Exemple #1
0
def absorption_spectrum_trimer(self):
    
    dd1 = [0.0,3.0,0.0]
    dd2 = [0.0,1.0,2.0]
    dd3 = [0.0,1.0,1.0]
    
    cf = world.cf

    with energy_units("1/cm"):
        m1 = Molecule([0.0, 12100])
        m1.set_dipole(0,1,dd1)
        m1.set_transition_environment((0,1), cf)
        m2 = Molecule([0.0, 11800])
        m2.set_dipole(0,1,dd2)
        m2.set_transition_environment((0,1), cf)
        m3 = Molecule([0.0, 12500])
        m3.set_dipole(0,1,dd3)  
        m3.set_transition_environment((0,1), cf)
        

    m1.position = [0.0,0.0,0.0]
    m2.position = [5.0,0.0,0.0] 
    m3.position = [0.0,5.0,0.0] 
    
    
    AG = Aggregate(name="TestAggregate")

    AG.add_Molecule(m1)
    AG.add_Molecule(m2)
    AG.add_Molecule(m3)
    
    AG.set_coupling_by_dipole_dipole(epsr=3.0)

    AG.build()

    (RRr,hamr) = AG.get_RelaxationTensor(world.ta,
                                   relaxation_theory="standard_Redfield",
                                   time_dependent=True)    
    ac = AbsSpectrumCalculator(world.ta,AG, 
                  relaxation_tensor=RRr,
                  effective_hamiltonian=hamr)
    
    with energy_units("1/cm"):
        ac.bootstrap(rwa=12000)
        a1 = ac.calculate(raw=True)
    
    with energy_units("1/cm"):
        world.abs = numpy.zeros((len(a1.data),2))
        for kk in range(len(a1.data)):
            world.abs[kk,0] = a1.axis.data[kk] #frequency[kk]
            world.abs[kk,1] = a1.data[kk]  
Exemple #2
0
def absorption_spectrum_trimer(self):

    dd1 = [0.0, 3.0, 0.0]
    dd2 = [0.0, 1.0, 2.0]
    dd3 = [0.0, 1.0, 1.0]

    cf = world.cf

    with energy_units("1/cm"):
        m1 = Molecule([0.0, 12100])
        m1.set_dipole(0, 1, dd1)
        m1.set_transition_environment((0, 1), cf)
        m2 = Molecule([0.0, 11800])
        m2.set_dipole(0, 1, dd2)
        m2.set_transition_environment((0, 1), cf)
        m3 = Molecule([0.0, 12500])
        m3.set_dipole(0, 1, dd3)
        m3.set_transition_environment((0, 1), cf)

    m1.position = [0.0, 0.0, 0.0]
    m2.position = [5.0, 0.0, 0.0]
    m3.position = [0.0, 5.0, 0.0]

    AG = Aggregate(name="TestAggregate")

    AG.add_Molecule(m1)
    AG.add_Molecule(m2)
    AG.add_Molecule(m3)

    AG.set_coupling_by_dipole_dipole(epsr=3.0)

    AG.build()

    (RRr,
     hamr) = AG.get_RelaxationTensor(world.ta,
                                     relaxation_theory="standard_Redfield",
                                     time_dependent=True)
    ac = AbsSpectrumCalculator(world.ta,
                               AG,
                               relaxation_tensor=RRr,
                               effective_hamiltonian=hamr)

    with energy_units("1/cm"):
        ac.bootstrap(rwa=12000)
        a1 = ac.calculate()

    with energy_units("1/cm"):
        world.abs = numpy.zeros((len(a1.data), 2))
        for kk in range(len(a1.data)):
            world.abs[kk, 0] = a1.axis.data[kk]  #frequency[kk]
            world.abs[kk, 1] = a1.data[kk]
Exemple #3
0
def absorption_spectrum_dimer(self):
    
    dd1 = [0.0,3.0,0.0]
    dd2 = [0.0,1.0,1.0]
    
    cf = world.cf
    #cm = CorrelationFunctionMatrix(world.ta,2,1)
    #cm.set_correlation_function(cf,[(1,1),(0,0)])

    with energy_units("1/cm"):
        m1 = Molecule([0.0, 12100])
        m1.set_dipole(0,1,dd1)
        m1.set_transition_environment((0,1), cf)
        m2 = Molecule([0.0, 12000])
        m2.set_dipole(0,1,dd2)
        m2.set_transition_environment((0,1), cf)
        
   #m1.set_egcf([0,1],cf)
    #m2.set_egcf([0,1],cf)
    #m1.set_egcf_mapping((0,1),cm,0)
    #m2.set_egcf_mapping((0,1),cm,1)
    m1.position = [0.0,0.0,0.0]
    m2.position = [5.0,0.0,0.0] 
    
    AG = Aggregate(name="TestAggregate")
    #AG.set_egcf_matrix(cm)

    AG.add_Molecule(m1)
    AG.add_Molecule(m2)


    AG.set_coupling_by_dipole_dipole()

    AG.build()

    ac = AbsSpectrumCalculator(world.ta,AG)
    with energy_units("1/cm"):
        ac.bootstrap(rwa=12000)
        a1 = ac.calculate(raw=True)
    
    with energy_units("1/cm"):
        world.abs = numpy.zeros((len(a1.data),2))
        for kk in range(len(a1.data)):
            world.abs[kk,0] = a1.axis.data[kk] #frequency[kk]
            world.abs[kk,1] = a1.data[kk]    
Exemple #4
0
with energy_units('1/cm'):
    cf2 = CorrelationFunction(tsbi, params2)

cf.add_to_data(cf2)

#
# Set system-bath interaction
#
mol1.set_transition_environment((0, 1), cf)
mol2.set_transition_environment((0, 1), cf)

#
# Creating aggregate
#
agg = Aggregate("Dimer", molecules=[mol1, mol2])
agg.set_coupling_by_dipole_dipole()
with energy_units("1/cm"):
    print(agg.get_resonance_coupling(0, 1))
agg.build(mult=2)

with energy_units("1/cm"):
    rwa_cm = agg.get_RWA_suggestion()
rwa = agg.get_RWA_suggestion()

#
# Prepare for calculation of 2D spectra
#

# TimeAxis for t2 waiting time

t2s = TimeAxis(0.0, 5, 20.0)
class AggregateTest(unittest.TestCase):
    """Tests for the Manager class
    
    
    """
    def setUp(self):

        m1 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m2 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])

        time = TimeAxis(0.0, 1000, 1.0)
        params = dict(ftype="OverdampedBrownian", reorg=20, cortime=100, T=300)
        with energy_units("1/cm"):
            fc = CorrelationFunction(time, params)

        m1.set_transition_environment((0, 1), fc)
        m1.position = [0.0, 0.0, 0.0]
        m1.set_dipole(0, 1, [10.0, 0.0, 0.0])
        m2.set_transition_environment((0, 1), fc)
        m2.position = [10.0, 0.0, 0.0]
        m2.set_dipole(0, 1, [10.0, 0.0, 0.0])

        self.agg = Aggregate(name="TestAgg", molecules=[m1, m2])

        self.agg.set_coupling_by_dipole_dipole()

        self.agg.build()

        m3 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m4 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])
        m3.add_Mode(Mode(0.01))
        m4.add_Mode(Mode(0.01))

        mod3 = m3.get_Mode(0)
        mod4 = m4.get_Mode(0)

        mod3.set_nmax(0, 4)
        mod3.set_nmax(1, 4)
        mod3.set_HR(1, 0.1)
        mod4.set_nmax(0, 4)
        mod4.set_nmax(1, 4)
        mod4.set_HR(1, 0.3)

        self.vagg = Aggregate(molecules=[m3, m4])
        self.vagg.build()

#########################################################################
#
#                               TESTS
#
#########################################################################

    def test_saving_of_aggregate(self):
        """(Aggregate) Testing its saving capability 
        
        
        """
        use_temporary_file = True

        if use_temporary_file:

            #drv = "core"
            #bcs = False

            #with h5py.File('tempfile.hdf5',
            #               driver=drv,
            #               backing_store=bcs) as f:
            with tempfile.TemporaryFile() as f:

                self.agg.save(f, test=True)  #,report_unsaved=True)

                # reread it
                agg = Aggregate()
                agg = agg.load(f, test=True)

        else:

            #with h5py.File('tempfile.hdf5') as f:
            with open('tempfile.qrp', 'wb') as f:
                self.agg.save(f)

            #with h5py.File('tempfile.hdf5') as f:
            with open('tempfile.qrp', 'rb') as f:
                agg = Aggregate()
                agg.load(f)

        self.assertEqual(self.agg.nmono, agg.nmono)
        self.assertEqual(self.agg.mult, agg.mult)
        self.assertEqual(self.agg.sbi_mult, agg.sbi_mult)
        self.assertEqual(self.agg.name, agg.name)
        self.assertEqual(self.agg._has_egcf_matrix, agg._has_egcf_matrix)
        self.assertEqual(self.agg._has_system_bath_interaction,
                         agg._has_system_bath_interaction)
        self.assertEqual(self.agg.coupling_initiated, agg.coupling_initiated)
        self.assertEqual(self.agg._has_relaxation_tensor,
                         agg._has_relaxation_tensor)
        self.assertEqual(self.agg._relaxation_theory, agg._relaxation_theory)
        self.assertEqual(self.agg._built, agg._built)
        self.assertEqual(self.agg.Nel, agg.Nel)
        self.assertEqual(self.agg.Ntot, agg.Ntot)
        numpy.testing.assert_array_equal(self.agg.Nb, agg.Nb)
        for key in agg.mnames.keys():
            self.assertEqual(self.agg.mnames[key], agg.mnames[key])
        numpy.testing.assert_array_equal(self.agg.resonance_coupling,
                                         agg.resonance_coupling)
        mnames = ["Molecule 1", "Molecule 2"]
        for k in range(agg.nmono):
            m = agg.monomers[k]
            self.assertIn(m.name, mnames)
            mnames.remove(m.name)

    def test_trace_over_vibrations(self):
        """(Aggregate) Testing trace over vibrational DOF
        
        """

        agg = self.vagg

        ham = agg.get_Hamiltonian()

        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[5, 5] = 1.0
        redr = agg.trace_over_vibrations(rho)

        numpy.testing.assert_almost_equal(numpy.trace(redr._data),
                                          1.0,
                                          decimal=7)

        N = agg.Nb[0]

        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N + 5, N + 5] = 1.0
        redr = agg.trace_over_vibrations(rho)

        numpy.testing.assert_almost_equal(numpy.trace(redr._data),
                                          1.0,
                                          decimal=3)

        N = agg.Nb[1]

        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N + 5, N + 5] = 1.0
        redr = agg.trace_over_vibrations(rho)

        numpy.testing.assert_almost_equal(numpy.trace(redr._data),
                                          1.0,
                                          decimal=2)

    def test_get_Density_Matrix_thermal(self):
        """(Aggregate) Testing the get_Densitymatrix method with `thermal` condition type
        
        """
        from quantarhei.core.units import kB_intK

        vagg = self.vagg
        H = vagg.get_Hamiltonian()
        N = H.data.shape[0]

        # zero temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal")
        tst0 = numpy.zeros((N, N), dtype=qr.COMPLEX)
        tst0[0, 0] = 1.0

        numpy.testing.assert_almost_equal(rho0.data, tst0)

        # room temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal",
                                      temperature=300)
        # cannonical balance between neighboring states is tested
        kbT = kB_intK * 300.0
        for k in range(N - 1):
            E2 = H.data[k + 1, k + 1]
            E1 = H.data[k, k]
            ratio = numpy.exp(-(E2 - E1) / kbT)
            numpy.testing.assert_almost_equal(
                ratio, rho0.data[k + 1, k + 1] / rho0.data[k, k])

    def test_get_Density_Matrix_thermal_excited(self):
        """(Aggregate) Testing the get_Densitymatrix method with `thermal_excited_state` condition type
        
        """
        from quantarhei.core.units import kB_intK

        vagg = self.vagg
        H = vagg.get_Hamiltonian()
        N = H.data.shape[0]
        Nb0 = vagg.Nb[0]

        # zero temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal_excited_state")
        tst0 = numpy.zeros((N, N), dtype=qr.COMPLEX)
        tst0[Nb0, Nb0] = 1.0

        numpy.testing.assert_almost_equal(rho0.data, tst0)

        # room temperature

        kbT = kB_intK * 300.0

        H = self.agg.get_Hamiltonian()
        N = H.data.shape[0]
        Nb0 = self.agg.Nb[0]

        with qr.eigenbasis_of(H):
            rho0 = self.agg.get_DensityMatrix(
                condition_type="thermal_excited_state", temperature=300)

        tst0 = numpy.zeros((N, N), dtype=qr.COMPLEX)

        with qr.eigenbasis_of(H):
            ssum = 0.0
            for i in range(Nb0, N):
                tst0[i,
                     i] = numpy.exp(-(H.data[i, i] - H.data[Nb0, Nb0]) / kbT)
                ssum += tst0[i, i]
            tst0 = tst0 / ssum
            numpy.testing.assert_almost_equal(rho0.data, tst0)

#        ssum = 0.0
#        for i in range(N):
#            tst0[i,i] = numpy.exp(-H.data[i,i]/kbT)
#            ssum += tst0[i,i]
#        tst0 = tst0/ssum
#
#        DD = vagg.TrDMOp.data
#        # abs value of the transition dipole moment
#        dabs = numpy.sqrt(DD[:,:,0]**2 + \
#                          DD[:,:,1]**2 + DD[:,:,2]**2)
#        # excitation from bra and ket
#        tst0 = numpy.dot(dabs, numpy.dot(tst0,dabs))
#
#        numpy.testing.assert_almost_equal(rho0.data, tst0)

    def test_get_temperature(self):
        """(Aggregate) Testing temperature retrieval 
        
        
        """
        agg = self.agg

        T = agg.get_temperature()

        numpy.testing.assert_almost_equal(T, 300.0)

    def test_init_coupling_matrix(self):
        """(Aggregate) Testing coupling matrix initialization 
        
        """
        agg = TestAggregate(name="dimer-2-env")

        self.assertFalse(agg.coupling_initiated)

        agg.init_coupling_matrix()

        self.assertTrue(agg.coupling_initiated)
        self.assertAlmostEqual(0.0, agg.resonance_coupling[0, 1])

    def test_set_resonance_coupling(self):
        """(Aggregate) Testing resonance coupling setting with different units
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.init_coupling_matrix()

        agg.set_resonance_coupling(0, 1, 1.0)
        self.assertAlmostEqual(1.0, agg.resonance_coupling[0, 1])
        self.assertAlmostEqual(1.0, agg.resonance_coupling[1, 0])

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, 100.0)
        self.assertAlmostEqual(qr.convert(100.0, "1/cm", "int"),
                               agg.resonance_coupling[0, 1])
        self.assertAlmostEqual(qr.convert(100.0, "1/cm", "int"),
                               agg.resonance_coupling[1, 0])

    def test_get_resonance_coupling(self):
        """(Aggregate) Testing resonance coupling retrieval in different units
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.init_coupling_matrix()
        agg.set_resonance_coupling(0, 1, 1.0)

        coup = agg.get_resonance_coupling(1, 0)
        self.assertAlmostEqual(coup, 1.0)

        with qr.energy_units("1/cm"):
            coup = agg.get_resonance_coupling(1, 0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "1/cm"))

        with qr.energy_units("eV"):
            coup = agg.get_resonance_coupling(1, 0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "eV"))

        with qr.energy_units("THz"):
            coup = agg.get_resonance_coupling(1, 0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "THz"))

    def test_set_resonance_coupling_matrix(self):
        """(Aggregate) Testing setting the whole resonance coupling matrix
        
        """
        agg = TestAggregate(name="dimer-2-env")

        mat = [[0.0, 1.0], [1.0, 0.0]]

        agg.set_resonance_coupling_matrix(mat)
        self.assertAlmostEqual(agg.resonance_coupling[1, 0], 1.0)
        self.assertAlmostEqual(agg.resonance_coupling[0, 1], 1.0)
        self.assertAlmostEqual(agg.resonance_coupling[0, 0], 0.0)
        self.assertAlmostEqual(agg.resonance_coupling[1, 1], 0.0)

        mat = ((0.0, 500.0), (500.0, 0.0))

        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling_matrix(mat)

        inint = qr.convert(500, "1/cm", "int")
        self.assertAlmostEqual(agg.resonance_coupling[1, 0], inint)
        self.assertAlmostEqual(agg.resonance_coupling[0, 1], inint)
        self.assertAlmostEqual(agg.resonance_coupling[0, 0], 0.0)
        self.assertAlmostEqual(agg.resonance_coupling[1, 1], 0.0)

    def test_dipole_dipole_coupling(self):
        """(Aggregate) Testing dipole-dipole coupling calculation

        """
        agg = TestAggregate(name="dimer-2-env")

        coup1 = agg.dipole_dipole_coupling(0, 1)
        coup2 = agg.dipole_dipole_coupling(0, 1, epsr=2.0)
        self.assertAlmostEqual(coup1, coup2 * 2.0)

        with qr.energy_units("1/cm"):
            coup = agg.dipole_dipole_coupling(0, 1)
        self.assertAlmostEqual(qr.convert(coup1, "int", "1/cm"), coup)

    def test_set_coupling_by_dipole_dipole(self):
        """(Aggregate) Testing dipole-dipole coupling calculation for the whole agregate
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.set_coupling_by_dipole_dipole()

        coup1 = agg.dipole_dipole_coupling(0, 1)
        self.assertAlmostEqual(coup1, agg.resonance_coupling[0, 1])

        with qr.energy_units("1/cm"):
            agg.set_coupling_by_dipole_dipole()

        coup1 = agg.dipole_dipole_coupling(0, 1)
        self.assertAlmostEqual(coup1, agg.resonance_coupling[0, 1])

    def test_calculate_resonance_coupling(self):
        """(Aggregate) Testing resonance coupling calculation by various methods
        
        """
        agg = TestAggregate(name="dimer-2-env")

        agg.calculate_resonance_coupling(method="dipole-dipole")
        coup1 = agg.dipole_dipole_coupling(0, 1)

        self.assertEqual(coup1, agg.resonance_coupling[1, 0])

        with qr.energy_units("1/cm"):
            agg.calculate_resonance_coupling(method="dipole-dipole")

        self.assertEqual(coup1, agg.resonance_coupling[1, 0])

    def test_add_Molecule(self):
        """(Aggregate) Testing add_Molecule() method
        
        """
        agg = TestAggregate(name="dimer-2-env")

        mol = qr.Molecule(elenergies=[0.0, 1.0])

        nmols1 = agg.nmono
        agg.add_Molecule(mol)
        nmols2 = agg.nmono

        self.assertEqual(nmols1 + 1, nmols2)
        self.assertEqual(len(agg.monomers), nmols2)
        self.assertLessEqual(len(agg.mnames), nmols2)
class AggregateTest(unittest.TestCase):
    """Tests for the Manager class
    
    
    """
    
    def setUp(self):
        
        m1 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m2 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])
        
        time = TimeAxis(0.0, 1000, 1.0)
        params = dict(ftype="OverdampedBrownian", reorg=20, cortime=100, T=300)
        with energy_units("1/cm"):
            fc = CorrelationFunction(time, params)
            
        m1.set_transition_environment((0,1), fc)
        m1.position = [0.0, 0.0, 0.0]
        m1.set_dipole(0,1,[10.0, 0.0, 0.0])
        m2.set_transition_environment((0,1), fc)
        m2.position = [10.0, 0.0, 0.0]
        m2.set_dipole(0,1,[10.0, 0.0, 0.0])
        
        self.agg = Aggregate(name="TestAgg", molecules=[m1,m2])
        
        self.agg.set_coupling_by_dipole_dipole()
        
        self.agg.build()
        
        
        m3 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m4 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])     
        m3.add_Mode(Mode(0.01))
        m4.add_Mode(Mode(0.01))
        
        mod3 = m3.get_Mode(0)
        mod4 = m4.get_Mode(0)
        
        mod3.set_nmax(0, 4)
        mod3.set_nmax(1, 4)
        mod3.set_HR(1, 0.1)
        mod4.set_nmax(0, 4)
        mod4.set_nmax(1, 4)
        mod4.set_HR(1, 0.3)
        
        self.vagg = Aggregate(molecules=[m3, m4])
        self.vagg.build()


#########################################################################
#
#                               TESTS
#
#########################################################################

    def test_saving_of_aggregate(self):
        """(Aggregate) Testing its saving capability 
        
        
        """
        use_temporary_file = True
        
        if use_temporary_file: 
            
            #drv = "core"
            #bcs = False
        
            #with h5py.File('tempfile.hdf5', 
            #               driver=drv, 
            #               backing_store=bcs) as f:
            with tempfile.TemporaryFile() as f:
                                             
                self.agg.save(f, test=True) #,report_unsaved=True)
                
                # reread it
                agg = Aggregate()
                agg = agg.load(f, test=True)

        else:

            #with h5py.File('tempfile.hdf5') as f:
            with open('tempfile.qrp','wb') as f:                                           
                self.agg.save(f)
            
            #with h5py.File('tempfile.hdf5') as f:
            with open('tempfile.qrp','rb') as f:
                agg = Aggregate()
                agg.load(f)
            
            
        
        self.assertEqual(self.agg.nmono, agg.nmono)
        self.assertEqual(self.agg.mult, agg.mult)
        self.assertEqual(self.agg.sbi_mult, agg.sbi_mult)
        self.assertEqual(self.agg.name, agg.name)
        self.assertEqual(self.agg._has_egcf_matrix, agg._has_egcf_matrix)
        self.assertEqual(self.agg._has_system_bath_interaction,
                         agg._has_system_bath_interaction)
        self.assertEqual(self.agg.coupling_initiated, agg.coupling_initiated)
        self.assertEqual(self.agg._has_relaxation_tensor,
                         agg._has_relaxation_tensor)
        self.assertEqual(self.agg._relaxation_theory, agg._relaxation_theory)
        self.assertEqual(self.agg._built, agg._built)
        self.assertEqual(self.agg.Nel,agg.Nel)
        self.assertEqual(self.agg.Ntot,agg.Ntot)
        numpy.testing.assert_array_equal(self.agg.Nb,agg.Nb)
        for key in agg.mnames.keys():
            self.assertEqual(self.agg.mnames[key],agg.mnames[key])
        numpy.testing.assert_array_equal(self.agg.resonance_coupling, 
                                         agg.resonance_coupling) 
        mnames = ["Molecule 1", "Molecule 2"]
        for k in range(agg.nmono):
            m = agg.monomers[k]
            self.assertIn(m.name, mnames)
            mnames.remove(m.name)
            

    def test_trace_over_vibrations(self):
        """(Aggregate) Testing trace over vibrational DOF
        
        """
        
        agg = self.vagg
        
        ham = agg.get_Hamiltonian()
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[5, 5] = 1.0
        redr = agg.trace_over_vibrations(rho)
        
        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=7)
        
        N = agg.Nb[0]
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N+5, N+5] = 1.0
        redr = agg.trace_over_vibrations(rho)       

        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=3)


        N = agg.Nb[1]
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N+5, N+5] = 1.0
        redr = agg.trace_over_vibrations(rho)       

        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=2)

        
    def test_get_Density_Matrix_thermal(self):
        """(Aggregate) Testing the get_Densitymatrix method with `thermal` condition type
        
        """
        from quantarhei.core.units import kB_intK
        
        vagg = self.vagg
        H = vagg.get_Hamiltonian()
        N = H.data.shape[0]
        
        # zero temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal")
        tst0 = numpy.zeros((N,N),dtype=qr.COMPLEX)
        tst0[0,0] = 1.0
        
        numpy.testing.assert_almost_equal(rho0.data, tst0)
        
        # room temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal", 
                                      temperature=300)
        # cannonical balance between neighboring states is tested
        kbT = kB_intK*300.0
        for k in range(N-1):
            E2 = H.data[k+1,k+1]
            E1 = H.data[k,k]
            ratio = numpy.exp(-(E2-E1)/kbT)
            numpy.testing.assert_almost_equal(ratio, 
                                       rho0.data[k+1,k+1]/rho0.data[k,k])

            
    def test_get_Density_Matrix_thermal_excited(self):
        """(Aggregate) Testing the get_Densitymatrix method with `thermal_excited_state` condition type
        
        """
        from quantarhei.core.units import kB_intK
        
        vagg = self.vagg
        H = vagg.get_Hamiltonian()
        N = H.data.shape[0]
        Nb0 = vagg.Nb[0]
           
        # zero temperature
        rho0 = vagg.get_DensityMatrix(condition_type="thermal_excited_state")
        tst0 = numpy.zeros((N,N),dtype=qr.COMPLEX)
        tst0[Nb0,Nb0] = 1.0        
        
        numpy.testing.assert_almost_equal(rho0.data, tst0)
        
        # room temperature
                                      
        kbT = kB_intK*300.0
        
        H = self.agg.get_Hamiltonian()
        N = H.data.shape[0]
        Nb0 = self.agg.Nb[0]
        
        with qr.eigenbasis_of(H):
            rho0 = self.agg.get_DensityMatrix(condition_type="thermal_excited_state", 
                                              temperature=300)
       
        tst0 = numpy.zeros((N,N),dtype=qr.COMPLEX)
        
        with qr.eigenbasis_of(H):
            ssum = 0.0
            for i in range(Nb0, N):
                tst0[i,i] = numpy.exp(-(H.data[i,i]-H.data[Nb0,Nb0])/kbT)
                ssum += tst0[i,i]
            tst0 = tst0/ssum        
            numpy.testing.assert_almost_equal(rho0.data, tst0)
        
        
        
#        ssum = 0.0
#        for i in range(N):
#            tst0[i,i] = numpy.exp(-H.data[i,i]/kbT)
#            ssum += tst0[i,i]
#        tst0 = tst0/ssum
#        
#        DD = vagg.TrDMOp.data
#        # abs value of the transition dipole moment
#        dabs = numpy.sqrt(DD[:,:,0]**2 + \
#                          DD[:,:,1]**2 + DD[:,:,2]**2)
#        # excitation from bra and ket
#        tst0 = numpy.dot(dabs, numpy.dot(tst0,dabs)) 
#        
#        numpy.testing.assert_almost_equal(rho0.data, tst0)
        
        
        

    def test_get_temperature(self):
        """(Aggregate) Testing temperature retrieval 
        
        
        """
        agg = self.agg
        
        T = agg.get_temperature()
        
        numpy.testing.assert_almost_equal(T, 300.0)
        
  
    def test_init_coupling_matrix(self):
        """(Aggregate) Testing coupling matrix initialization 
        
        """
        agg = TestAggregate(name="dimer-2-env")
        
        self.assertFalse(agg.coupling_initiated)
        
        agg.init_coupling_matrix()
        
        self.assertTrue(agg.coupling_initiated)
        self.assertAlmostEqual(0.0, agg.resonance_coupling[0,1])

     
    def test_set_resonance_coupling(self):        
        """(Aggregate) Testing resonance coupling setting with different units
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.init_coupling_matrix()        
        
        agg.set_resonance_coupling(0, 1, 1.0)
        self.assertAlmostEqual(1.0, agg.resonance_coupling[0,1])
        self.assertAlmostEqual(1.0, agg.resonance_coupling[1,0])
        
        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling(0, 1, 100.0)
        self.assertAlmostEqual(qr.convert(100.0, "1/cm", "int"),
                               agg.resonance_coupling[0,1])
        self.assertAlmostEqual(qr.convert(100.0, "1/cm", "int"),
                               agg.resonance_coupling[1,0])
        
     
    def test_get_resonance_coupling(self):
        """(Aggregate) Testing resonance coupling retrieval in different units
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.init_coupling_matrix()        
        agg.set_resonance_coupling(0, 1, 1.0)

        coup = agg.get_resonance_coupling(1,0)
        self.assertAlmostEqual(coup, 1.0)

        with qr.energy_units("1/cm"):
            coup = agg.get_resonance_coupling(1,0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "1/cm"))
        
        with qr.energy_units("eV"):
            coup = agg.get_resonance_coupling(1,0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "eV"))
        
        with qr.energy_units("THz"):
            coup = agg.get_resonance_coupling(1,0)
        self.assertAlmostEqual(coup, qr.convert(1.0, "int", "THz"))
        
       
    def test_set_resonance_coupling_matrix(self):
        """(Aggregate) Testing setting the whole resonance coupling matrix
        
        """
        agg = TestAggregate(name="dimer-2-env")

        mat = [[0.0, 1.0],
               [1.0, 0.0]]
        
        agg.set_resonance_coupling_matrix(mat)
        self.assertAlmostEqual(agg.resonance_coupling[1,0], 1.0)
        self.assertAlmostEqual(agg.resonance_coupling[0,1], 1.0)
        self.assertAlmostEqual(agg.resonance_coupling[0,0], 0.0)
        self.assertAlmostEqual(agg.resonance_coupling[1,1], 0.0)

        mat = ((0.0, 500.0),
               (500.0, 0.0))
        
        with qr.energy_units("1/cm"):
            agg.set_resonance_coupling_matrix(mat)

        inint = qr.convert(500, "1/cm", "int")
        self.assertAlmostEqual(agg.resonance_coupling[1,0], inint)
        self.assertAlmostEqual(agg.resonance_coupling[0,1], inint)
        self.assertAlmostEqual(agg.resonance_coupling[0,0], 0.0)
        self.assertAlmostEqual(agg.resonance_coupling[1,1], 0.0)

    
    def test_dipole_dipole_coupling(self):
        """(Aggregate) Testing dipole-dipole coupling calculation

        """
        agg = TestAggregate(name="dimer-2-env")

        coup1 = agg.dipole_dipole_coupling(0,1)
        coup2 = agg.dipole_dipole_coupling(0,1, epsr=2.0)
        self.assertAlmostEqual(coup1, coup2*2.0)
        
        with qr.energy_units("1/cm"):
            coup = agg.dipole_dipole_coupling(0,1)
        self.assertAlmostEqual(qr.convert(coup1,"int","1/cm"), coup)


    def test_set_coupling_by_dipole_dipole(self):
        """(Aggregate) Testing dipole-dipole coupling calculation for the whole agregate
        
        """
        agg = TestAggregate(name="dimer-2-env")
        agg.set_coupling_by_dipole_dipole()

        coup1 = agg.dipole_dipole_coupling(0,1)
        self.assertAlmostEqual(coup1, agg.resonance_coupling[0,1])
        
        with qr.energy_units("1/cm"):
            agg.set_coupling_by_dipole_dipole()
            
        coup1 = agg.dipole_dipole_coupling(0,1)
        self.assertAlmostEqual(coup1, agg.resonance_coupling[0,1])


    def test_calculate_resonance_coupling(self):
        """(Aggregate) Testing resonance coupling calculation by various methods
        
        """
        agg = TestAggregate(name="dimer-2-env")
        
        agg.calculate_resonance_coupling(method="dipole-dipole")        
        coup1 = agg.dipole_dipole_coupling(0,1)
        
        self.assertEqual(coup1, agg.resonance_coupling[1,0])
        
        with qr.energy_units("1/cm"):
            agg.calculate_resonance_coupling(method="dipole-dipole")        

        self.assertEqual(coup1, agg.resonance_coupling[1,0])
            
            
    def test_add_Molecule(self):
        """(Aggregate) Testing add_Molecule() method
        
        """
        agg = TestAggregate(name="dimer-2-env")   
        
        mol = qr.Molecule(elenergies=[0.0, 1.0])
        
        nmols1 = agg.nmono
        agg.add_Molecule(mol)
        nmols2 = agg.nmono
        
        self.assertEqual(nmols1 + 1, nmols2)
        self.assertEqual(len(agg.monomers), nmols2)
        self.assertLessEqual(len(agg.mnames), nmols2)
        
        
        
        
Exemple #7
0
class TestAggregate(unittest.TestCase):
    """Tests for the Manager class
    
    
    """
    
    def setUp(self):
        m1 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m2 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])
        
        time = TimeAxis(0.0, 1000, 1.0)
        params = dict(ftype="OverdampedBrownian", reorg=20, cortime=100, T=300)
        with energy_units("1/cm"):
            fc = CorrelationFunction(time, params)
            
        m1.set_transition_environment((0,1), fc)
        m1.position = [0.0, 0.0, 0.0]
        m1.set_dipole(0,1,[10.0, 0.0, 0.0])
        m2.set_transition_environment((0,1), fc)
        m2.position = [10.0, 0.0, 0.0]
        m2.set_dipole(0,1,[10.0, 0.0, 0.0])
        
        self.agg = Aggregate(name="TestAgg", molecules=[m1,m2])
        
        self.agg.set_coupling_by_dipole_dipole()
        
        self.agg.build()
        
        
        m3 = Molecule(name="Molecule 1", elenergies=[0.0, 1.0])
        m4 = Molecule(name="Molecule 2", elenergies=[0.0, 1.0])     
        m3.add_Mode(Mode(0.01))
        m4.add_Mode(Mode(0.01))
        
        mod3 = m3.get_Mode(0)
        mod4 = m4.get_Mode(0)
        
        mod3.set_nmax(0, 4)
        mod3.set_nmax(1, 4)
        mod3.set_HR(1, 0.1)
        mod4.set_nmax(0, 4)
        mod4.set_nmax(1, 4)
        mod4.set_HR(1, 0.3)
        
        self.vagg = Aggregate(molecules=[m3, m4])
        self.vagg.build()


    def test_saving_of_aggregate(self):
        """Testing the saving capability of the Aggregate class
        
        
        """
        use_temporary_file = True
        
        if use_temporary_file: 
            
            drv = "core"
            bcs = False
        
            with h5py.File('tempfile.hdf5', 
                           driver=drv, 
                           backing_store=bcs) as f:
                                             
                self.agg.save(f,report_unsaved=True)
                
                # reread it
                agg = Aggregate()
                agg.load(f)

        else:

            with h5py.File('tempfile.hdf5') as f:                                           
                self.agg.save(f)
            
            with h5py.File('tempfile.hdf5') as f:
                agg = Aggregate()
                agg.load(f)
            
            
        
        self.assertEqual(self.agg.nmono, agg.nmono)
        self.assertEqual(self.agg.mult, agg.mult)
        self.assertEqual(self.agg.sbi_mult, agg.sbi_mult)
        self.assertEqual(self.agg.name, agg.name)
        self.assertEqual(self.agg._has_egcf_matrix, agg._has_egcf_matrix)
        self.assertEqual(self.agg._has_system_bath_interaction,
                         agg._has_system_bath_interaction)
        self.assertEqual(self.agg.coupling_initiated, agg.coupling_initiated)
        self.assertEqual(self.agg._has_relaxation_tensor,
                         agg._has_relaxation_tensor)
        self.assertEqual(self.agg._relaxation_theory, agg._relaxation_theory)
        self.assertEqual(self.agg._built, agg._built)
        self.assertEqual(self.agg.Nel,agg.Nel)
        self.assertEqual(self.agg.Ntot,agg.Ntot)
        numpy.testing.assert_array_equal(self.agg.Nb,agg.Nb)
        for key in agg.mnames.keys():
            self.assertEqual(self.agg.mnames[key],agg.mnames[key])
        numpy.testing.assert_array_equal(self.agg.resonance_coupling, 
                                         agg.resonance_coupling) 
        mnames = ["Molecule 1", "Molecule 2"]
        for k in range(agg.nmono):
            m = agg.monomers[k]
            self.assertIn(m.name, mnames)
            mnames.remove(m.name)
            

    def test_trace_over_vibrations(self):
        """Testing trace over vibrational DOF
        
        """
        
        agg = self.vagg
        
        ham = agg.get_Hamiltonian()
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[5, 5] = 1.0
        redr = agg.trace_over_vibrations(rho)
        
        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=7)
        
        N = agg.Nb[0]
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N+5, N+5] = 1.0
        redr = agg.trace_over_vibrations(rho)       

        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=3)


        N = agg.Nb[1]
        
        rho = ReducedDensityMatrix(dim=ham.dim)
        rho._data[N+5, N+5] = 1.0
        redr = agg.trace_over_vibrations(rho)       

        numpy.testing.assert_almost_equal(numpy.trace(redr._data), 1.0,
                                          decimal=2)
Exemple #8
0
    m.set_energy(1, 12466.0)
    m = agg.get_Molecule_by_name("BChl3")
    m.set_energy(1, 12129.0)
    m = agg.get_Molecule_by_name("BChl4")
    m.set_energy(1, 12410.0)
    m = agg.get_Molecule_by_name("BChl5")
    m.set_energy(1, 12320.0)
    m = agg.get_Molecule_by_name("BChl6")
    m.set_energy(1, 12593.0)
    m = agg.get_Molecule_by_name("BChl7")
    m.set_energy(1, 12353.0)

#
# Set resonance coupling by dipole-dipole method
#
agg.set_coupling_by_dipole_dipole(epsr=1.21)

#
# Build the aggregate
#
agg.build()

#
# Now we can start simulations
#
H = agg.get_Hamiltonian()

with energy_units("1/cm"):
    print("\nExcited state Hamiltonian (energies in 1/cm):\n")
    #    for i in range(1, H.dim):
    #        for j in range(i,H.dim):
Exemple #9
0
AG.add_Molecule(m5)
AG.add_Molecule(m6)
AG.add_Molecule(m7)
AG.add_Molecule(m8)
AG.add_Molecule(m9)
AG.add_Molecule(m10)
AG.add_Molecule(m11)
AG.add_Molecule(m12)


print(AG._has_egcf_matrix)
print(AG._has_system_bath_interaction)


# setting coupling by dipole-dipole formula
AG.set_coupling_by_dipole_dipole(prefac=0.0147520827152)

print (AG.resonance_coupling[1,2]/cm2int)

# building aggregate
print("Building aggregate... ")
start = tm.time()
AG.build()
print("...done in ",tm.time()-start)

with energy_units("1/cm"):
    anth = Molecule("Anth",[0.0,11380]) #*cm2int],[d0,d1])
anth.set_dipole(0,1,d1)
anth.set_egcf((0,1),cfce1)

# FIXME: use with construct
    m.set_energy(1, 12466.0)
    m = agg.get_Molecule_by_name("BChl3")
    m.set_energy(1, 12129.0)    
    m = agg.get_Molecule_by_name("BChl4")
    m.set_energy(1, 12410.0)
    m = agg.get_Molecule_by_name("BChl5")
    m.set_energy(1, 12320.0)
    m = agg.get_Molecule_by_name("BChl6")
    m.set_energy(1, 12593.0)
    m = agg.get_Molecule_by_name("BChl7")
    m.set_energy(1, 12353.0)
    
#
# Set resonance coupling by dipole-dipole method
#
agg.set_coupling_by_dipole_dipole(epsr=1.21)


# Setting spectral density to all molecules
tmax = qr.TimeAxis(0.0, 1000, 1.0)
param = dict(ftype="OverdampedBrownian", reorg=50,
            cortime=50, T=300)
with qr.energy_units("1/cm"):
    cfce = qr.CorrelationFunction(tmax, param)
    
for mol in agg.monomers:
    mol.set_transition_environment((0,1), cfce)


#
# Build the aggregate
Exemple #11
0
with energy_units('1/cm'):
    cf2 = CorrelationFunction(tsbi, params2)
    
cf.add_to_data(cf2)

#
# Set system-bath interaction
#
mol1.set_transition_environment((0,1),cf)
mol2.set_transition_environment((0,1),cf)

#
# Creating aggregate
#      
agg = Aggregate(name="Dimer", molecules=[mol1, mol2])
agg.set_coupling_by_dipole_dipole()
with energy_units("1/cm"):
    print(agg.get_resonance_coupling(0,1))
agg.build(mult=2)

with energy_units("1/cm"):
    rwa_cm = agg.get_RWA_suggestion()
rwa = agg.get_RWA_suggestion()

#
# Prepare for calculation of 2D spectra
#

# TimeAxis for t2 waiting time

t2s = TimeAxis(0.0, 5, 20.0)
Exemple #12
0
    def get_Aggregate(self, name="dimer-1"):

        if name == "dimer-1":
            agg = Aggregate(name=name)

        elif name == "trimer-1":
            agg = Aggregate(name=name)

            with energy_units("1/cm"):

                m1 = Molecule("Mol 1", [0.0, 10100.0])
                m2 = Molecule("Mol 2", [0.0, 10050.0])
                m3 = Molecule("Mol 3", [0.0, 10000.0])

                m1.position = [0.0, 0.0, 0.0]
                m2.position = [15.0, 0.0, 0.0]
                m3.position = [10.0, 10.0, 0.0]
                m1.set_dipole(0, 1, [5.8, 0.0, 0.0])
                m2.set_dipole(0, 1, [5.8, 0.0, 0.0])
                m3.set_dipole(0, 1, [numpy.sqrt(12.0), 0.0, 0.0])

                agg.add_Molecule(m1)
                agg.add_Molecule(m2)
                agg.add_Molecule(m3)

                self.molecules = [m1, m2, m3]

                #    m4 = Molecule("Mol 4", [0.0, 11000.0])
                #    m5 = Molecule("Mol 5", [0.0, 11000.0])
                #    m4.position = [15.0, 15.0, 0.0]
                #    m5.position = [15.0, 10.0, 0.0]
                #    m4.set_dipole(0,1,[5.8, 0.0, 0.0])
                #    m5.set_dipole(0,1,[5.8, 0.0, 0.0])
                #    agg.add_Molecule(m4)
                #    agg.add_Molecule(m5)

                agg.set_coupling_by_dipole_dipole()

        elif name == "pentamer-1":
            agg = Aggregate(name=name)

            with energy_units("1/cm"):

                m1 = Molecule("Mol 1", [0.0, 10100.0])
                m2 = Molecule("Mol 2", [0.0, 10050.0])
                m3 = Molecule("Mol 3", [0.0, 10000.0])
                m4 = Molecule("Mol 4", [0.0, 10200.0])
                m5 = Molecule("Mol 5", [0.0, 10070.0])

                m1.position = [0.0, 0.0, 0.0]
                m2.position = [15.0, 0.0, 0.0]
                m3.position = [10.0, 10.0, 0.0]
                m4.position = [15.0, 15.0, 0.0]
                m5.position = [0, 10.0, 10.0]

                m1.set_dipole(0, 1, [5.8, 0.0, 0.0])
                m2.set_dipole(0, 1, [5.8, 0.0, 0.0])
                m3.set_dipole(0, 1, [numpy.sqrt(12.0), 0.0, 0.0])
                m4.set_dipole(0, 1, [5.8, 0.0, 0.0])
                m5.set_dipole(0, 1, [5.8, 0.0, 0.0])

                agg.add_Molecule(m1)
                agg.add_Molecule(m2)
                agg.add_Molecule(m3)
                agg.add_Molecule(m4)
                agg.add_Molecule(m5)

                self.molecules = [m1, m2, m3, m4, m5]

                agg.set_coupling_by_dipole_dipole()

        else:
            raise Exception("Unknown model name %s" % name)

        return agg