Exemple #1
0
                                                             lb=float(time_bound),
                                                             ub=float(time_bound)))

        global_prog = RMPyL(name='run()')
        global_prog *= global_prog.parallel(prog.plan,*activation_episodes,start=global_start)

        activation_tcs.append(TemporalConstraint(start=global_start,end=prog.first_event,
                                                 ctype='controllable',lb=0.0,ub=0.005))

        for tc in activation_tcs:
            global_prog.add_temporal_constraint(tc)

        # rmpyl_policy.to_ptpn(filename=output_file)
        #ipdb.set_trace()

        global_prog.to_ptpn(filename=output_file+'_test')
        paris = PARIS()

        # risk_bound,sc_schedule = paris.stnu_reformulation(rmpyl_policy,makespan=True,cc=0.001)

        risk_bound,sc_schedule = paris.stnu_reformulation(global_prog,makespan=True,cc=0.001)

        if risk_bound != None:
            risk_bound = min(risk_bound,1.0)
            print('\nSuccessfully performed STNU reformulation with scheduling risk %f %%!'%(risk_bound*100.0))


            for tc in global_prog.temporal_constraints:
                if tc.type == 'uncontrollable_bounded':
                    tc.type = 'controllable'
#Searches for the optimal policy
policy,explicit,performance = planner.search(b0)

#Converts policy to graphical SVG format
dot_policy = policy_to_dot(explicit,policy)
dot_policy.write('flightgear_policy.svg',format='svg')

#Converts optimal exploration policy into an RMPyL program
exploration_policy = policy_to_rmpyl(explicit,policy)

#The flight policy has the additional actions of taking off and landing.
flight_policy = RMPyL(name='run()')
flight_policy *= flight_policy.sequence(Episode(action='(takeoff plane)'),
                                        exploration_policy,
                                        Episode(action='(land plane)'))

#Eliminates probabilistic choices from the policy, since Pike (in fact, the
#Lisp tpn package) cannot properly handle them.
for obs in flight_policy.observations:
    if obs.type=='probabilistic':
        obs.type = 'uncontrollable'
        del obs.properties['probability']

#Converts the program to a TPN
flight_policy.to_ptpn(filename='flightgear_rmpyl.tpn')

# Writes control program to pickle file
with open('flightgear_rmpyl.pickle','wb') as f:
   pickle.dump(flight_policy,f,protocol=2)
Exemple #3
0
    plan = sat_plans[0]
    print('\n##### Plan found!\n')
    for t, action in enumerate(plan):
        print('%d: %s' % (t, action))

    prog = RMPyL(name='run()')
    prog.plan = prog.sequence(*[
        Episode(start=Event(name='start-of-' + op),
                end=Event(name='end-of-' + op),
                action=op,
                duration=rss_duration_func(op)) for op in plan
    ])
    prog.add_overall_temporal_constraint(ctype='controllable',
                                         lb=0.0,
                                         ub=2000.0)
    prog.to_ptpn(filename='rss_pysat_before_stnu_reform.tpn')

    paris = PARIS()
    risk_bound, sc_sched = paris.stnu_reformulation(prog,
                                                    makespan=True,
                                                    cc=0.001)
    if risk_bound != None:
        risk_bound = min(risk_bound, 1.0)
        print(
            '\nSuccessfully performed STNU reformulation with scheduling risk %f %%!'
            % (risk_bound * 100.0))
        prog.to_ptpn(filename='rss_pysat_after_stnu_reform.tpn')

        print('\nThis is the schedule:')
        for e, t in sorted([(e, t) for e, t in sc_sched.items()],
                           key=lambda x: x[1]):
Exemple #4
0
repetitions = int(sys.argv[1]) if len(sys.argv)==2 else 3

prog*= try_try_again(prog,rob.do_action,rob.stop,loop_utility=1,
                     stop_utility=0,repetitions=repetitions)
prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=10.0)


print('\n***** Start event\n')
print(prog.first_event)

print('\n***** Last event\n')
print(prog.last_event)

print('\n***** Primitive episodes\n')
for i,p in enumerate(prog.primitive_episodes):
    print('%d: %s\n'%(i+1,str(p)))

print('\n***** Events\n')
for i,e in enumerate(prog.events):
    print('%d: %s'%(i+1,str(e)))

# print('\n***** Event successors\n')
# for i,(ev,successors) in enumerate(prog.event_successors.items()):
#     print('%d: %s -> %s'%(i+1,ev.name,str([e.name for e in successors])))

print('\n***** Temporal constraints\n')
for i,tc in enumerate(prog.temporal_constraints):
    print('%d: %s\n'%(i+1,str(tc)))

prog.to_ptpn(filename='recursive_rmpyl_ptpn.tpn')
Exemple #5
0
#Searches for the optimal policy
policy, explicit, performance = planner.search(b0)

#Converts policy to graphical SVG format
dot_policy = policy_to_dot(explicit, policy)
dot_policy.write('flightgear_policy.svg', format='svg')

#Converts optimal exploration policy into an RMPyL program
exploration_policy = policy_to_rmpyl(explicit, policy)

#The flight policy has the additional actions of taking off and landing.
flight_policy = RMPyL(name='run()')
flight_policy *= flight_policy.sequence(Episode(action='(takeoff plane)'),
                                        exploration_policy,
                                        Episode(action='(land plane)'))

#Eliminates probabilistic choices from the policy, since Pike (in fact, the
#Lisp tpn package) cannot properly handle them.
for obs in flight_policy.observations:
    if obs.type == 'probabilistic':
        obs.type = 'uncontrollable'
        del obs.properties['probability']

#Converts the program to a TPN
flight_policy.to_ptpn(filename='flightgear_rmpyl.tpn')

# Writes control program to pickle file
with open('flightgear_rmpyl.pickle', 'wb') as f:
    pickle.dump(flight_policy, f, protocol=2)
Exemple #6
0
        """
        return Episode(duration={'ctype':'controllable','lb':5,'ub':30},
                       action='(relay %s)'%(self.name))

loc={'start':(8.751,-8.625),
     'minerals':(0.0,-10.0),
     'funny_rock':(-5.0,-2.0),
     'relay':(0.0,0.0),
     'alien_lair':(0.0,10.0)}


rov1 = Rover(name='spirit')

prog = RMPyL(name='run()')#name=run() is a requirement for Enterprise at the moment
prog *= prog.sequence(
            rov1.go_to(start=loc['start'],goal=loc['minerals'],risk=0.01),
            rov1.go_to(start=loc['minerals'],goal=loc['funny_rock'],risk=0.01),
            rov1.go_to(start=loc['funny_rock'],goal=loc['alien_lair'],risk=0.01),
            rov1.go_to(start=loc['alien_lair'],goal=loc['relay'],risk=0.01))
tc=prog.add_overall_temporal_constraint(ctype='controllable',lb=0.0,ub=2000.0)
cc_time = ChanceConstraint(constraint_scope=[tc],risk=0.1)
prog.add_chance_constraint(cc_time)

#Option to export the RMPyL program to an Enterprise-compliant TPN.
prog.to_ptpn(filename='picard_rovers_rmpyl.tpn')

#Writes RMPyL program to pickle file.
with open('picard_rovers_rmpyl.pickle','wb') as f:
    print('Writing RMPyL program to pickle file.')
    pickle.dump(prog,f)
Exemple #7
0
                                            start=global_start)

        activation_tcs.append(
            TemporalConstraint(start=global_start,
                               end=prog.first_event,
                               ctype='controllable',
                               lb=0.0,
                               ub=0.005))

        for tc in activation_tcs:
            global_prog.add_temporal_constraint(tc)

        # rmpyl_policy.to_ptpn(filename=output_file)
        #ipdb.set_trace()

        global_prog.to_ptpn(filename=output_file + '_test')
        paris = PARIS()

        # risk_bound,sc_schedule = paris.stnu_reformulation(rmpyl_policy,makespan=True,cc=0.001)

        risk_bound, sc_schedule = paris.stnu_reformulation(global_prog,
                                                           makespan=True,
                                                           cc=0.001)

        if risk_bound != None:
            risk_bound = min(risk_bound, 1.0)
            print(
                '\nSuccessfully performed STNU reformulation with scheduling risk %f %%!'
                % (risk_bound * 100.0))

            for tc in global_prog.temporal_constraints: