs_calc = AbsSpectrumCalculator(self.ta,
                 system=agg,
                 dynamics="secular",
                 relaxation_tensor=None,
                 rate_matrix=None)
            abs_calc.bootstrap(rwa=12000)           
            abs_calc = abs_calc.calculate()
        except:
            raise Exception('Absorption not calculatable for aggregate')
def hamiltonian_is_created(self):

    #
    # Homodimer
    #
    with energy_units(world.h_units):
        en = world.senergy
        m1 = Molecule([0.0, en], "mol1")
        m2 = Molecule([0.0, en], "mol2")

    agg = Aggregate(name="Homodimer")

    agg.add_Molecule(m1)
    agg.add_Molecule(m2)

    with energy_units(world.r_units):
        agg.set_resonance_coupling(0, 1, world.r_coupl)

    agg.build()

    world.HH = agg.get_Hamiltonian()
def hamiltonian_is_created(self):
    
    #
    # Homodimer
    #
    with energy_units(world.h_units):
        en = world.senergy
        m1 = Molecule([0.0, en], "mol1")
        m2 = Molecule([0.0, en], "mol2")
        
    agg = Aggregate(name="Homodimer")
    
    agg.add_Molecule(m1)
    agg.add_Molecule(m2)
        
    with energy_units(world.r_units):
        agg.set_resonance_coupling(0,1,world.r_coupl)
        
    agg.build()
    
    world.HH = agg.get_Hamiltonian()
class AggregateTest(unittest.TestCase):
    """Tests for the Manager class
    
    
    """
    def setUp(self):

        m1 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m2 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])

        time = TimeAxis(0.0, 1000, 1.0)
        params = dict(ftype="OverdampedBrownian", reorg=20, cortime=100, T=300)
        with energy_units("1/cm"):
            fc = CorrelationFunction(time, params)

        m1.set_transition_environment((0, 1), fc)
        m1.position = [0.0, 0.0, 0.0]
        m1.set_dipole(0, 1, [10.0, 0.0, 0.0])
        m2.set_transition_environment((0, 1), fc)
        m2.position = [10.0, 0.0, 0.0]
        m2.set_dipole(0, 1, [10.0, 0.0, 0.0])

        self.agg = Aggregate(name="TestAgg", molecules=[m1, m2])

        self.agg.set_coupling_by_dipole_dipole()

        self.agg.build()

        m3 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m4 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])
        m3.add_Mode(Mode(0.01))
        m4.add_Mode(Mode(0.01))

        mod3 = m3.get_Mode(0)
        mod4 = m4.get_Mode(0)

        mod3.set_nmax(0, 4)
        mod3.set_nmax(1, 4)
        mod3.set_HR(1, 0.1)
        mod4.set_nmax(0, 4)
        mod4.set_nmax(1, 4)
        mod4.set_HR(1, 0.3)

        self.vagg = Aggregate(molecules=[m3, m4])
        self.vagg.build()

#########################################################################
#
#                               TESTS
#
#########################################################################

    def test_saving_of_aggregate(self):
        """(Aggregate) Testing its saving capability 
        
        
        """
        use_temporary_file = True

        if use_temporary_file:

            #drv = "core"
            #bcs = False

            #with h5py.File('tempfile.hdf5',
            #               driver=drv,
            #               backing_store=bcs) as f:
            with tempfile.TemporaryFile() as f:

                self.agg.save(f, test=True)  #,report_unsaved=True)

                # reread it
                agg = Aggregate()
                agg = agg.load(f, test=True)

        else:

            #with h5py.File('tempfile.hdf5') as f:
            with open('tempfile.qrp', 'wb') as f:
                self.agg.save(f)

            #with h5py.File('tempfile.hdf5') as f:
            with open('tempfile.qrp', 'rb') as f:
                agg = Aggregate()
                agg.load(f)

        self.assertEqual(self.agg.nmono, agg.nmono)
        self.assertEqual(self.agg.mult, agg.mult)
        self.assertEqual(self.agg.sbi_mult, agg.sbi_mult)
        self.assertEqual(self.agg.name, agg.name)
        self.assertEqual(self.agg._has_egcf_matrix, agg._has_egcf_matrix)
        self.assertEqual(self.agg._has_system_bath_interaction,
                         agg._has_system_bath_interaction)
        self.assertEqual(self.agg.coupling_initiated, agg.coupling_initiated)
        self.assertEqual(self.agg._has_relaxation_tensor,
                         agg._has_relaxation_tensor)
        self.assertEqual(self.agg._relaxation_theory, agg._relaxation_theory)
        self.assertEqual(self.agg._built, agg._built)
        self.assertEqual(self.agg.Nel, agg.Nel)
        self.assertEqual(self.agg.Ntot, agg.Ntot)
        numpy.testing.assert_array_equal(self.agg.Nb, agg.Nb)
        for key in agg.mnames.keys():
            self.assertEqual(self.agg.mnames[key], agg.mnames[key])
        numpy.testing.assert_array_equal(self.agg.resonance_coupling,
                                         agg.resonance_coupling)
        mnames = ["Molecule 1", "Molecule 2"]
        for k in range(agg.nmono):
            m = agg.monomers[k]
            self.assertIn(m.name, mnames)
            mnames.remove(m.name)

    def test_trace_over_vibrations(self):
        """(Aggregate) Testing trace over vibrational DOF
        
        """

        agg = self.vagg

        ham = agg.get_Hamiltonian()

        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[5, 5] = 1.0
        redr = agg.trace_over_vibrations(rho)

        numpy.testing.assert_almost_equal(numpy.trace(redr._data),
                                          1.0,
                                          decimal=7)

        N = agg.Nb[0]

        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N + 5, N + 5] = 1.0
        redr = agg.trace_over_vibrations(rho)

        numpy.testing.assert_almost_equal(numpy.trace(redr._data),
                                          1.0,
                                          decimal=3)

        N = agg.Nb[1]

        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N + 5, N + 5] = 1.0
        redr = agg.trace_over_vibrations(rho)

        numpy.testing.assert_almost_equal(numpy.trace(redr._data),
                                          1.0,
                                          decimal=2)

    def test_get_Density_Matrix_thermal(self):
        """(Aggregate) Testing the get_Densitymatrix method with `thermal` condition type
        
        """
        from quantarhei.core.units import kB_intK

        vagg = self.vagg
        H = vagg.get_Hamiltonian()
        N = H.data.shape[0]

        # zero temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal")
        tst0 = numpy.zeros((N, N), dtype=qr.COMPLEX)
        tst0[0, 0] = 1.0

        numpy.testing.assert_almost_equal(rho0.data, tst0)

        # room temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal",
                                      temperature=300)
        # cannonical balance between neighboring states is tested
        kbT = kB_intK * 300.0
        for k in range(N - 1):
            E2 = H.data[k + 1, k + 1]
            E1 = H.data[k, k]
            ratio = numpy.exp(-(E2 - E1) / kbT)
            numpy.testing.assert_almost_equal(
                ratio, rho0.data[k + 1, k + 1] / rho0.data[k, k])

    def test_get_Density_Matrix_thermal_excited(self):
        """(Aggregate) Testing the get_Densitymatrix method with `thermal_excited_state` condition type
        
        """
        from quantarhei.core.units import kB_intK

        vagg = self.vagg
        H = vagg.get_Hamiltonian()
        N = H.data.shape[0]
        Nb0 = vagg.Nb[0]

        # zero temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal_excited_state")
        tst0 = numpy.zeros((N, N), dtype=qr.COMPLEX)
        tst0[Nb0, Nb0] = 1.0

        numpy.testing.assert_almost_equal(rho0.data, tst0)

        # room temperature

        kbT = kB_intK * 300.0

        H = self.agg.get_Hamiltonian()
        N = H.data.shape[0]
        Nb0 = self.agg.Nb[0]

        with qr.eigenbasis_of(H):
            rho0 = self.agg.get_DensityMatrix(
                condition_type="thermal_excited_state", temperature=300)

        tst0 = numpy.zeros((N, N), dtype=qr.COMPLEX)

        with qr.eigenbasis_of(H):
            ssum = 0.0
            for i in range(Nb0, N):
                tst0[i,
                     i] = numpy.exp(-(H.data[i, i] - H.data[Nb0, Nb0]) / kbT)
                ssum += tst0[i, i]
            tst0 = tst0 / ssum
            numpy.testing.assert_almost_equal(rho0.data, tst0)

#        ssum = 0.0
#        for i in range(N):
#            tst0[i,i] = numpy.exp(-H.data[i,i]/kbT)
#            ssum += tst0[i,i]
#        tst0 = tst0/ssum
#
#        DD = vagg.TrDMOp.data
#        # abs value of the transition dipole moment
#        dabs = numpy.sqrt(DD[:,:,0]**2 + \
#                          DD[:,:,1]**2 + DD[:,:,2]**2)
#        # excitation from bra and ket
#        tst0 = numpy.dot(dabs, numpy.dot(tst0,dabs))
#
#        numpy.testing.assert_almost_equal(rho0.data, tst0)

    def test_get_temperature(self):
        """(Aggregate) Testing temperature retrieval 
        
        
        """
        agg = self.agg

        T = agg.get_temperature()

        numpy.testing.assert_almost_equal(T, 300.0)

    def test_init_coupling_matrix(self):
        """(Aggregate) Testing coupling matrix initialization 
        
        """
        agg = TestAggregate(name="dimer-2-env")

        self.assertFalse(agg.coupling_initiated)

        agg.init_coupling_matrix()

        self.assertTrue(agg.coupling_initiated)
        self.assertAlmostEqual(0.0, agg.resonance_coupling[0, 1])

    def test_set_resonance_coupling(self):
        """(Aggregate) Testing resonance coupling setting with different units
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.init_coupling_matrix()

        agg.set_resonance_coupling(0, 1, 1.0)
        self.assertAlmostEqual(1.0, agg.resonance_coupling[0, 1])
        self.assertAlmostEqual(1.0, agg.resonance_coupling[1, 0])

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, 100.0)
        self.assertAlmostEqual(qr.convert(100.0, "1/cm", "int"),
                               agg.resonance_coupling[0, 1])
        self.assertAlmostEqual(qr.convert(100.0, "1/cm", "int"),
                               agg.resonance_coupling[1, 0])

    def test_get_resonance_coupling(self):
        """(Aggregate) Testing resonance coupling retrieval in different units
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.init_coupling_matrix()
        agg.set_resonance_coupling(0, 1, 1.0)

        coup = agg.get_resonance_coupling(1, 0)
        self.assertAlmostEqual(coup, 1.0)

        with qr.energy_units("1/cm"):
            coup = agg.get_resonance_coupling(1, 0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "1/cm"))

        with qr.energy_units("eV"):
            coup = agg.get_resonance_coupling(1, 0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "eV"))

        with qr.energy_units("THz"):
            coup = agg.get_resonance_coupling(1, 0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "THz"))

    def test_set_resonance_coupling_matrix(self):
        """(Aggregate) Testing setting the whole resonance coupling matrix
        
        """
        agg = TestAggregate(name="dimer-2-env")

        mat = [[0.0, 1.0], [1.0, 0.0]]

        agg.set_resonance_coupling_matrix(mat)
        self.assertAlmostEqual(agg.resonance_coupling[1, 0], 1.0)
        self.assertAlmostEqual(agg.resonance_coupling[0, 1], 1.0)
        self.assertAlmostEqual(agg.resonance_coupling[0, 0], 0.0)
        self.assertAlmostEqual(agg.resonance_coupling[1, 1], 0.0)

        mat = ((0.0, 500.0), (500.0, 0.0))

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling_matrix(mat)

        inint = qr.convert(500, "1/cm", "int")
        self.assertAlmostEqual(agg.resonance_coupling[1, 0], inint)
        self.assertAlmostEqual(agg.resonance_coupling[0, 1], inint)
        self.assertAlmostEqual(agg.resonance_coupling[0, 0], 0.0)
        self.assertAlmostEqual(agg.resonance_coupling[1, 1], 0.0)

    def test_dipole_dipole_coupling(self):
        """(Aggregate) Testing dipole-dipole coupling calculation

        """
        agg = TestAggregate(name="dimer-2-env")

        coup1 = agg.dipole_dipole_coupling(0, 1)
        coup2 = agg.dipole_dipole_coupling(0, 1, epsr=2.0)
        self.assertAlmostEqual(coup1, coup2 * 2.0)

        with qr.energy_units("1/cm"):
            coup = agg.dipole_dipole_coupling(0, 1)
        self.assertAlmostEqual(qr.convert(coup1, "int", "1/cm"), coup)

    def test_set_coupling_by_dipole_dipole(self):
        """(Aggregate) Testing dipole-dipole coupling calculation for the whole agregate
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.set_coupling_by_dipole_dipole()

        coup1 = agg.dipole_dipole_coupling(0, 1)
        self.assertAlmostEqual(coup1, agg.resonance_coupling[0, 1])

        with qr.energy_units("1/cm"):
            agg.set_coupling_by_dipole_dipole()

        coup1 = agg.dipole_dipole_coupling(0, 1)
        self.assertAlmostEqual(coup1, agg.resonance_coupling[0, 1])

    def test_calculate_resonance_coupling(self):
        """(Aggregate) Testing resonance coupling calculation by various methods
        
        """
        agg = TestAggregate(name="dimer-2-env")

        agg.calculate_resonance_coupling(method="dipole-dipole")
        coup1 = agg.dipole_dipole_coupling(0, 1)

        self.assertEqual(coup1, agg.resonance_coupling[1, 0])

        with qr.energy_units("1/cm"):
            agg.calculate_resonance_coupling(method="dipole-dipole")

        self.assertEqual(coup1, agg.resonance_coupling[1, 0])

    def test_add_Molecule(self):
        """(Aggregate) Testing add_Molecule() method
        
        """
        agg = TestAggregate(name="dimer-2-env")

        mol = qr.Molecule(elenergies=[0.0, 1.0])

        nmols1 = agg.nmono
        agg.add_Molecule(mol)
        nmols2 = agg.nmono

        self.assertEqual(nmols1 + 1, nmols2)
        self.assertEqual(len(agg.monomers), nmols2)
        self.assertLessEqual(len(agg.mnames), nmols2)
Exemple #8
0
# -*- coding: utf-8 -*-

_show_plots_ = False

from quantarhei import Molecule, Aggregate
#from quantarhei import energy_units

en = [0.0, 1.0]
m1 = Molecule(name="Mol1", elenergies=en)
m2 = Molecule(name="Mol2", elenergies=en)

ag = Aggregate(name="Homodimer")
ag.add_Molecule(m1)
ag.add_Molecule(m2)

ag.set_resonance_coupling(0, 1, 0.1)

ag.build(mult=1)

H = ag.get_Hamiltonian()

#with energy_units("1/cm"):
#    print(H)
Exemple #9
0
def redfield_relaxation(self):
    print("Redfield rate calculation")

    #
    # Correlation function
    #
    params = {
        "ftype": world.ctype,
        "reorg": world.reorg,
        "cortime": world.ctime,
        "T": world.temp,
        "matsubara": world.mats
    }

    # FIXME: also time_units, temperature_units
    with energy_units(world.e_units):
        cf = CorrelationFunction(world.ta, params)

    #
    # Homodimer
    #
    with energy_units(world.h_units):
        en = world.senergy
        m1 = Molecule([0.0, en], "mol1")
        m2 = Molecule([0.0, en], "mol2")
#        m3 = Molecule("mol2", [0.0, en])

    m1.set_egcf((0, 1), cf)
    m2.set_egcf((0, 1), cf)
    #    m3.set_egcf((0,1), cf)

    agg = Aggregate(name="Homodimer")

    agg.add_Molecule(m1)
    agg.add_Molecule(m2)
    #    agg.add_Molecule(m3)

    #    with energy_units("1/cm"):
    #        Hm = m1.get_Hamiltonian()
    #        print(Hm)
    #        print(m.convert_energy_2_current_u(Hm._data))

    with energy_units(world.r_units):
        agg.set_resonance_coupling(0, 1, world.r_coupl)


#        agg.set_resonance_coupling(1,2,world.r_coupl)

    agg.build()

    H = agg.get_Hamiltonian()

    #    with energy_units("1/cm"):
    #        print(H)
    #        print(m.convert_energy_2_current_u(H._data))

    sbi = agg.get_SystemBathInteraction()

    RRM = RedfieldRateMatrix(H, sbi)

    world.K12 = numpy.real(RRM.data[1, 2])

    dim = H.dim
    rates_M = numpy.zeros(dim * dim)
    k = 0
    for i in range(dim):
        for j in range(dim):
            rates_M[k] = RRM.data[i, j]
            k += 1

    world.rates_M = rates_M
Exemple #10
0
# Molecular dimer without vibrations
#
from quantarhei import Aggregate

mol1 = Molecule(name="Mol 1", elenergies=[0.0, 1.0])
mol2 = Molecule(name="Mol 2", elenergies=[0.0, 1.0])

agg = Aggregate(name="Dimer")

agg.add_Molecule(mol1)
agg.add_Molecule(mol2)
agg.set_resonance_coupling(0,1,0.01)

agg.build()

H = agg.get_Hamiltonian()

print(H)

psi = StateVector(3)
psi.data[2] = 1.0

dimer_propagator = StateVectorPropagator(time, H)
psi_t = dimer_propagator.propagate(psi)
psi_t.plot(ptype="square", show=False)

#dat = [[0.0, 0.0, 0.0], [0.0, 1.0, 0.01], [0.0, 0.01, 1.1]]
H._data[2,2] = 1.2 #dat

print(H.data)
Exemple #11
0
#plt.savefig('L12per_pbl_spec.pdf')

plt.show()

with energy_units("1/cm"):
    aAnth.plot(axis=[10000,15000,0.0,1.1])


# Redfield Tensor 
print("Calculating relaxation tensor ...")
start = tm.time()
# System bath interaction
#sbi = AG.get_system_bath_coupling()
sbi = AG.get_SystemBathInteraction()
# Hamiltonian 
HH = AG.get_Hamiltonian()

# Relaxation tensor
RT = RedfieldRelaxationTensor(HH,sbi)
#RT = TDRedfieldRelaxationTensor(HH,sbi)
RT.secularize()
print("... done in ",tm.time()-start)

#for n in range(4):
#    print(numpy.real(RT.data[n,n,5,5]))
#
#RR = RedfieldRateMatrix(HH,sbi)
#for n in range(4):
#    print(numpy.real(RR.data[n,5]))    

"""
m1 = Molecule([0.0, 1.0])
m2 = Molecule([0.0, 1.1])
m3 = Molecule([0.0, 1.2])

from quantarhei import Aggregate

agg = Aggregate([m1, m2, m3])
agg.build()

#
# Operator describing relaxation
#
from quantarhei.qm import Operator

HH = agg.get_Hamiltonian()
K = Operator(dim=HH.dim,real=True)
K.data[1,2] = 1.0

#
# System bath interaction with prescribed rate
#
from quantarhei.qm import SystemBathInteraction

sbi = SystemBathInteraction(sys_operators=[K], rates=(1.0/100,))
agg.set_SystemBathInteraction(sbi)

#
# Corresponding Lindblad form
#
from quantarhei.qm import LindbladForm
def redfield_relaxation(self):
    print("Redfield rate calculation")

    
    #
    # Correlation function
    #
    params = {"ftype":    world.ctype,
              "reorg":    world.reorg,
              "cortime":  world.ctime,
              "T":        world.temp,
              "matsubara":world.mats}
              
    # FIXME: also time_units, temperature_units
    with energy_units(world.e_units):
        cf = CorrelationFunction(world.ta,params) 

    
    #
    # Homodimer
    #
    with energy_units(world.h_units):
        en = world.senergy
        m1 = Molecule([0.0, en],"mol1")
        m2 = Molecule([0.0, en], "mol2")
#        m3 = Molecule("mol2", [0.0, en])
        
    m1.set_egcf((0,1), cf)
    m2.set_egcf((0,1), cf)
#    m3.set_egcf((0,1), cf) 
    
    agg = Aggregate(name="Homodimer")
    
    agg.add_Molecule(m1)
    agg.add_Molecule(m2)
#    agg.add_Molecule(m3)
    
#    with energy_units("1/cm"):
#        Hm = m1.get_Hamiltonian()
#        print(Hm)
#        print(m.convert_energy_2_current_u(Hm._data)) 
        
    with energy_units(world.r_units):
        agg.set_resonance_coupling(0,1,world.r_coupl)
#        agg.set_resonance_coupling(1,2,world.r_coupl)
        
    agg.build()
    
    H = agg.get_Hamiltonian()

#    with energy_units("1/cm"):
#        print(H)
#        print(m.convert_energy_2_current_u(H._data))    
    
    sbi = agg.get_SystemBathInteraction()
        
    RRM = RedfieldRateMatrix(H, sbi)
    
    world.K12 = numpy.real(RRM.data[1,2])
    
    dim = H.dim
    rates_M = numpy.zeros(dim*dim)
    k = 0
    for i in range(dim):
        for j in range(dim):
            rates_M[k] = RRM.data[i,j]
            k += 1
            
    world.rates_M = rates_M
Exemple #14
0
def redfield_tensor(self):
    print("Redfield tensor calculation")

    #
    # Correlation function
    #
    params = {
        "ftype": world.ctype,
        "reorg": world.reorg,
        "cortime": world.ctime,
        "T": world.temp,
        "matsubara": world.mats
    }

    # FIXME: also time_units, temperature_units
    with energy_units(world.e_units):
        cf = CorrelationFunction(world.ta, params)

    #
    # Homodimer
    #
    with energy_units(world.h_units):
        en = world.senergy
        m1 = Molecule("mol1", [0.0, en])
        m2 = Molecule("mol2", [0.0, en])

    m1.set_egcf((0, 1), cf)
    m2.set_egcf((0, 1), cf)

    agg = Aggregate("Homodimer")

    agg.add_Molecule(m1)
    agg.add_Molecule(m2)

    #    m = Manager()
    ##
    #    with energy_units("1/cm"):
    #        Hm = m1.get_Hamiltonian()
    #        print(Hm)
    #        print(m.convert_energy_2_current_u(Hm._data))

    with energy_units(world.r_units):
        agg.set_resonance_coupling(0, 1, world.r_coupl)

    agg.build()

    H = agg.get_Hamiltonian()
    world.HH = H

    ##
    #    with energy_units("1/cm"):
    #        print(H)
    #        print(m.convert_energy_2_current_u(H._data))

    sbi = agg.get_SystemBathInteraction()

    H.protect_basis()
    with eigenbasis_of(H):
        RRT = RedfieldRelaxationTensor(H, sbi)

        dim = H.dim
        rates_T = numpy.zeros(dim * dim)
        k = 0

        world.K12 = numpy.real(RRT.data[1, 1, 2, 2])
        for i in range(dim):
            for j in range(dim):
                rates_T[k] = numpy.real(RRT.data[i, i, j, j])
                k += 1

    world.rates_T = rates_T
class AggregateTest(unittest.TestCase):
    """Tests for the Manager class
    
    
    """
    
    def setUp(self):
        
        m1 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m2 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])
        
        time = TimeAxis(0.0, 1000, 1.0)
        params = dict(ftype="OverdampedBrownian", reorg=20, cortime=100, T=300)
        with energy_units("1/cm"):
            fc = CorrelationFunction(time, params)
            
        m1.set_transition_environment((0,1), fc)
        m1.position = [0.0, 0.0, 0.0]
        m1.set_dipole(0,1,[10.0, 0.0, 0.0])
        m2.set_transition_environment((0,1), fc)
        m2.position = [10.0, 0.0, 0.0]
        m2.set_dipole(0,1,[10.0, 0.0, 0.0])
        
        self.agg = Aggregate(name="TestAgg", molecules=[m1,m2])
        
        self.agg.set_coupling_by_dipole_dipole()
        
        self.agg.build()
        
        
        m3 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m4 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])     
        m3.add_Mode(Mode(0.01))
        m4.add_Mode(Mode(0.01))
        
        mod3 = m3.get_Mode(0)
        mod4 = m4.get_Mode(0)
        
        mod3.set_nmax(0, 4)
        mod3.set_nmax(1, 4)
        mod3.set_HR(1, 0.1)
        mod4.set_nmax(0, 4)
        mod4.set_nmax(1, 4)
        mod4.set_HR(1, 0.3)
        
        self.vagg = Aggregate(molecules=[m3, m4])
        self.vagg.build()


#########################################################################
#
#                               TESTS
#
#########################################################################

    def test_saving_of_aggregate(self):
        """(Aggregate) Testing its saving capability 
        
        
        """
        use_temporary_file = True
        
        if use_temporary_file: 
            
            #drv = "core"
            #bcs = False
        
            #with h5py.File('tempfile.hdf5', 
            #               driver=drv, 
            #               backing_store=bcs) as f:
            with tempfile.TemporaryFile() as f:
                                             
                self.agg.save(f, test=True) #,report_unsaved=True)
                
                # reread it
                agg = Aggregate()
                agg = agg.load(f, test=True)

        else:

            #with h5py.File('tempfile.hdf5') as f:
            with open('tempfile.qrp','wb') as f:                                           
                self.agg.save(f)
            
            #with h5py.File('tempfile.hdf5') as f:
            with open('tempfile.qrp','rb') as f:
                agg = Aggregate()
                agg.load(f)
            
            
        
        self.assertEqual(self.agg.nmono, agg.nmono)
        self.assertEqual(self.agg.mult, agg.mult)
        self.assertEqual(self.agg.sbi_mult, agg.sbi_mult)
        self.assertEqual(self.agg.name, agg.name)
        self.assertEqual(self.agg._has_egcf_matrix, agg._has_egcf_matrix)
        self.assertEqual(self.agg._has_system_bath_interaction,
                         agg._has_system_bath_interaction)
        self.assertEqual(self.agg.coupling_initiated, agg.coupling_initiated)
        self.assertEqual(self.agg._has_relaxation_tensor,
                         agg._has_relaxation_tensor)
        self.assertEqual(self.agg._relaxation_theory, agg._relaxation_theory)
        self.assertEqual(self.agg._built, agg._built)
        self.assertEqual(self.agg.Nel,agg.Nel)
        self.assertEqual(self.agg.Ntot,agg.Ntot)
        numpy.testing.assert_array_equal(self.agg.Nb,agg.Nb)
        for key in agg.mnames.keys():
            self.assertEqual(self.agg.mnames[key],agg.mnames[key])
        numpy.testing.assert_array_equal(self.agg.resonance_coupling, 
                                         agg.resonance_coupling) 
        mnames = ["Molecule 1", "Molecule 2"]
        for k in range(agg.nmono):
            m = agg.monomers[k]
            self.assertIn(m.name, mnames)
            mnames.remove(m.name)
            

    def test_trace_over_vibrations(self):
        """(Aggregate) Testing trace over vibrational DOF
        
        """
        
        agg = self.vagg
        
        ham = agg.get_Hamiltonian()
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[5, 5] = 1.0
        redr = agg.trace_over_vibrations(rho)
        
        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=7)
        
        N = agg.Nb[0]
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N+5, N+5] = 1.0
        redr = agg.trace_over_vibrations(rho)       

        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=3)


        N = agg.Nb[1]
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N+5, N+5] = 1.0
        redr = agg.trace_over_vibrations(rho)       

        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=2)

        
    def test_get_Density_Matrix_thermal(self):
        """(Aggregate) Testing the get_Densitymatrix method with `thermal` condition type
        
        """
        from quantarhei.core.units import kB_intK
        
        vagg = self.vagg
        H = vagg.get_Hamiltonian()
        N = H.data.shape[0]
        
        # zero temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal")
        tst0 = numpy.zeros((N,N),dtype=qr.COMPLEX)
        tst0[0,0] = 1.0
        
        numpy.testing.assert_almost_equal(rho0.data, tst0)
        
        # room temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal", 
                                      temperature=300)
        # cannonical balance between neighboring states is tested
        kbT = kB_intK*300.0
        for k in range(N-1):
            E2 = H.data[k+1,k+1]
            E1 = H.data[k,k]
            ratio = numpy.exp(-(E2-E1)/kbT)
            numpy.testing.assert_almost_equal(ratio, 
                                       rho0.data[k+1,k+1]/rho0.data[k,k])

            
    def test_get_Density_Matrix_thermal_excited(self):
        """(Aggregate) Testing the get_Densitymatrix method with `thermal_excited_state` condition type
        
        """
        from quantarhei.core.units import kB_intK
        
        vagg = self.vagg
        H = vagg.get_Hamiltonian()
        N = H.data.shape[0]
        Nb0 = vagg.Nb[0]
           
        # zero temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal_excited_state")
        tst0 = numpy.zeros((N,N),dtype=qr.COMPLEX)
        tst0[Nb0,Nb0] = 1.0        
        
        numpy.testing.assert_almost_equal(rho0.data, tst0)
        
        # room temperature
                                      
        kbT = kB_intK*300.0
        
        H = self.agg.get_Hamiltonian()
        N = H.data.shape[0]
        Nb0 = self.agg.Nb[0]
        
        with qr.eigenbasis_of(H):
            rho0 = self.agg.get_DensityMatrix(condition_type="thermal_excited_state", 
                                              temperature=300)
       
        tst0 = numpy.zeros((N,N),dtype=qr.COMPLEX)
        
        with qr.eigenbasis_of(H):
            ssum = 0.0
            for i in range(Nb0, N):
                tst0[i,i] = numpy.exp(-(H.data[i,i]-H.data[Nb0,Nb0])/kbT)
                ssum += tst0[i,i]
            tst0 = tst0/ssum        
            numpy.testing.assert_almost_equal(rho0.data, tst0)
        
        
        
#        ssum = 0.0
#        for i in range(N):
#            tst0[i,i] = numpy.exp(-H.data[i,i]/kbT)
#            ssum += tst0[i,i]
#        tst0 = tst0/ssum
#        
#        DD = vagg.TrDMOp.data
#        # abs value of the transition dipole moment
#        dabs = numpy.sqrt(DD[:,:,0]**2 + \
#                          DD[:,:,1]**2 + DD[:,:,2]**2)
#        # excitation from bra and ket
#        tst0 = numpy.dot(dabs, numpy.dot(tst0,dabs)) 
#        
#        numpy.testing.assert_almost_equal(rho0.data, tst0)
        
        
        

    def test_get_temperature(self):
        """(Aggregate) Testing temperature retrieval 
        
        
        """
        agg = self.agg
        
        T = agg.get_temperature()
        
        numpy.testing.assert_almost_equal(T, 300.0)
        
  
    def test_init_coupling_matrix(self):
        """(Aggregate) Testing coupling matrix initialization 
        
        """
        agg = TestAggregate(name="dimer-2-env")
        
        self.assertFalse(agg.coupling_initiated)
        
        agg.init_coupling_matrix()
        
        self.assertTrue(agg.coupling_initiated)
        self.assertAlmostEqual(0.0, agg.resonance_coupling[0,1])

     
    def test_set_resonance_coupling(self):        
        """(Aggregate) Testing resonance coupling setting with different units
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.init_coupling_matrix()        
        
        agg.set_resonance_coupling(0, 1, 1.0)
        self.assertAlmostEqual(1.0, agg.resonance_coupling[0,1])
        self.assertAlmostEqual(1.0, agg.resonance_coupling[1,0])
        
        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, 100.0)
        self.assertAlmostEqual(qr.convert(100.0, "1/cm", "int"),
                               agg.resonance_coupling[0,1])
        self.assertAlmostEqual(qr.convert(100.0, "1/cm", "int"),
                               agg.resonance_coupling[1,0])
        
     
    def test_get_resonance_coupling(self):
        """(Aggregate) Testing resonance coupling retrieval in different units
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.init_coupling_matrix()        
        agg.set_resonance_coupling(0, 1, 1.0)

        coup = agg.get_resonance_coupling(1,0)
        self.assertAlmostEqual(coup, 1.0)

        with qr.energy_units("1/cm"):
            coup = agg.get_resonance_coupling(1,0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "1/cm"))
        
        with qr.energy_units("eV"):
            coup = agg.get_resonance_coupling(1,0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "eV"))
        
        with qr.energy_units("THz"):
            coup = agg.get_resonance_coupling(1,0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "THz"))
        
       
    def test_set_resonance_coupling_matrix(self):
        """(Aggregate) Testing setting the whole resonance coupling matrix
        
        """
        agg = TestAggregate(name="dimer-2-env")

        mat = [[0.0, 1.0],
               [1.0, 0.0]]
        
        agg.set_resonance_coupling_matrix(mat)
        self.assertAlmostEqual(agg.resonance_coupling[1,0], 1.0)
        self.assertAlmostEqual(agg.resonance_coupling[0,1], 1.0)
        self.assertAlmostEqual(agg.resonance_coupling[0,0], 0.0)
        self.assertAlmostEqual(agg.resonance_coupling[1,1], 0.0)

        mat = ((0.0, 500.0),
               (500.0, 0.0))
        
        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling_matrix(mat)

        inint = qr.convert(500, "1/cm", "int")
        self.assertAlmostEqual(agg.resonance_coupling[1,0], inint)
        self.assertAlmostEqual(agg.resonance_coupling[0,1], inint)
        self.assertAlmostEqual(agg.resonance_coupling[0,0], 0.0)
        self.assertAlmostEqual(agg.resonance_coupling[1,1], 0.0)

    
    def test_dipole_dipole_coupling(self):
        """(Aggregate) Testing dipole-dipole coupling calculation

        """
        agg = TestAggregate(name="dimer-2-env")

        coup1 = agg.dipole_dipole_coupling(0,1)
        coup2 = agg.dipole_dipole_coupling(0,1, epsr=2.0)
        self.assertAlmostEqual(coup1, coup2*2.0)
        
        with qr.energy_units("1/cm"):
            coup = agg.dipole_dipole_coupling(0,1)
        self.assertAlmostEqual(qr.convert(coup1,"int","1/cm"), coup)


    def test_set_coupling_by_dipole_dipole(self):
        """(Aggregate) Testing dipole-dipole coupling calculation for the whole agregate
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.set_coupling_by_dipole_dipole()

        coup1 = agg.dipole_dipole_coupling(0,1)
        self.assertAlmostEqual(coup1, agg.resonance_coupling[0,1])
        
        with qr.energy_units("1/cm"):
            agg.set_coupling_by_dipole_dipole()
            
        coup1 = agg.dipole_dipole_coupling(0,1)
        self.assertAlmostEqual(coup1, agg.resonance_coupling[0,1])


    def test_calculate_resonance_coupling(self):
        """(Aggregate) Testing resonance coupling calculation by various methods
        
        """
        agg = TestAggregate(name="dimer-2-env")
        
        agg.calculate_resonance_coupling(method="dipole-dipole")        
        coup1 = agg.dipole_dipole_coupling(0,1)
        
        self.assertEqual(coup1, agg.resonance_coupling[1,0])
        
        with qr.energy_units("1/cm"):
            agg.calculate_resonance_coupling(method="dipole-dipole")        

        self.assertEqual(coup1, agg.resonance_coupling[1,0])
            
            
    def test_add_Molecule(self):
        """(Aggregate) Testing add_Molecule() method
        
        """
        agg = TestAggregate(name="dimer-2-env")   
        
        mol = qr.Molecule(elenergies=[0.0, 1.0])
        
        nmols1 = agg.nmono
        agg.add_Molecule(mol)
        nmols2 = agg.nmono
        
        self.assertEqual(nmols1 + 1, nmols2)
        self.assertEqual(len(agg.monomers), nmols2)
        self.assertLessEqual(len(agg.mnames), nmols2)
        
        
        
        
Exemple #16
0
m1 = Molecule([0.0, 1.0])
m2 = Molecule([0.0, 1.1])
m3 = Molecule([0.0, 1.2])

from quantarhei import Aggregate

agg = Aggregate([m1, m2, m3])
agg.build()

#
# Operator describing relaxation
#
from quantarhei.qm import Operator

HH = agg.get_Hamiltonian()
K = Operator(dim=HH.dim, real=True)
K.data[1, 2] = 1.0

#
# System bath interaction with prescribed rate
#
from quantarhei.qm import SystemBathInteraction

sbi = SystemBathInteraction(sys_operators=[K], rates=(1.0 / 100, ))
agg.set_SystemBathInteraction(sbi)

#
# Corresponding Lindblad form
#
from quantarhei.qm import LindbladForm
def redfield_tensor(self):
    print("Redfield tensor calculation")

    
    #
    # Correlation function
    #
    params = {"ftype":    world.ctype,
              "reorg":    world.reorg,
              "cortime":  world.ctime,
              "T":        world.temp,
              "matsubara":world.mats}
              
    # FIXME: also time_units, temperature_units
    with energy_units(world.e_units):
        cf = CorrelationFunction(world.ta,params) 

    
    #
    # Homodimer
    #
    with energy_units(world.h_units):
        en = world.senergy
        m1 = Molecule([0.0, en], "mol1")
        m2 = Molecule([0.0, en], "mol2")
        
    m1.set_egcf((0,1), cf)
    m2.set_egcf((0,1), cf)
        
    agg = Aggregate(name="Homodimer")
    
    agg.add_Molecule(m1)
    agg.add_Molecule(m2)
    
#    m = Manager()
##
#    with energy_units("1/cm"):
#        Hm = m1.get_Hamiltonian()
#        print(Hm)
#        print(m.convert_energy_2_current_u(Hm._data)) 
        
    with energy_units(world.r_units):
        agg.set_resonance_coupling(0,1,world.r_coupl)
        
    agg.build()
    
    H = agg.get_Hamiltonian()
    world.HH = H

##
#    with energy_units("1/cm"):
#        print(H)
#        print(m.convert_energy_2_current_u(H._data))    
    
    sbi = agg.get_SystemBathInteraction()
    
    H.protect_basis()
    with eigenbasis_of(H):    
        RRT = RedfieldRelaxationTensor(H, sbi)
    
        dim = H.dim
        rates_T = numpy.zeros(dim*dim)
        k = 0

        world.K12 = numpy.real(RRT.data[1,1,2,2])
        for i in range(dim):
            for j in range(dim):
                rates_T[k] = numpy.real(RRT.data[i,i,j,j])
                k += 1
                
    world.rates_T = rates_T