Exemple #1
0
    def forward(self, bottom, top):
        # Algorithm:
        #
        # for each (H, W) location i
        #   generate 9 anchor boxes centered on cell i
        #   apply predicted bbox deltas at cell i to each of the 9 anchors
        # filter out-of-image anchors
        # measure GT overlap

        assert bottom[0].data.shape[0] == 1, \
            'Only single item batches are supported'

        # map of shape (..., H, W)
        height, width = bottom[0].data.shape[-2:]
        # GT boxes (x_ctr, y_ctr, height, width, theta, label)
        gt_boxes = bottom[1].data
        # im_info
        im_info = bottom[2].data[0, :]

        if DEBUG:
            print ''
            print 'im_size: ({}, {})'.format(im_info[0], im_info[1])
            print 'scale: {}'.format(im_info[2])
            print 'height, width: ({}, {})'.format(height, width)
            print 'rpn: gt_boxes.shape', gt_boxes.shape
            print 'rpn: gt_boxes', gt_boxes

        # 1. Generate proposals from bbox deltas and shifted anchors
        shift_x = np.arange(0, width) * self._feat_stride
        shift_y = np.arange(0, height) * self._feat_stride
        shift_x, shift_y = np.meshgrid(shift_x, shift_y)
        shifts = np.vstack(
            (shift_x.ravel(), shift_y.ravel(), np.zeros(
                (3, width * height)))).transpose()
        # add A anchors (1, A, 5) to
        # cell K shifts (K, 1, 5) to get
        # shift anchors (K, A, 5)
        # reshape to (K*A, 5) shifted anchors
        A = self._num_anchors
        K = shifts.shape[0]
        all_anchors = (self._anchors.reshape(
            (1, A, self.bbox_para_num)) + shifts.reshape(
                (1, K, self.bbox_para_num)).transpose((1, 0, 2)))
        all_anchors = all_anchors.reshape((K * A, self.bbox_para_num))
        total_anchors = int(K * A)

        # only keep anchors inside the image
        # inds_inside = np.where(
        # (all_anchors[:, 0] >= -self._allowed_border) &
        # (all_anchors[:, 1] >= -self._allowed_border) &
        # (all_anchors[:, 2] < im_info[1] + self._allowed_border) &  # width
        # (all_anchors[:, 3] < im_info[0] + self._allowed_border)    # height
        # )[0]

        import time
        #tic = time.time()
        pt1, pt2, pt3, pt4 = condinate_rotate(all_anchors)  # coodinate project
        inds_inside = np.array(
            ind_inside(pt1, pt2, pt3, pt4, im_info[0],
                       im_info[1]))  # inside index
        #print time.time()-tic

        if DEBUG:
            print 'total_anchors', total_anchors
            print 'inds_inside', len(inds_inside)

        # keep only inside anchors
        anchors = all_anchors[inds_inside, :]
        if DEBUG:
            print 'anchors.shape', anchors.shape

        # label: 1 is positive, 0 is negative, -1 is dont care
        labels = np.empty((len(inds_inside), ), dtype=np.float32)
        labels.fill(-1)

        # overlaps between the anchors and the gt boxes
        # overlaps (ex, gt)

        #print np.array(anchors,dtype=np.float32).shape
        #print gt_boxes[:,0:5].astype(np.float32)
        #print 'aasdf'
        overlaps = rbbx_overlaps(
            np.ascontiguousarray(anchors, dtype=np.float32),
            np.ascontiguousarray(gt_boxes[:, 0:5], dtype=np.float32),
            cfg.GPU_ID)
        #print 'sdfwef'

        an_gt_diffs = angle_diff(anchors, gt_boxes)

        argmax_overlaps = overlaps.argmax(
            axis=1)  # max overlaps of anchor compared with gts
        max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]
        max_overlaps_angle_diff = an_gt_diffs[np.arange(len(inds_inside)),
                                              argmax_overlaps]  # D

        gt_argmax_overlaps = overlaps.argmax(
            axis=0)  # max overlaps of gt compared with anchors
        gt_max_overlaps = overlaps[gt_argmax_overlaps,
                                   np.arange(overlaps.shape[1])]
        gt_argmax_overlaps = np.where((overlaps == gt_max_overlaps) & (
            an_gt_diffs <= cfg.TRAIN.R_POSITIVE_ANGLE_FILTER))[0]
        #mask1 = np.abs(anchors[:, 3] * 1.0 / anchors[:, 2] - 2.0) < 1.5
        #mask2 = np.abs(anchors[:, 3] * 1.0 / anchors[:, 2] - 5.0) < 1.5
        #mask3 = np.abs(anchors[:, 3] * 1.0 / anchors[:, 2] - 8.0) < 1.5

        if not cfg.TRAIN.RPN_CLOBBER_POSITIVES:
            # assign bg labels first so that positive labels can clobber them
            labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0
#labels[(max_overlaps < 0.3) & mask1] = 0
#labels[(max_overlaps < 0.27) & mask2] = 0
#labels[(max_overlaps < 0.13) & mask3] = 0

# fg label: for each gt, anchor with highest overlap
        labels[gt_argmax_overlaps] = 1

        # fg label: above threshold IOU
        labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1  # D
        #labels[(max_overlaps >= 0.7) & mask1] = 1
        #labels[(max_overlaps >= 0.625) & mask2] = 1
        #labels[(max_overlaps >= 0.313) & mask3] = 1
        # fg label: above threshold IOU the angle diff abs must be less than 15

        if cfg.TRAIN.RPN_CLOBBER_POSITIVES:
            # assign bg labels last so that negative labels can clobber positives
            labels[(max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP) | (
                (max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP) &
                (max_overlaps_angle_diff > cfg.TRAIN.R_NEGATIVE_ANGLE_FILTER)
            )] = 0
#labels[((max_overlaps < 0.3) | ((max_overlaps >= 0.7) & (max_overlaps_angle_diff > cfg.TRAIN.R_NEGATIVE_ANGLE_FILTER))) & mask1] = 0
#labels[((max_overlaps < 0.27) | ((max_overlaps >= 0.625) & (max_overlaps_angle_diff > cfg.TRAIN.R_NEGATIVE_ANGLE_FILTER))) & mask2] = 0
#labels[((max_overlaps < 0.13) | ((max_overlaps >= 0.313) & (max_overlaps_angle_diff > cfg.TRAIN.R_NEGATIVE_ANGLE_FILTER))) & mask3] = 0

# subsample positive labels if we have too many
        num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE)
        fg_inds = np.where(labels == 1)[0]
        if len(fg_inds) > num_fg:
            disable_inds = npr.choice(fg_inds,
                                      size=(len(fg_inds) - num_fg),
                                      replace=False)
            labels[disable_inds] = -1

        # subsample negative labels if we have too many
        num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1)
        bg_inds = np.where(labels == 0)[0]
        if len(bg_inds) > num_bg:
            disable_inds = npr.choice(bg_inds,
                                      size=(len(bg_inds) - num_bg),
                                      replace=False)
            labels[disable_inds] = -1
            #print "was %s inds, disabling %s, now %s inds" % (
            #len(bg_inds), len(disable_inds), np.sum(labels == 0))

#print 'num_fg',len(fg_inds),'num_bg',len(bg_inds)

        bbox_targets = np.zeros((len(inds_inside), self.bbox_para_num),
                                dtype=np.float32)
        bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])

        bbox_inside_weights = np.zeros((len(inds_inside), self.bbox_para_num),
                                       dtype=np.float32)
        bbox_inside_weights[labels == 1, :] = np.array(
            cfg.TRAIN.RPN_RBBOX_INSIDE_WEIGHTS)  # D

        bbox_outside_weights = np.zeros((len(inds_inside), self.bbox_para_num),
                                        dtype=np.float32)
        if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0:
            # uniform weighting of examples (given non-uniform sampling)
            num_examples = np.sum(labels >= 0)
            positive_weights = np.ones(
                (1, self.bbox_para_num)) * 1.0 / num_examples
            negative_weights = np.ones(
                (1, self.bbox_para_num)) * 1.0 / num_examples
        else:
            assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &
                    (cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1))
            positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT /
                                np.sum(labels == 1))
            negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) /
                                np.sum(labels == 0))
        bbox_outside_weights[labels == 1, :] = positive_weights
        bbox_outside_weights[labels == 0, :] = negative_weights

        if DEBUG:
            self._sums += bbox_targets[labels == 1, :].sum(axis=0)
            self._squared_sums += (bbox_targets[labels == 1, :]**2).sum(axis=0)
            self._counts += np.sum(labels == 1)
            means = self._sums / self._counts
            stds = np.sqrt(self._squared_sums / self._counts - means**2)
            print 'means:'
            print means
            print 'stdevs:'
            print stds

        # map up to original set of anchors
        labels = _unmap(labels, total_anchors, inds_inside, fill=-1)
        bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)
        bbox_inside_weights = _unmap(bbox_inside_weights,
                                     total_anchors,
                                     inds_inside,
                                     fill=0)
        bbox_outside_weights = _unmap(bbox_outside_weights,
                                      total_anchors,
                                      inds_inside,
                                      fill=0)

        if DEBUG:
            print 'rpn: max max_overlap', np.max(max_overlaps)
            print 'rpn: num_positive', np.sum(labels == 1)
            print 'rpn: num_negative', np.sum(labels == 0)
            self._fg_sum += np.sum(labels == 1)
            self._bg_sum += np.sum(labels == 0)
            self._count += 1
            print 'rpn: num_positive avg', self._fg_sum / self._count
            print 'rpn: num_negative avg', self._bg_sum / self._count

        # labels
        labels = labels.reshape((1, height, width, A)).transpose(0, 3, 1, 2)
        labels = labels.reshape((1, 1, A * height, width))
        top[0].reshape(*labels.shape)
        top[0].data[...] = labels

        # bbox_targets
        bbox_targets = bbox_targets \
            .reshape((1, height, width, A * self.bbox_para_num)).transpose(0, 3, 1, 2)
        top[1].reshape(*bbox_targets.shape)
        top[1].data[...] = bbox_targets

        # bbox_inside_weights
        bbox_inside_weights = bbox_inside_weights \
            .reshape((1, height, width, A * self.bbox_para_num)).transpose(0, 3, 1, 2)
        assert bbox_inside_weights.shape[2] == height
        assert bbox_inside_weights.shape[3] == width
        top[2].reshape(*bbox_inside_weights.shape)
        top[2].data[...] = bbox_inside_weights

        # bbox_outside_weights
        bbox_outside_weights = bbox_outside_weights \
            .reshape((1, height, width, A * self.bbox_para_num)).transpose(0, 3, 1, 2)
        assert bbox_outside_weights.shape[2] == height
        assert bbox_outside_weights.shape[3] == width
        top[3].reshape(*bbox_outside_weights.shape)
        top[3].data[...] = bbox_outside_weights
Exemple #2
0
def _sample_rois(all_rois, gt_boxes, fg_rois_per_image, rois_per_image, num_classes):
    """Generate a random sample of RoIs comprising foreground and background
    examples.
    """

    _bbox_para_num = 5

    # overlaps: (rois x gt_boxes)
    overlaps = rbbx_overlaps( # D
        np.ascontiguousarray(all_rois[:, 1: _bbox_para_num + 1], dtype=np.float32), # D
        np.ascontiguousarray(gt_boxes[:, :_bbox_para_num], dtype=np.float32) ,cfg.GPU_ID) # D

    an_gt_diffs = angle_diff(all_rois[:, 1: _bbox_para_num + 1],gt_boxes[:, :_bbox_para_num]) # D

    gt_assignment = overlaps.argmax(axis=1)
    max_overlaps = overlaps.max(axis=1)

    max_overlaps_angle_diff = an_gt_diffs[np.arange(len(gt_assignment)), gt_assignment] # D

    labels = gt_boxes[gt_assignment, 5] # D: label is in the last column

    # Select foreground RoIs as those with >= FG_THRESH overlap

    #################### angle filter
  #  print np.shape(max_overlaps_angle_diff)
    fg_inds = np.where((max_overlaps >= cfg.TRAIN.FG_THRESH) & (max_overlaps_angle_diff <= cfg.TRAIN.R_POSITIVE_ANGLE_FILTER))[0] # D
    ####################
  #  print 'anglediff',max_overlaps_angle_diff[fg_inds]
   # print gt_boxes

    # Guard against the case when an image has fewer than fg_rois_per_image
    # foreground RoIs
    fg_rois_per_this_image = int(min(fg_rois_per_image, fg_inds.size))
    # Sample foreground regions without replacement
    if fg_inds.size > 0:
        # print(type(fg_inds))
        fg_inds = npr.choice(fg_inds, size=fg_rois_per_this_image, replace=False)

    # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI)

    ####################
    bg_inds = np.where(((max_overlaps < cfg.TRAIN.BG_THRESH_HI) &
                       (max_overlaps >= cfg.TRAIN.BG_THRESH_LO)) | ((max_overlaps>=cfg.TRAIN.FG_THRESH)&(max_overlaps_angle_diff>cfg.TRAIN.R_NEGATIVE_ANGLE_FILTER)))[0]
    ####################
    # print 'proposal fg',len(fg_inds),'bg',len(bg_inds)
    # print 

    # Compute number of background RoIs to take from this image (guarding
    # against there being fewer than desired)
    bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image
    bg_rois_per_this_image = int(min(bg_rois_per_this_image, bg_inds.size))
    # Sample background regions without replacement
    if bg_inds.size > 0:
        bg_inds = npr.choice(bg_inds, size=bg_rois_per_this_image, replace=False)

    # The indices that we're selecting (both fg and bg)
    keep_inds = np.append(fg_inds, bg_inds)
    # Select sampled values from various arrays:
    labels = labels[keep_inds]
    # Clamp labels for the background RoIs to 0
    labels[fg_rois_per_this_image:] = 0
    rois = all_rois[keep_inds]

    bbox_target_data = _compute_targets(
        rois[:, 1:_bbox_para_num + 1], gt_boxes[gt_assignment[keep_inds], :_bbox_para_num], labels) # D

    bbox_targets, bbox_inside_weights = \
        _get_bbox_regression_labels(bbox_target_data, num_classes)

    return labels, rois, bbox_targets, bbox_inside_weights
Exemple #3
0
    print anchors.shape

    # label: 1 is positive, 0 is negative, -1 is dont care
    labels = np.empty((len(inds_inside), ), dtype=np.float32)
    labels.fill(-1)

    # overlaps between the anchors and the gt boxes
    # overlaps (ex, gt)

    ######################
    # angle filter
    ######################

    overlaps = rbbx_overlaps(anchors, gt_boxes, cfg.GPU_ID)

    an_gt_diffs = angle_diff(anchors, gt_boxes)

    argmax_overlaps = overlaps.argmax(
        axis=1)  # max overlaps of anchor compared with gts
    max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]
    max_overlaps_angle_diff = an_gt_diffs[np.arange(len(inds_inside)),
                                          argmax_overlaps]  # D

    gt_argmax_overlaps = overlaps.argmax(
        axis=0)  # max overlaps of gt compared with anchors
    gt_max_overlaps = overlaps[gt_argmax_overlaps,
                               np.arange(overlaps.shape[1])]
    gt_argmax_overlaps = np.where((overlaps == gt_max_overlaps)
                                  & (an_gt_diffs <= 15))[0]

    if not cfg.TRAIN.RPN_CLOBBER_POSITIVES:
Exemple #4
0
	# foreground RoIs
	'''
	##################
	# End no angle filter
	##################

	##################
	# angle filter
	##################
	
	# overlaps: (rois x gt_boxes)
    	overlaps = rbbx_overlaps( # D
        	all_rois[:, 1: _bbox_para_num + 1],# D
        	gt_boxes[:, :_bbox_para_num] ,cfg.GPU_ID) # D

    	an_gt_diffs = angle_diff(all_rois[:, 1: _bbox_para_num + 1],gt_boxes[:, :_bbox_para_num]) # D

    	gt_assignment = overlaps.argmax(axis=1)
   	max_overlaps = overlaps.max(axis=1)

	print "gt_assignment"
	print gt_assignment

    	max_overlaps_angle_diff = an_gt_diffs[np.arange(len(gt_assignment)), gt_assignment] # D
    
    	labels = gt_boxes[gt_assignment, 5] # D: label is in the last column

    	# Select foreground RoIs as those with >= FG_THRESH overlap

    	#################### angle filter
    	fg_inds = np.where((max_overlaps >= cfg.TRAIN.FG_THRESH) & (max_overlaps_angle_diff <= 15))[0] # D