def rmpyl_simple_nested_choice(hello,uav): """Simple RMPyL example with nested choice.""" prog = RMPyL() prog *= prog.decide({'name':'UAV-choice1','domain':['H','U'],'utility':[5,7]}, prog.decide({'name':'UAV-choice2','domain':['H','U'],'utility':[5,7]}, hello.fly(),uav.fly()), uav.scan()) return prog
def rmpyl_nested_uav(): hello = UAV('hello') uav = UAV('uav') prog = RMPyL() prog.plan = prog.sequence( hello.scan(), uav.scan(), prog.decide( { 'name': 'UAV-choice', 'domain': ['Hello', 'UAV'], 'utility': [7, 5] }, prog.sequence( hello.fly(), prog.observe( { 'name': 'hello-success', 'domain': ['Success', 'Failure'], 'ctype': 'probabilistic', 'probability': [0.8, 0.2] }, prog.decide( { 'name': 'hello-assert-success', 'domain': ['Success'], 'utility': [10] }, hello.stop()), prog.decide( { 'name': 'hello-assert-failure', 'domain': ['Failure'], 'utility': [0] }, hello.stop()))), prog.sequence( uav.fly(), prog.observe( { 'name': 'uav-success', 'domain': ['Success', 'Failure'], 'ctype': 'probabilistic', 'probability': [0.95, 0.05] }, prog.decide( { 'name': 'uav-assert-success', 'domain': ['Success'], 'utility': [10] }, uav.stop()), prog.decide( { 'name': 'uav-assert-failure', 'domain': ['Failure'], 'utility': [0] }, uav.stop()))))) return prog
def make_fly_scan(hello,uav): """Subplan where one choose which UAV should fly and which should scan.""" p_fly_scan = RMPyL() p_fly_scan*= p_fly_scan.decide({'name':'Choose-FLY','domain':['H','U'],'utility':[5,7]}, hello.fly()+uav.scan(), hello.scan()+uav.fly()) return p_fly_scan
def rmpyl_icaps14(): """ Example from (Santana & Williams, ICAPS14). """ prog = RMPyL() prog *= prog.decide( {'name':'transport-choice','domain':['Bike','Car','Stay'], 'utility':[100,70,0]}, prog.observe( {'name':'slip','domain':[True,False], 'ctype':'probabilistic','probability':[0.051,1.0-0.051]}, prog.sequence(Episode(action='(ride-bike)', duration={'ctype':'controllable','lb':15,'ub':25}), Episode(action='(change)', duration={'ctype':'controllable','lb':20,'ub':30})), Episode(action='(ride-bike)',duration={'ctype':'controllable','lb':15,'ub':25})), prog.observe( {'name':'accident','domain':[True,False], 'ctype':'probabilistic','probability':[0.013,1.0-0.013]}, prog.sequence(Episode(action='(tow-vehicle)', duration={'ctype':'controllable','lb':30,'ub':90}), Episode(action='(cab-ride)', duration={'ctype':'controllable','lb':10,'ub':20})), Episode(action='(drive)',duration={'ctype':'controllable','lb':10,'ub':20})), Episode(action='(stay)')) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=30.0) return prog
def rmpyl_simple_decide_looping(hello,uav): """Simple RMPyL example where we choose to fly loops with different UAVs.""" prog = RMPyL() prog *= prog.decide({'name':'Choose-loop','domain':['H','U'],'utility':[1,1]}, prog.loop(episode_func=hello.fly,repetitions=3, run_utility=1,stop_utility=0), prog.loop(episode_func=uav.scan,repetitions=2, run_utility=2,stop_utility=0)) return prog
def rmpyl_original_verbose(hello,uav): """ Implementation of the original RMPL using a more verbose syntax and adding a chance constraint. ##### Original RMPL class UAV { value on; value off; primitive method fly() [3,10]; primitive method scan() [1,10]; } class Main { UAV helo; UAV uav; method run () { [0, 18] sequence { parallel { sequence { helo.scan(); helo.fly(); } sequence { uav.fly(); uav.scan(); } } choose { with reward: 5 {helo.fly();} with reward: 7 {uav.fly();} } } } } """ prog = RMPyL() prog.plan = prog.sequence( prog.parallel( prog.sequence( hello.scan(), hello.fly()), prog.sequence( uav.fly(), uav.scan())), prog.decide({'name':'UAV-choice','domain':['Hello','UAV'],'utility':[5,7]}, hello.fly(), uav.fly())) overall_tc = prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=18.0) cc_time = ChanceConstraint(constraint_scope=[overall_tc],risk=0.1) prog.add_chance_constraint(cc_time) return prog
def rmpyl_nested_uav(): hello = UAV('hello') uav = UAV('uav') prog = RMPyL() prog.plan = prog.sequence( hello.scan(), uav.scan(), prog.decide( {'name':'UAV-choice','domain':['Hello','UAV'], 'utility':[7,5]}, prog.sequence( hello.fly(), prog.observe( {'name':'hello-success','domain':['Success','Failure'], 'ctype':'probabilistic','probability':[0.8,0.2]}, prog.decide( {'name':'hello-assert-success', 'domain':['Success'], 'utility':[10]}, hello.stop()), prog.decide( {'name':'hello-assert-failure', 'domain':['Failure'], 'utility':[0]}, hello.stop()))), prog.sequence( uav.fly(), prog.observe( {'name':'uav-success','domain':['Success','Failure'], 'ctype':'probabilistic','probability':[0.95,0.05]}, prog.decide( {'name':'uav-assert-success', 'domain':['Success'], 'utility':[10]}, uav.stop()), prog.decide( {'name':'uav-assert-failure', 'domain':['Failure'], 'utility':[0]}, uav.stop()))))) return prog
def rmpyl_parallel_and_choice_user_defined_tcs(hello,uav): """Simple RMPyL example with parallel execution of actions on different choice branches with user-defined constraints.""" prog = RMPyL() #Choice using the previous example as a subroutine to generate partial progs prog *= prog.decide({'name':'Choose-branch','domain':['1','2'],'utility':[1,2]}, rmpyl_parallel_user_defined_tcs(hello,uav), rmpyl_parallel_user_defined_tcs(hello,uav)) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=70.0) return prog
def rmpyl_uav(): hello = UAV('hello') uav = UAV('uav') prog = RMPyL() # prog *= hello.fly() prog.plan = prog.sequence( hello.scan(), hello.fly(), uav.fly(), uav.scan(), prog.decide( { 'name': 'UAV-choice', 'domain': ['Hello', 'UAV'], 'utility': [5, 7] }, hello.fly(), uav.fly())) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=18.0) return prog
def rmpyl_uav(): hello = UAV('hello') uav = UAV('uav') prog = RMPyL() # prog *= hello.fly() prog.plan = prog.sequence( hello.scan(), hello.fly(), uav.fly(), uav.scan(), prog.decide({'name':'UAV-choice','domain':['Hello','UAV'], 'utility':[5,7]}, hello.fly(), uav.fly())) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=18.0) return prog
def rmpyl_choice_risk(): prog = RMPyL() prog *= prog.decide( { 'name': 'transport-choice', 'domain': ['Bike', 'Car', 'Stay'], 'utility': [100, 70, 0] }, prog.observe( { 'name': 'travel', 'ctype': 'probabilistic', 'domain': ['Short', 'Long'], 'probability': [0.7, 0.3] }, Episode(action='(cab-ride-long)', duration={ 'ctype': 'uncontrollable_probabilistic', 'distribution': { 'type': 'uniform', 'lb': 5.0, 'ub': 11.0 } }), Episode(action='(cab-ride-short)', duration={ 'ctype': 'uncontrollable_probabilistic', 'distribution': { 'type': 'uniform', 'lb': 5.0, 'ub': 10.0 } })), Episode(action='(drive-car)', duration={ 'ctype': 'controllable', 'lb': 6.0, 'ub': 8.0 }), Episode(action='(stay)')) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=10.0) return prog
def rmpyl_choice_risk(): prog = RMPyL() prog *= prog.decide( {'name':'transport-choice','domain':['Bike','Car','Stay'], 'utility':[100,70,0]}, prog.observe( {'name':'travel','ctype':'probabilistic', 'domain':['Short','Long'],'probability':[0.7,0.3]}, Episode(action='(cab-ride-long)',duration={'ctype':'uncontrollable_probabilistic', 'distribution':{'type':'uniform', 'lb':5.0,'ub':11.0}}), Episode(action='(cab-ride-short)',duration={'ctype':'uncontrollable_probabilistic', 'distribution':{'type':'uniform', 'lb':5.0,'ub':10.0}})), Episode(action='(drive-car)', duration={'ctype':'controllable','lb':6.0,'ub':8.0}), Episode(action='(stay)')) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=10.0) return prog
def rmpyl_parallel_uav(): hello = UAV('hello') uav = UAV('uav') prog = RMPyL() prog.plan = prog.parallel( prog.sequence( prog.decide( { 'name': 'hello-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, hello.fly(), hello.scan()), prog.decide( { 'name': 'hello-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, hello.fly(), hello.scan()), prog.decide( { 'name': 'hello-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, hello.fly(), hello.scan())), prog.sequence( prog.decide( { 'name': 'uav-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, uav.fly(), uav.scan()), prog.decide( { 'name': 'uav-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, uav.fly(), uav.scan()), prog.decide( { 'name': 'uav-action', 'domain': ['Fly', 'Scan'], 'utility': [0, 1] }, uav.fly(), uav.scan()))) return prog
def rmpyl_inconsistent_user_defined_tcs(hello,uav): """Simple RMPyL example with parallel execution of actions on different choice branches with user-defined constraints.""" try: prog = RMPyL() hello_flights = [hello.fly() for i in range(2)] #two different hello flights uav_flights = [uav.fly() for i in range(2)] #two different uav flights #Choice using the previous example as a subroutine to generate partial plans prog *= prog.decide({'name':'Choose-branch','domain':['1','2'],'utility':[1,2]}, hello_flights[0]*uav_flights[0], uav_flights[1]*hello_flights[1]) tc = TemporalConstraint(start=hello_flights[0].end,end=hello_flights[1].start, ctype='controllable',lb=2.0,ub=3.0) #This is a constraint between disjoint plan branches. Therefore, it MUST #cause an error of empty constraint support prog.add_temporal_constraint(tc) except InconsistentSupportError: print('Empty support error correctly caught!') prog=None return prog
def rmpyl_parallel_uav(): hello = UAV('hello') uav = UAV('uav') prog = RMPyL() prog.plan = prog.parallel( prog.sequence( prog.decide({'name':'hello-action','domain':['Fly','Scan'], 'utility':[0,1]}, hello.fly(), hello.scan()), prog.decide({'name':'hello-action','domain':['Fly','Scan'], 'utility':[0,1]}, hello.fly(), hello.scan()), prog.decide({'name':'hello-action','domain':['Fly','Scan'], 'utility':[0,1]}, hello.fly(), hello.scan()) ), prog.sequence( prog.decide({'name':'uav-action','domain':['Fly','Scan'], 'utility':[0,1]}, uav.fly(), uav.scan()), prog.decide({'name':'uav-action','domain':['Fly','Scan'], 'utility':[0,1]}, uav.fly(), uav.scan()), prog.decide({'name':'uav-action','domain':['Fly','Scan'], 'utility':[0,1]}, uav.fly(), uav.scan()) )) return prog
def rmpyl_breakfast(): """ Example from (Levine & Williams, ICAPS14). """ #Actions that Alice performs get_mug_ep = Episode(action='(get alice mug)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_glass_ep = Episode(action='(get alice glass)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) make_cofee_ep = Episode(action='(make-coffee alice)', duration={ 'ctype': 'controllable', 'lb': 3.0, 'ub': 5.0 }) pour_cofee_ep = Episode(action='(pour-coffee alice mug)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) pour_juice_glass = Episode(action='(pour-juice alice glass)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_bagel_ep = Episode(action='(get alice bagel)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_cereal_ep = Episode(action='(get alice cereal)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) toast_bagel_ep = Episode(action='(toast alice bagel)', duration={ 'ctype': 'controllable', 'lb': 3.0, 'ub': 5.0 }) add_cheese_bagel_ep = Episode(action='(add-cheese alice bagel)', duration={ 'ctype': 'controllable', 'lb': 1.0, 'ub': 2.0 }) mix_cereal_ep = Episode(action='(mix-cereal alice milk)', duration={ 'ctype': 'controllable', 'lb': 1.0, 'ub': 2.0 }) #Actions that the robot performs get_grounds_ep = Episode(action='(get grounds robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_juice_ep = Episode(action='(get juice robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_milk_ep = Episode(action='(get milk robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) get_cheese_ep = Episode(action='(get cheese robot)', duration={ 'ctype': 'controllable', 'lb': 0.5, 'ub': 1.0 }) prog = RMPyL() prog *= prog.sequence( prog.parallel( prog.observe( { 'name': 'observe-utensil', 'domain': ['Mug', 'Glass'], 'ctype': 'uncontrollable' }, get_mug_ep, get_glass_ep, id='observe-utensil-ep'), prog.decide( { 'name': 'choose-beverage-ingredient', 'domain': ['Grounds', 'Juice'], 'utility': [0, 0] }, get_grounds_ep, get_juice_ep, id='choose-beverage-ingredient-ep')), prog.observe( { 'name': 'observe-alice-drink', 'domain': ['Coffee', 'Juice'], 'ctype': 'uncontrollable' }, prog.sequence(make_cofee_ep, pour_cofee_ep), pour_juice_glass, id='observe-alice-drink-ep'), prog.parallel(prog.observe( { 'name': 'observe-food', 'domain': ['Bagel', 'Cereal'], 'ctype': 'uncontrollable' }, get_bagel_ep, get_cereal_ep, id='observe-food-ep'), prog.decide( { 'name': 'choose-food-ingredient', 'domain': ['Milk', 'Cheese'], 'utility': [0, 0] }, get_milk_ep, get_cheese_ep, id='choose-food-ingredient-ep'), id='parallel-food-ep'), prog.observe( { 'name': 'observe-alice-food', 'domain': ['Bagel', 'Cereal'], 'ctype': 'uncontrollable' }, prog.sequence(toast_bagel_ep, add_cheese_bagel_ep), mix_cereal_ep), id='breakfast-sequence') extra_tcs = [ TemporalConstraint( start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('observe-utensil-ep').start, ctype='controllable', lb=0.0, ub=0.0), TemporalConstraint( start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('choose-beverage-ingredient-ep').start, ctype='controllable', lb=0.2, ub=0.3), TemporalConstraint(start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('observe-food-ep').start, ctype='controllable', lb=0.0, ub=0.0), TemporalConstraint( start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('choose-food-ingredient-ep').start, ctype='controllable', lb=0.2, ub=0.3) ] for tc in extra_tcs: prog.add_temporal_constraint(tc) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=7.0) prog.simplify_temporal_constraints() return prog
def rmpyl_breakfast(): """ Example from (Levine & Williams, ICAPS14). """ #Actions that Alice performs get_mug_ep = Episode(action='(get alice mug)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_glass_ep = Episode(action='(get alice glass)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) make_cofee_ep = Episode(action='(make-coffee alice)',duration={'ctype':'controllable','lb':3.0,'ub':5.0}) pour_cofee_ep = Episode(action='(pour-coffee alice mug)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) pour_juice_glass = Episode(action='(pour-juice alice glass)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_bagel_ep = Episode(action='(get alice bagel)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_cereal_ep = Episode(action='(get alice cereal)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) toast_bagel_ep = Episode(action='(toast alice bagel)',duration={'ctype':'controllable','lb':3.0,'ub':5.0}) add_cheese_bagel_ep = Episode(action='(add-cheese alice bagel)',duration={'ctype':'controllable','lb':1.0,'ub':2.0}) mix_cereal_ep = Episode(action='(mix-cereal alice milk)',duration={'ctype':'controllable','lb':1.0,'ub':2.0}) #Actions that the robot performs get_grounds_ep = Episode(action='(get grounds robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_juice_ep = Episode(action='(get juice robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_milk_ep = Episode(action='(get milk robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) get_cheese_ep = Episode(action='(get cheese robot)',duration={'ctype':'controllable','lb':0.5,'ub':1.0}) prog = RMPyL() prog *= prog.sequence( prog.parallel( prog.observe( {'name':'observe-utensil','domain':['Mug','Glass'],'ctype':'uncontrollable'}, get_mug_ep, get_glass_ep, id='observe-utensil-ep'), prog.decide( {'name':'choose-beverage-ingredient','domain':['Grounds','Juice'],'utility':[0,0]}, get_grounds_ep, get_juice_ep, id='choose-beverage-ingredient-ep')), prog.observe( {'name':'observe-alice-drink','domain':['Coffee','Juice'],'ctype':'uncontrollable'}, prog.sequence(make_cofee_ep,pour_cofee_ep), pour_juice_glass, id='observe-alice-drink-ep'), prog.parallel( prog.observe( {'name':'observe-food','domain':['Bagel','Cereal'],'ctype':'uncontrollable'}, get_bagel_ep, get_cereal_ep, id='observe-food-ep'), prog.decide( {'name':'choose-food-ingredient','domain':['Milk','Cheese'],'utility':[0,0]}, get_milk_ep, get_cheese_ep, id='choose-food-ingredient-ep'), id='parallel-food-ep'), prog.observe( {'name':'observe-alice-food','domain':['Bagel','Cereal'],'ctype':'uncontrollable'}, prog.sequence(toast_bagel_ep,add_cheese_bagel_ep), mix_cereal_ep), id='breakfast-sequence') extra_tcs = [TemporalConstraint(start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('observe-utensil-ep').start, ctype='controllable',lb=0.0,ub=0.0), TemporalConstraint(start=prog.episode_by_id('breakfast-sequence').start, end=prog.episode_by_id('choose-beverage-ingredient-ep').start, ctype='controllable',lb=0.2,ub=0.3), TemporalConstraint(start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('observe-food-ep').start, ctype='controllable',lb=0.0,ub=0.0), TemporalConstraint(start=prog.episode_by_id('parallel-food-ep').start, end=prog.episode_by_id('choose-food-ingredient-ep').start, ctype='controllable',lb=0.2,ub=0.3)] for tc in extra_tcs: prog.add_temporal_constraint(tc) prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=7.0) prog.simplify_temporal_constraints() return prog
def rmpyl_icaps14(): """ Example from (Santana & Williams, ICAPS14). """ prog = RMPyL() prog *= prog.decide( { 'name': 'transport-choice', 'domain': ['Bike', 'Car', 'Stay'], 'utility': [100, 70, 0] }, prog.observe( { 'name': 'slip', 'domain': [True, False], 'ctype': 'probabilistic', 'probability': [0.051, 1.0 - 0.051] }, prog.sequence( Episode(action='(ride-bike)', duration={ 'ctype': 'controllable', 'lb': 15, 'ub': 25 }), Episode(action='(change)', duration={ 'ctype': 'controllable', 'lb': 20, 'ub': 30 })), Episode(action='(ride-bike)', duration={ 'ctype': 'controllable', 'lb': 15, 'ub': 25 })), prog.observe( { 'name': 'accident', 'domain': [True, False], 'ctype': 'probabilistic', 'probability': [0.013, 1.0 - 0.013] }, prog.sequence( Episode(action='(tow-vehicle)', duration={ 'ctype': 'controllable', 'lb': 30, 'ub': 90 }), Episode(action='(cab-ride)', duration={ 'ctype': 'controllable', 'lb': 10, 'ub': 20 })), Episode(action='(drive)', duration={ 'ctype': 'controllable', 'lb': 10, 'ub': 20 })), Episode(action='(stay)')) prog.add_overall_temporal_constraint(ctype='controllable', lb=0.0, ub=30.0) return prog