Exemple #1
0
def viewTime(projData: ProjectData, startDate: str, endDate: str,
             **kwargs) -> Union[Figure, None]:
    """View timeseries in the project

    Parameters
    ----------
    projData : ProjectData
        The project data instance
    startDate : str
        The start of the data range to plot
    endDate : str
        The end of the date range to plot
    sites : List[str], optional
        List of sites 
    sampleFreqs : List[float], optional
        List of sample frequencies to plot
    chans : List[str], optional
        List of channels to plot
    polreverse :  Dict[str, bool]
        Keys are channels and values are boolean flags for reversing   
    scale : Dict[str, float]
        Keys are channels and values are floats to multiply the channel data by   
    calibrate : bool, optional
        Boolean flag to calibrate data
    normalise : bool, optional
        Boolean flag to normalise the data. Default is False and setting to True will normalise each channel independently.
    notch : List[float], optional
        List of frequencies to notch out
    filter : Dict, optional
        Filter parameters
    show : bool, optional
        Boolean flag to show the plot
    save : bool, optional
        Boolean flag to save the plot to images folder
    plotoptions : Dict
        Dictionary of plot options

    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed.
    """
    from resistics.project.shortcuts import getCalibrator
    from resistics.project.preprocess import (
        applyPolarisationReversalOptions,
        applyScaleOptions,
        applyCalibrationOptions,
        applyFilterOptions,
        applyNormaliseOptions,
        applyNotchOptions,
    )
    from resistics.common.plot import savePlot, plotOptionsTime

    options = {}
    options["sites"]: List[str] = projData.sites
    options["sampleFreqs"]: Union[List[float],
                                  List[str]] = projData.getSampleFreqs()
    options["chans"]: List[str] = ["Ex", "Ey", "Hx", "Hy", "Hz"]
    options["polreverse"]: Union[bool, Dict[str, bool]] = False
    options["scale"]: Union[bool, Dict[str, float]] = False
    options["calibrate"]: bool = False
    options["normalise"]: bool = False
    options["filter"]: Dict = {}
    options["notch"]: List[float] = []
    options["show"]: bool = True
    options["save"]: bool = False
    options["plotoptions"]: Dict = plotOptionsTime()
    options = parseKeywords(options, kwargs)

    # prepare calibrator
    cal = getCalibrator(projData.calPath, projData.config)
    if options["calibrate"]:
        cal.printInfo()

    # format startDate and endDate
    start = datetime.strptime("{}.000".format(startDate),
                              "%Y-%m-%d %H:%M:%S.%f")
    stop = datetime.strptime("{}.000".format(endDate), "%Y-%m-%d %H:%M:%S.%f")
    # collect relevant data - dictionary to store timeData
    timeDataAll = {}
    for site in options["sites"]:
        siteData = projData.getSiteData(site)
        if isinstance(siteData, bool):
            # site does not exist
            continue
        siteData.printInfo()
        measurements = siteData.getMeasurements()
        timeDataAll[site] = {}

        # loop over measurements and save data for each one
        for meas in measurements:
            sampleFreq = siteData.getMeasurementSampleFreq(meas)
            if sampleFreq not in options["sampleFreqs"]:
                continue

            # check if data contributes to user defined time period
            siteStart = siteData.getMeasurementStart(meas)
            siteStop = siteData.getMeasurementEnd(meas)
            if siteStop < start or siteStart > stop:
                continue

            reader = siteData.getMeasurement(meas)
            # get the samples of the datetimes
            sampleStart, sampleStop = reader.time2sample(start, stop)
            # as the samples returned from time2sample are rounded use sample2time to get the appropriate start and end times for those samples
            readStart, readStop = reader.sample2time(sampleStart, sampleStop)
            # get the data for any available channels meaning even those sites with missing channels can be plotted
            timeData = reader.getPhysicalData(readStart, readStop)

            projectText(
                "Plotting measurement {} of site {} between {} and {}".format(
                    meas, site, readStart, readStop))

            # apply various options
            applyPolarisationReversalOptions(options, timeData)
            applyScaleOptions(options, timeData)
            applyCalibrationOptions(options, cal, timeData, reader)
            applyFilterOptions(options, timeData)
            applyNotchOptions(options, timeData)
            applyNormaliseOptions(options, timeData)
            timeDataAll[site][meas] = timeData

    # plot all the data
    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    for site in timeDataAll:
        for meas in timeDataAll[site]:
            timeData = timeDataAll[site][meas]
            timeData.view(
                sampleStop=timeDataAll[site][meas].numSamples - 1,
                fig=fig,
                chans=options["chans"],
                label="{} - {}".format(site, meas),
                xlim=[start, stop],
                plotfonts=plotfonts,
            )

    # add the suptitle
    st = fig.suptitle(
        "Time data from {} to {}".format(start.strftime("%Y-%m-%d %H-%M-%S"),
                                         stop.strftime("%Y-%m-%d %H-%M-%S")),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # do the axis labels
    numChans = len(options["chans"])
    for idx, chan in enumerate(options["chans"]):
        plt.subplot(numChans, 1, idx + 1)
        # do the yaxis
        if isElectric(chan):
            plt.ylabel("mV/km", fontsize=plotfonts["axisLabel"])
            if len(options["plotoptions"]["Eylim"]) > 0:
                plt.ylim(options["plotoptions"]["Eylim"])
        else:
            if options["calibrate"]:
                plt.ylabel("nT", fontsize=plotfonts["axisLabel"])
            else:
                plt.ylabel("mV", fontsize=plotfonts["axisLabel"])
            if len(options["plotoptions"]["Hylim"]) > 0:
                plt.ylim(options["plotoptions"]["Hylim"])
        plt.legend(loc=1, fontsize=plotfonts["legend"])

    # plot format
    fig.tight_layout(rect=[0, 0.02, 1, 0.96])
    fig.subplots_adjust(top=0.92)

    # plot show and save
    if options["save"]:
        impath = projData.imagePath
        filename = "timeData_{}_{}".format(
            start.strftime("%Y-%m-%d_%H-%M-%S_"),
            stop.strftime("%Y-%m-%d_%H-%M-%S"))
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Exemple #2
0
def viewSpectraSection(projData: ProjectData, site: str, meas: str,
                       **kwargs) -> Union[Figure, None]:
    """View spectra section for a measurement

    Parameters
    ----------
    projData : projecData
        The project data
    site : str
        The site to view
    meas: str
        The measurement of the site to view    
    chans : List[str], optional
        Channels to plot
    declevel : int, optional
        Decimation level to plot
    specdir : str, optional
        String that specifies spectra directory for the measurement
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options
    
    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, then None is returned.
    """
    from matplotlib.colors import LogNorm

    from resistics.common.plot import savePlot, plotOptionsSpec, colorbar2dSpectra

    options = {}
    options["chans"] = []
    options["declevel"] = 0
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText(
        "Plotting spectra section for measurement {} and site {}".format(
            meas, site))
    specReader = getSpecReader(projData, site, meas, **options)
    if specReader is None:
        return None

    # channels
    dataChans = specReader.getChannels()
    if len(options["chans"]) > 0:
        dataChans = options["chans"]

    # get windows
    numWindows = specReader.getNumWindows()
    sampleFreqDec = specReader.getSampleFreq()
    f = specReader.getFrequencyArray()

    # if plotting a section, ignore plotwindow
    if numWindows > 250:
        windows = list(
            np.linspace(0, numWindows, 250, endpoint=False, dtype=np.int32))
    else:
        windows = np.arange(0, numWindows)

    # create figure
    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    st = fig.suptitle(
        "Spectra section, site = {}, meas = {}, fs = {:.2f} [Hz], decimation level = {:2d}, windows = {:d}, {} to {}"
        .format(
            site,
            meas,
            sampleFreqDec,
            options["declevel"],
            len(windows),
            windows[0],
            windows[-1],
        ),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # collect the data
    specData = np.empty(shape=(len(windows), len(dataChans),
                               specReader.getDataSize()),
                        dtype="complex")
    dates = []
    for idx, iW in enumerate(windows):
        winData = specReader.readBinaryWindowLocal(iW)
        for cIdx, chan in enumerate(dataChans):
            specData[idx, cIdx, :] = winData.data[chan]
        dates.append(winData.startTime)

    ampLim = options["plotoptions"]["amplim"]
    for idx, chan in enumerate(dataChans):
        ax = plt.subplot(1, len(dataChans), idx + 1)
        plotData = np.transpose(np.absolute(np.squeeze(specData[:, idx, :])))
        if len(ampLim) == 2:
            plt.pcolor(
                dates,
                f,
                plotData,
                norm=LogNorm(vmin=ampLim[0], vmax=ampLim[1]),
                cmap=colorbar2dSpectra(),
            )
        else:
            plt.pcolor(
                dates,
                f,
                plotData,
                norm=LogNorm(vmin=plotData.min(), vmax=plotData.max()),
                cmap=colorbar2dSpectra(),
            )
        cb = plt.colorbar()
        cb.ax.tick_params(labelsize=plotfonts["axisTicks"])
        # set axis limits
        ax.set_ylim(0, specReader.getSampleFreq() / 2.0)
        ax.set_xlim([dates[0], dates[-1]])
        if isMagnetic(chan):
            plt.title("Amplitude {} [nT]".format(chan),
                      fontsize=plotfonts["title"])
        else:
            plt.title("Amplitude {} [mV/km]".format(chan),
                      fontsize=plotfonts["title"])
        ax.set_ylabel("Frequency [Hz]", fontsize=plotfonts["axisLabel"])
        ax.set_xlabel("Time", fontsize=plotfonts["axisLabel"])
        # set tick sizes
        for label in ax.get_xticklabels() + ax.get_yticklabels():
            label.set_fontsize(plotfonts["axisTicks"])
        plt.grid(True)

    # plot format
    fig.autofmt_xdate(rotation=90, ha="center")
    fig.tight_layout(rect=[0.02, 0.02, 0.96, 0.92])

    # plot show and save
    if options["save"]:
        impath = projData.imagePath
        filename = "spectraSection_{}_{}_dec{}_{}".format(
            site, meas, options["declevel"], options["specdir"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Exemple #3
0
def viewSpectraStack(projData: ProjectData, site: str, meas: str,
                     **kwargs) -> Union[Figure, None]:
    """View spectra stacks for a measurement

    Parameters
    ----------
    projData : projecData
        The project data
    site : str
        The site to view
    meas: str
        The measurement of the site to view
    chans : List[str], optional
        Channels to plot
    declevel : int, optional
        Decimation level to plot
    numstacks : int, optional
        The number of windows to stack
    coherences : List[List[str]], optional
        A list of coherences to add, specified as [["Ex", "Hy"], ["Ey", "Hx"]] 
    specdir : str, optional
        String that specifies spectra directory for the measurement
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options
    
    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, then None is returned.
    """
    from resistics.common.plot import savePlot, plotOptionsSpec, colorbarMultiline

    options = {}
    options["chans"] = []
    options["declevel"] = 0
    options["numstacks"] = 10
    options["coherences"] = []
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText("Plotting spectra stack for measurement {} and site {}".format(
        meas, site))
    specReader = getSpecReader(projData, site, meas, **options)
    if specReader is None:
        return None

    # channels
    dataChans = specReader.getChannels()
    if len(options["chans"]) > 0:
        dataChans = options["chans"]
    numChans = len(dataChans)

    # get windows
    numWindows = specReader.getNumWindows()
    sampleFreqDec = specReader.getSampleFreq()
    f = specReader.getFrequencyArray()

    # calculate num of windows to stack in each set
    stackSize = int(np.floor(1.0 * numWindows / options["numstacks"]))
    if stackSize == 0:
        projectWarning("Too few windows for number of stacks {}".format(
            options["numstacks"]))
        options["numstacks"] = numWindows
        stackSize = 1
        projectWarning("Number of stacks changed to {}".format(
            options["numstacks"]))

    # calculate number of rows - in case interested in coherences too
    nrows = (2 if len(options["coherences"]) == 0 else 2 +
             np.ceil(1.0 * len(options["coherences"]) / numChans))

    # setup the figure
    plotfonts = options["plotoptions"]["plotfonts"]
    cmap = colorbarMultiline()
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    st = fig.suptitle(
        "Spectra stack, fs = {:.6f} [Hz], decimation level = {:2d}, windows in each set = {:d}"
        .format(sampleFreqDec, options["declevel"], stackSize),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # do the stacking
    for iP in range(0, options["numstacks"]):
        stackStart = iP * stackSize
        stackStop = min(stackStart + stackSize, numWindows)
        color = cmap(iP / options["numstacks"])
        # dictionaries to hold data for this section
        stackedData = {}
        ampData = {}
        phaseData = {}
        powerData = {}

        # assign initial zeros
        for c in dataChans:
            stackedData[c] = np.zeros(shape=(specReader.getDataSize()),
                                      dtype="complex")
            ampData[c] = np.zeros(shape=(specReader.getDataSize()),
                                  dtype="complex")
            phaseData[c] = np.zeros(shape=(specReader.getDataSize()),
                                    dtype="complex")
            for c2 in dataChans:
                powerData[c + c2] = np.zeros(shape=(specReader.getDataSize()),
                                             dtype="complex")

        # now stack the data and create nice plots
        for iW in range(stackStart, stackStop):
            winData = specReader.readBinaryWindowLocal(iW)
            for c in dataChans:
                stackedData[c] += winData.data[c]
                ampData[c] += np.absolute(winData.data[c])
                phaseData[c] += np.angle(winData.data[c]) * (180.0 / np.pi)
                # get coherency data
                for c2 in dataChans:
                    powerData[c + c2] += winData.data[c] * np.conjugate(
                        winData.data[c2])
            if iW == stackStart:
                startTime = winData.startTime
            if iW == stackStop - 1:
                stopTime = winData.stopTime

        # scale powers and stacks
        ampLim = options["plotoptions"]["amplim"]
        for idx, c in enumerate(dataChans):
            stackedData[c] = stackedData[c] / (stackStop - stackStart)
            ampData[c] = ampData[c] / (stackStop - stackStart)
            phaseData[c] = phaseData[c] / (stackStop - stackStart)
            for c2 in dataChans:
                # normalisation
                powerData[c + c2] = 2 * powerData[c + c2] / (stackStop -
                                                             stackStart)
                # normalisation
                powerData[c + c2][[0, -1]] = powerData[c + c2][[0, -1]] / 2

            # plot
            ax1 = plt.subplot(nrows, numChans, idx + 1)
            plt.title("Amplitude {}".format(c), fontsize=plotfonts["title"])
            h = ax1.semilogy(
                f,
                ampData[c],
                color=color,
                label="{} to {}".format(
                    startTime.strftime("%m-%d %H:%M:%S"),
                    stopTime.strftime("%m-%d %H:%M:%S"),
                ),
            )
            if len(ampLim) == 2:
                ax1.set_ylim(ampLim)
            else:
                ax1.set_ylim(0.01, 1000)
            ax1.set_xlim(0, sampleFreqDec / 2.0)
            if isMagnetic(c):
                ax1.set_ylabel("Amplitude [nT]",
                               fontsize=plotfonts["axisLabel"])
            else:
                ax1.set_ylabel("Amplitude [mV/km]",
                               fontsize=plotfonts["axisLabel"])
            ax1.set_xlabel("Frequency [Hz]", fontsize=plotfonts["axisLabel"])
            plt.grid(True)

            # set tick sizes
            for label in ax1.get_xticklabels() + ax1.get_yticklabels():
                label.set_fontsize(plotfonts["axisTicks"])
            # plot phase
            ax2 = plt.subplot(nrows, numChans, numChans + idx + 1)
            plt.title("Phase {}".format(c), fontsize=plotfonts["title"])
            ax2.plot(
                f,
                phaseData[c],
                color=color,
                label="{} to {}".format(
                    startTime.strftime("%m-%d %H:%M:%S"),
                    stopTime.strftime("%m-%d %H:%M:%S"),
                ),
            )
            ax2.set_ylim(-180, 180)
            ax2.set_xlim(0, sampleFreqDec / 2.0)
            ax2.set_ylabel("Phase [degrees]", fontsize=plotfonts["axisLabel"])
            ax2.set_xlabel("Frequency [Hz]", fontsize=plotfonts["axisLabel"])
            plt.grid(True)
            # set tick sizes
            for label in ax2.get_xticklabels() + ax2.get_yticklabels():
                label.set_fontsize(plotfonts["axisTicks"])

        # plot coherences
        for idx, coh in enumerate(options["coherences"]):
            c = coh[0]
            c2 = coh[1]
            cohNom = np.power(np.absolute(powerData[c + c2]), 2)
            cohDenom = powerData[c + c] * powerData[c2 + c2]
            coherence = cohNom / cohDenom
            ax = plt.subplot(nrows, numChans, 2 * numChans + idx + 1)
            plt.title("Coherence {} - {}".format(c, c2),
                      fontsize=plotfonts["title"])
            ax.plot(
                f,
                coherence,
                color=color,
                label="{} to {}".format(
                    startTime.strftime("%m-%d %H:%M:%S"),
                    stopTime.strftime("%m-%d %H:%M:%S"),
                ),
            )
            ax.set_ylim(0, 1.1)
            ax.set_xlim(0, sampleFreqDec / 2)
            ax.set_ylabel("Coherence", fontsize=plotfonts["axisLabel"])
            ax.set_xlabel("Frequency [Hz]", fontsize=plotfonts["axisLabel"])
            plt.grid(True)
            # set tick sizes
            for label in ax.get_xticklabels() + ax.get_yticklabels():
                label.set_fontsize(plotfonts["axisTicks"])

    # fig legend and layout
    ax = plt.gca()
    h, l = ax.get_legend_handles_labels()
    fig.tight_layout(rect=[0.01, 0.01, 0.98, 0.81])
    # legend
    legax = plt.axes(position=[0.01, 0.82, 0.98, 0.12], in_layout=False)
    plt.tick_params(left=False,
                    labelleft=False,
                    bottom=False,
                    labelbottom=False)
    plt.box(False)
    legax.legend(h,
                 l,
                 ncol=4,
                 loc="upper center",
                 fontsize=plotfonts["legend"])

    # plot show and save
    if options["save"]:
        impath = projData.imagePath
        filename = "spectraStack_{}_{}_dec{}_{}".format(
            site, meas, options["declevel"], options["specdir"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Exemple #4
0
def viewSpectra(projData: ProjectData, site: str, meas: str,
                **kwargs) -> Union[Figure, None]:
    """View spectra for a measurement

    Parameters
    ----------
    projData : projecData
        The project data
    site : str
        The site to view
    meas: str
        The measurement of the site to view    
    chans : List[str], optional
        Channels to plot
    declevel : int, optional
        Decimation level to plot
    plotwindow : int, str, Dict, optional
        Windows to plot (local). If int, the window with local index plotwindow will be plotted. If string and "all", all the windows will be plotted if there are less than 20 windows, otherwise 20 windows throughout the whole spectra dataset will be plotted. If a dictionary, needs to have start and stop to define a range.
    specdir : str, optional
        String that specifies spectra directory for the measurement
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options
    
    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, then None is returned.
    """
    from resistics.common.plot import savePlot, plotOptionsSpec, colorbarMultiline

    options = {}
    options["chans"]: List[str] = []
    options["declevel"]: int = 0
    options["plotwindow"]: Union[int, Dict, str] = [0]
    options["specdir"]: str = projData.config.configParams["Spectra"][
        "specdir"]
    options["show"]: bool = True
    options["save"]: bool = False
    options["plotoptions"]: Dict = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText("Plotting spectra for measurement {} and site {}".format(
        meas, site))
    specReader = getSpecReader(projData, site, meas, **options)
    if specReader is None:
        return None

    # channels
    dataChans = specReader.getChannels()
    if len(options["chans"]) > 0:
        dataChans = options["chans"]
    numChans = len(dataChans)

    # get windows
    numWindows = specReader.getNumWindows()
    sampleFreqDec = specReader.getSampleFreq()

    # get the window data
    windows = options["plotwindow"]
    if isinstance(windows, str) and windows == "all":
        if numWindows > 20:
            windows = list(
                np.linspace(0, numWindows, 20, endpoint=False, dtype=np.int32))
        else:
            windows = list(np.arange(0, numWindows))
    elif isinstance(windows, int):
        windows = [windows]  # if an integer, make it into a list
    elif isinstance(windows, dict):
        windows = list(np.arange(windows["start"], windows["stop"] + 1))

    # create a figure
    plotfonts = options["plotoptions"]["plotfonts"]
    cmap = colorbarMultiline()
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    for iW in windows:
        if iW >= numWindows:
            break
        color = cmap(iW / numWindows)
        winData = specReader.readBinaryWindowLocal(iW)
        winData.view(
            fig=fig,
            chans=dataChans,
            label="{} to {}".format(
                winData.startTime.strftime("%m-%d %H:%M:%S"),
                winData.stopTime.strftime("%m-%d %H:%M:%S"),
            ),
            plotfonts=plotfonts,
            color=color,
        )

    st = fig.suptitle(
        "Spectra plot, site = {}, meas = {}, fs = {:.2f} [Hz], decimation level = {:2d}"
        .format(site, meas, sampleFreqDec, options["declevel"]),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # put on axis labels etc
    for idx, chan in enumerate(dataChans):
        ax = plt.subplot(numChans, 1, idx + 1)
        plt.title("Amplitude {}".format(chan), fontsize=plotfonts["title"])
        if len(options["plotoptions"]["amplim"]) == 2:
            ax.set_ylim(options["plotoptions"]["amplim"])
        ax.set_xlim(0, specReader.getSampleFreq() / 2.0)
        plt.grid(True)

    # fig legend and formatting
    ax = plt.gca()
    h, l = ax.get_legend_handles_labels()
    fig.tight_layout(rect=[0.02, 0.02, 0.77, 0.92])
    # legend axis
    legax = plt.axes(position=[0.77, 0.02, 0.23, 0.88], in_layout=False)
    plt.tick_params(left=False,
                    labelleft=False,
                    bottom=False,
                    labelbottom="False")
    plt.box(False)
    legax.legend(h, l, loc="upper left", fontsize=plotfonts["legend"])

    # plot show and save
    if options["save"]:
        impath = projData.imagePath
        filename = "spectraData_{}_{}_dec{}_{}".format(site, meas,
                                                       options["declevel"],
                                                       options["specdir"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
def viewStatisticDensityplot(
    projData: ProjectData,
    site: str,
    sampleFreq: Union[int, float],
    stat: str,
    crossplots: List[List[str]],
    **kwargs
) -> Union[Figure, None]:
    """View statistic data as a density plot for a single sampling frequency of a site
    
    Parameters
    ----------
    projData : ProjectData
        A project instance
    site : str
        The site for which to plot statistics
    stat : str
        The statistic to plot
    sampleFreq : float
        The sampling frequency for which to plot statistics
    crossplots : List[List[str]]
        The statistic element pairs to crossplot
    declevel : int
        The decimation level to plot
    eFreqI : int
        The evaluation frequency index
    specdir : str
        The spectra directory
    maskname : str
        Mask name         
    xlim : List, optional
        Limits for the x axis
    ylim : List, optional
        Limits for the y axis
    maxcols : int
        The maximum number of columns in the plots        
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options    

    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, None.
    """
    from resistics.common.plot import (
        savePlot,
        plotOptionsSpec,
        getPlotRowsAndCols,
        colorbar2dSpectra,
    )

    options = {}
    options["declevel"] = 0
    options["eFreqI"] = 0
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["maskname"] = ""
    options["xlim"] = []
    options["ylim"] = []
    options["maxcols"] = 2
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText(
        "Plotting density plot for statistic {}, site {} and sampling frequency {}".format(
            stat, site, sampleFreq
        )
    )

    statData = getStatisticDataForSampleFreq(
        projData,
        site,
        sampleFreq,
        stat,
        declevel=options["declevel"],
        specdir=options["specdir"],
    )
    statMeas = list(statData.keys())
    if len(statMeas) == 0:
        projectWarning(
            "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format(
                site, sampleFreq, stat, options["declevel"]
            )
        )
        return None
    # get the evaluation frequency
    eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]]

    # get the mask data
    maskWindows = []
    if options["maskname"] != "":
        maskData = getMaskData(projData, site, options["maskname"], sampleFreq)
        maskWindows = maskData.getMaskWindowsFreq(
            options["declevel"], options["eFreqI"]
        )

    # plot information
    nrows, ncols = getPlotRowsAndCols(options["maxcols"], len(crossplots))

    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    # suptitle
    st = fig.suptitle(
        "{} density plots for {}, sampling frequency {} Hz,\ndecimation level {} and evaluation frequency {} Hz".format(
            stat, site, sampleFreq, options["declevel"], eFreq
        ),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # now plot the data
    for idx, cplot in enumerate(crossplots):
        ax = plt.subplot(nrows, ncols, idx + 1)
        plt.title("Crossplot {}".format(cplot), fontsize=plotfonts["title"])

        plotAll1 = []
        plotAll2 = []
        for meas in statMeas:
            stats = statData[meas].getStats(maskwindows=maskWindows)
            plotI1 = statData[meas].winStats.index(cplot[0])
            plotData1 = np.squeeze(stats[:, options["eFreqI"], plotI1])
            plotI2 = statData[meas].winStats.index(cplot[1])
            plotData2 = np.squeeze(stats[:, options["eFreqI"], plotI2])
            # add to all data
            if plotData1.size == 0:
                continue
            if plotData1.size == 1:
                plotAll1 = plotAll1 + [float(plotData1)]
                plotAll2 = plotAll2 + [float(plotData2)]
            else:
                plotAll1 = plotAll1 + plotData1.tolist()
                plotAll2 = plotAll2 + plotData2.tolist()

        plotAll1 = np.array(plotAll1)
        plotAll2 = np.array(plotAll2)

        nbins = 200
        if len(options["xlim"]) > 0:
            plt.xlim(options["xlim"])
            rangex = options["xlim"]
        else:
            minx = np.percentile(plotAll1, 2)
            maxx = np.percentile(plotAll1, 98)
            ax.set_xlim(minx, maxx)
            rangex = [minx, maxx]

        if len(options["ylim"]) > 0:
            plt.ylim(options["ylim"])
            rangey = options["ylim"]
        else:
            miny = np.percentile(plotAll2, 2)
            maxy = np.percentile(plotAll2, 98)
            ax.set_ylim(miny, maxy)
            rangey = [miny, maxy]

        plt.hist2d(
            plotAll1,
            plotAll2,
            bins=(nbins, nbins),
            range=[rangex, rangey],
            cmap=plt.cm.inferno,
        )

        # axis format
        plt.xlabel(cplot[0], fontsize=plotfonts["axisLabel"])
        plt.ylabel(cplot[1], fontsize=plotfonts["axisLabel"])
        plt.grid(True)
        # set tick sizes
        for label in ax.get_xticklabels() + ax.get_yticklabels():
            label.set_fontsize(plotfonts["axisTicks"])

    # plot format, show and save
    # fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92])
    if options["save"]:
        impath = projData.imagePath
        sampleFreqStr = fileFormatSampleFreq(sampleFreq)
        filename = "statDensityplot_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format(
            stat,
            site,
            sampleFreqStr,
            options["declevel"],
            options["eFreqI"],
            options["specdir"],
        )
        if options["maskname"] != "":
            filename = "{}_{}".format(filename, options["maskname"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
def viewStatisticHistogram(
    projData: ProjectData, site: str, sampleFreq: float, stat: str, **kwargs
) -> Union[Figure, None]:
    """View statistic histograms for a single sampling frequency of a site
    
    Parameters
    ----------
    projData : ProjectData
        A project instance
    site : str
        The site for which to plot statistics
    stat : str
        The statistic to plot
    sampleFreq : float
        The sampling frequency for which to plot statistics
    declevel : int
        The decimation level to plot
    eFreqI : int
        The evaluation frequency index       
    specdir : str
        The spectra directory        
    maskname : str
        Mask name 
    numbins : int
        The number of bins for the histogram data binning
    xlim : List, optional
        Limits for the x axis
    maxcols : int
        The maximum number of columns in the plots
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options    

    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None. If no data was found, None.
    """
    from resistics.common.plot import savePlot, plotOptionsSpec, getPlotRowsAndCols

    options = {}
    options["declevel"] = 0
    options["eFreqI"] = 0
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["maskname"] = ""
    options["numbins"] = 40
    options["xlim"] = []
    options["maxcols"] = 4
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText(
        "Plotting histogram for statistic {}, site {} and sampling frequency {}".format(
            stat, site, sampleFreq
        )
    )

    statData = getStatisticDataForSampleFreq(
        projData,
        site,
        sampleFreq,
        stat,
        declevel=options["declevel"],
        specdir=options["specdir"],
    )
    statMeas = list(statData.keys())
    if len(statMeas) == 0:
        projectWarning(
            "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format(
                site, sampleFreq, stat, options["declevel"]
            )
        )
        return None
    # get the statistic components
    statComponents = statData[statMeas[0]].winStats
    # get the evaluation frequency
    eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]]

    # get the mask data
    maskWindows = []
    if options["maskname"] != "":
        maskData = getMaskData(projData, site, options["maskname"], sampleFreq)
        maskWindows = maskData.getMaskWindowsFreq(
            options["declevel"], options["eFreqI"]
        )

    # plot information
    nrows, ncols = getPlotRowsAndCols(options["maxcols"], len(statComponents))
    numbins = options["numbins"]

    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    # suptitle
    st = fig.suptitle(
        "{} histogram for {}, sampling frequency {} Hz, decimation level {} and evaluation frequency {} Hz".format(
            stat, site, sampleFreq, options["declevel"], eFreq
        ),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # now plot the data
    for idx, val in enumerate(statComponents):
        ax = plt.subplot(nrows, ncols, idx + 1)
        plt.title("Histogram {}".format(val), fontsize=plotfonts["title"])

        plotData = np.empty(shape=(0))
        for meas in statMeas:
            stats = statData[meas].getStats(maskwindows=maskWindows)
            plotData = np.concatenate(
                (plotData, np.squeeze(stats[:, options["eFreqI"], idx]))
            )
        # remove infinities and nans
        plotData = plotData[np.isfinite(plotData)]

        # x axis options
        xlim = (
            options["xlim"]
            if len(options["xlim"]) > 0
            else [np.min(plotData), np.max(plotData)]
        )
        plt.xlim(xlim)
        plt.xlabel("Value", fontsize=plotfonts["axisLabel"])
        # now plot with xlim in mind
        plt.hist(plotData, numbins, range=xlim, facecolor="red", alpha=0.75)
        plt.grid()
        # y axis options
        plt.ylabel("Count", fontsize=plotfonts["axisLabel"])
        # set tick sizes
        for label in ax.get_xticklabels() + ax.get_yticklabels():
            label.set_fontsize(plotfonts["axisTicks"])

    # plot format, show and save
    fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92])
    if options["save"]:
        impath = projData.imagePath
        sampleFreqStr = fileFormatSampleFreq(sampleFreq)
        filename = "statHist_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format(
            stat,
            site,
            sampleFreqStr,
            options["declevel"],
            options["eFreqI"],
            options["specdir"],
        )
        if options["maskname"] != "":
            filename = "{}_{}".format(filename, options["maskname"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
def viewStatistic(
    projData: ProjectData, site: str, sampleFreq: Union[int, float], stat: str, **kwargs
) -> Union[Figure, None]:
    """View statistic data for a single sampling frequency of a site
    
    Parameters
    ----------
    projData : ProjectData
        A project instance
    site : str
        The site for which to plot statistics
    stat : str
        The statistic to plot
    sampleFreq : float
        The sampling frequency for which to plot statistics
    declevel : int
        The decimation level to plot
    eFreqI : int
        The evaluation frequency index
    specdir : str
        The spectra directory
    maskname : str
        Mask name         
    clim : List, optional
        Limits for colourbar axis
    xlim : List, optional
        Limits for the x axis
    ylim : List, optional
        Limits for the y axis
    colortitle : str, optional
        Title for the colourbar
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options    

    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, None.
    """
    from resistics.common.plot import savePlot, plotOptionsSpec, getPlotRowsAndCols

    options = {}
    options["declevel"] = 0
    options["eFreqI"] = 0
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["maskname"] = ""
    options["clim"] = []
    options["xlim"] = []
    options["ylim"] = []
    options["colortitle"] = ""
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText(
        "Plotting statistic {} for site {} and sampling frequency {}".format(
            stat, site, sampleFreq
        )
    )
    statData = getStatisticDataForSampleFreq(
        projData,
        site,
        sampleFreq,
        stat,
        declevel=options["declevel"],
        specdir=options["specdir"],
    )
    statMeas = list(statData.keys())
    if len(statMeas) == 0:
        projectWarning(
            "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format(
                site, sampleFreq, stat, options["declevel"]
            )
        )
        return None
    # get the evaluation frequency
    eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]]

    # get the mask data
    maskWindows = []
    if options["maskname"] != "":
        maskData = getMaskData(projData, site, options["maskname"], sampleFreq)
        maskWindows = maskData.getMaskWindowsFreq(
            options["declevel"], options["eFreqI"]
        )

    # setup the figure
    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])

    # get the date limits
    siteData = projData.getSiteData(site)
    if len(options["xlim"]) == 0:
        start = siteData.getMeasurementStart(statMeas[0])
        end = siteData.getMeasurementEnd(statMeas[0])
        for meas in statMeas:
            start = min(start, siteData.getMeasurementStart(meas))
            end = max(end, siteData.getMeasurementEnd(meas))
        options["xlim"] = [start, end]

    # do the plots
    for meas in statMeas:
        statData[meas].view(
            options["eFreqI"],
            fig=fig,
            xlim=options["xlim"],
            ylim=options["ylim"],
            clim=options["clim"],
            label=meas,
            plotfonts=options["plotoptions"]["plotfonts"],
            maskwindows=maskWindows,
        )
    # add a legened
    plt.legend(markerscale=4, fontsize=plotfonts["legend"])

    # do the title after all the plots
    fig.suptitle(
        "{} values for {}, sampling frequency = {:.2f} Hz, decimation level = {} and evaluation frequency {} Hz".format(
            stat, site, sampleFreq, options["declevel"], eFreq
        ),
        fontsize=plotfonts["suptitle"],
    )

    # plot format, show and save
    fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92])
    if options["save"]:
        impath = projData.imagePath
        sampleFreqStr = fileFormatSampleFreq(sampleFreq)
        filename = "stat_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format(
            stat,
            site,
            sampleFreqStr,
            options["declevel"],
            options["eFreqI"],
            options["specdir"],
        )
        if options["maskname"] != "":
            filename = "{}_{}".format(filename, options["maskname"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Exemple #8
0
def viewTipper(projData: ProjectData, **kwargs) -> List[Figure]:
    """View transfer function data

    Parameters
    ----------
    projData : projecData
        The project data
    sites : List[str], optional
        List of sites to plot transfer functions for
    sampleFreqs : List[float], optional 
        List of samples frequencies for which to plot transfer functions
    specdir : str, optional
        The spectra directories used
    postpend : str, optional
        The postpend on the transfer function files
    cols : bool, optional
        Boolean flag, True to arrange tipper plot as 1 row with 3 columns
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict
        A dictionary of plot options. For example, set the resistivity y limits using res_ylim, set the phase y limits using phase_ylim and set the xlimits using xlim
    """
    from resistics.common.plot import (
        savePlot,
        plotOptionsTipper,
        getTransferFunctionFigSize,
        transferFunctionColours,
    )

    options = {}
    options["sites"] = projData.getSites()
    options["sampleFreqs"] = projData.getSampleFreqs()
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["postpend"] = ""
    options["cols"] = True
    options["save"] = False
    options["show"] = True
    options["plotoptions"] = plotOptionsTipper()
    options = parseKeywords(options, kwargs)

    # loop over sites
    figs = []
    for site in options["sites"]:
        siteData = projData.getSiteData(site)
        sampleFreqs = set(siteData.getSampleFreqs())
        # find the intersection with the options["freqs"]
        sampleFreqs = sampleFreqs.intersection(options["sampleFreqs"])
        sampleFreqs = sorted(list(sampleFreqs))

        # if prepend is a string, then make it a list
        if isinstance(options["postpend"], str):
            options["postpend"] = [options["postpend"]]

        plotfonts = options["plotoptions"]["plotfonts"]
        # now loop over the postpend options
        for pp in options["postpend"]:
            # add an underscore if not empty
            postpend = "_{}".format(pp) if pp != "" else pp

            fig = plt.figure(figsize=options["plotoptions"]["figsize"])
            mks = ["o", "*", "d", "^", "h"]
            lstyles = ["solid", "dashed", "dashdot", "dotted"]

            # loop over sampling frequencies
            includedFreqs = []
            for idx, sampleFreq in enumerate(sampleFreqs):

                tfData = getTransferFunctionData(projData,
                                                 site,
                                                 sampleFreq,
                                                 specdir=options["specdir"],
                                                 postpend=pp)
                if not tfData:
                    continue

                includedFreqs.append(sampleFreq)
                projectText(
                    "Plotting tipper for site {}, sample frequency {}".format(
                        site, sampleFreq))

                mk = mks[idx % len(mks)]
                ls = lstyles[idx % len(lstyles)]
                tfData.viewTipper(
                    fig=fig,
                    rows=options["cols"],
                    mk=mk,
                    ls=ls,
                    label="{}".format(sampleFreq),
                    xlim=options["plotoptions"]["xlim"],
                    length_ylim=options["plotoptions"]["length_ylim"],
                    angle_ylim=options["plotoptions"]["angle_ylim"],
                    plotfonts=options["plotoptions"]["plotfonts"],
                )

            # check if any files found
            if len(includedFreqs) == 0:
                continue

            # sup title
            sub = "Site {} tipper: {}".format(site,
                                              options["specdir"] + postpend)
            sub = "{}\nfs = {}".format(
                sub, arrayToString(includedFreqs, decimals=3))
            st = fig.suptitle(sub, fontsize=plotfonts["suptitle"])
            st.set_y(0.99)
            fig.tight_layout()
            fig.subplots_adjust(top=0.85)
            figs.append(fig)

            if options["save"]:
                impath = projData.imagePath
                filename = "tipper_{}_{}{}".format(site, options["specdir"],
                                                   postpend)
                savename = savePlot(impath, filename, fig)
                projectText("Image saved to file {}".format(savename))

        if not options["show"]:
            plt.close("all")
        else:
            plt.show(block=options["plotoptions"]["block"])
    return figs