def forward(self, bottom, top): # Algorithm: # # for each (H, W) location i # generate 9 anchor boxes centered on cell i # apply predicted bbox deltas at cell i to each of the 9 anchors # filter out-of-image anchors # measure GT overlap assert bottom[0].data.shape[0] == 1, \ 'Only single item batches are supported' # map of shape (..., H, W) height, width = bottom[0].data.shape[-2:] # GT boxes (x_ctr, y_ctr, height, width, theta, label) gt_boxes = bottom[1].data # im_info im_info = bottom[2].data[0, :] if DEBUG: print '' print 'im_size: ({}, {})'.format(im_info[0], im_info[1]) print 'scale: {}'.format(im_info[2]) print 'height, width: ({}, {})'.format(height, width) print 'rpn: gt_boxes.shape', gt_boxes.shape print 'rpn: gt_boxes', gt_boxes # 1. Generate proposals from bbox deltas and shifted anchors shift_x = np.arange(0, width) * self._feat_stride shift_y = np.arange(0, height) * self._feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack( (shift_x.ravel(), shift_y.ravel(), np.zeros( (3, width * height)))).transpose() # add A anchors (1, A, 5) to # cell K shifts (K, 1, 5) to get # shift anchors (K, A, 5) # reshape to (K*A, 5) shifted anchors A = self._num_anchors K = shifts.shape[0] all_anchors = (self._anchors.reshape( (1, A, self.bbox_para_num)) + shifts.reshape( (1, K, self.bbox_para_num)).transpose((1, 0, 2))) all_anchors = all_anchors.reshape((K * A, self.bbox_para_num)) total_anchors = int(K * A) # only keep anchors inside the image # inds_inside = np.where( # (all_anchors[:, 0] >= -self._allowed_border) & # (all_anchors[:, 1] >= -self._allowed_border) & # (all_anchors[:, 2] < im_info[1] + self._allowed_border) & # width # (all_anchors[:, 3] < im_info[0] + self._allowed_border) # height # )[0] import time #tic = time.time() pt1, pt2, pt3, pt4 = condinate_rotate(all_anchors) # coodinate project inds_inside = np.array( ind_inside(pt1, pt2, pt3, pt4, im_info[0], im_info[1])) # inside index #print time.time()-tic if DEBUG: print 'total_anchors', total_anchors print 'inds_inside', len(inds_inside) # keep only inside anchors anchors = all_anchors[inds_inside, :] if DEBUG: print 'anchors.shape', anchors.shape # label: 1 is positive, 0 is negative, -1 is dont care labels = np.empty((len(inds_inside), ), dtype=np.float32) labels.fill(-1) # overlaps between the anchors and the gt boxes # overlaps (ex, gt) #print np.array(anchors,dtype=np.float32).shape #print gt_boxes[:,0:5].astype(np.float32) #print 'aasdf' overlaps = rbbx_overlaps( np.ascontiguousarray(anchors, dtype=np.float32), np.ascontiguousarray(gt_boxes[:, 0:5], dtype=np.float32), cfg.GPU_ID) #print 'sdfwef' an_gt_diffs = angle_diff(anchors, gt_boxes) argmax_overlaps = overlaps.argmax( axis=1) # max overlaps of anchor compared with gts max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps] max_overlaps_angle_diff = an_gt_diffs[np.arange(len(inds_inside)), argmax_overlaps] # D gt_argmax_overlaps = overlaps.argmax( axis=0) # max overlaps of gt compared with anchors gt_max_overlaps = overlaps[gt_argmax_overlaps, np.arange(overlaps.shape[1])] gt_argmax_overlaps = np.where((overlaps == gt_max_overlaps) & ( an_gt_diffs <= cfg.TRAIN.R_POSITIVE_ANGLE_FILTER))[0] #mask1 = np.abs(anchors[:, 3] * 1.0 / anchors[:, 2] - 2.0) < 1.5 #mask2 = np.abs(anchors[:, 3] * 1.0 / anchors[:, 2] - 5.0) < 1.5 #mask3 = np.abs(anchors[:, 3] * 1.0 / anchors[:, 2] - 8.0) < 1.5 if not cfg.TRAIN.RPN_CLOBBER_POSITIVES: # assign bg labels first so that positive labels can clobber them labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0 #labels[(max_overlaps < 0.3) & mask1] = 0 #labels[(max_overlaps < 0.27) & mask2] = 0 #labels[(max_overlaps < 0.13) & mask3] = 0 # fg label: for each gt, anchor with highest overlap labels[gt_argmax_overlaps] = 1 # fg label: above threshold IOU labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1 # D #labels[(max_overlaps >= 0.7) & mask1] = 1 #labels[(max_overlaps >= 0.625) & mask2] = 1 #labels[(max_overlaps >= 0.313) & mask3] = 1 # fg label: above threshold IOU the angle diff abs must be less than 15 if cfg.TRAIN.RPN_CLOBBER_POSITIVES: # assign bg labels last so that negative labels can clobber positives labels[(max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP) | ( (max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP) & (max_overlaps_angle_diff > cfg.TRAIN.R_NEGATIVE_ANGLE_FILTER) )] = 0 #labels[((max_overlaps < 0.3) | ((max_overlaps >= 0.7) & (max_overlaps_angle_diff > cfg.TRAIN.R_NEGATIVE_ANGLE_FILTER))) & mask1] = 0 #labels[((max_overlaps < 0.27) | ((max_overlaps >= 0.625) & (max_overlaps_angle_diff > cfg.TRAIN.R_NEGATIVE_ANGLE_FILTER))) & mask2] = 0 #labels[((max_overlaps < 0.13) | ((max_overlaps >= 0.313) & (max_overlaps_angle_diff > cfg.TRAIN.R_NEGATIVE_ANGLE_FILTER))) & mask3] = 0 # subsample positive labels if we have too many num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE) fg_inds = np.where(labels == 1)[0] if len(fg_inds) > num_fg: disable_inds = npr.choice(fg_inds, size=(len(fg_inds) - num_fg), replace=False) labels[disable_inds] = -1 # subsample negative labels if we have too many num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1) bg_inds = np.where(labels == 0)[0] if len(bg_inds) > num_bg: disable_inds = npr.choice(bg_inds, size=(len(bg_inds) - num_bg), replace=False) labels[disable_inds] = -1 #print "was %s inds, disabling %s, now %s inds" % ( #len(bg_inds), len(disable_inds), np.sum(labels == 0)) #print 'num_fg',len(fg_inds),'num_bg',len(bg_inds) bbox_targets = np.zeros((len(inds_inside), self.bbox_para_num), dtype=np.float32) bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :]) bbox_inside_weights = np.zeros((len(inds_inside), self.bbox_para_num), dtype=np.float32) bbox_inside_weights[labels == 1, :] = np.array( cfg.TRAIN.RPN_RBBOX_INSIDE_WEIGHTS) # D bbox_outside_weights = np.zeros((len(inds_inside), self.bbox_para_num), dtype=np.float32) if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0: # uniform weighting of examples (given non-uniform sampling) num_examples = np.sum(labels >= 0) positive_weights = np.ones( (1, self.bbox_para_num)) * 1.0 / num_examples negative_weights = np.ones( (1, self.bbox_para_num)) * 1.0 / num_examples else: assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) & (cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1)) positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT / np.sum(labels == 1)) negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) / np.sum(labels == 0)) bbox_outside_weights[labels == 1, :] = positive_weights bbox_outside_weights[labels == 0, :] = negative_weights if DEBUG: self._sums += bbox_targets[labels == 1, :].sum(axis=0) self._squared_sums += (bbox_targets[labels == 1, :]**2).sum(axis=0) self._counts += np.sum(labels == 1) means = self._sums / self._counts stds = np.sqrt(self._squared_sums / self._counts - means**2) print 'means:' print means print 'stdevs:' print stds # map up to original set of anchors labels = _unmap(labels, total_anchors, inds_inside, fill=-1) bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0) bbox_inside_weights = _unmap(bbox_inside_weights, total_anchors, inds_inside, fill=0) bbox_outside_weights = _unmap(bbox_outside_weights, total_anchors, inds_inside, fill=0) if DEBUG: print 'rpn: max max_overlap', np.max(max_overlaps) print 'rpn: num_positive', np.sum(labels == 1) print 'rpn: num_negative', np.sum(labels == 0) self._fg_sum += np.sum(labels == 1) self._bg_sum += np.sum(labels == 0) self._count += 1 print 'rpn: num_positive avg', self._fg_sum / self._count print 'rpn: num_negative avg', self._bg_sum / self._count # labels labels = labels.reshape((1, height, width, A)).transpose(0, 3, 1, 2) labels = labels.reshape((1, 1, A * height, width)) top[0].reshape(*labels.shape) top[0].data[...] = labels # bbox_targets bbox_targets = bbox_targets \ .reshape((1, height, width, A * self.bbox_para_num)).transpose(0, 3, 1, 2) top[1].reshape(*bbox_targets.shape) top[1].data[...] = bbox_targets # bbox_inside_weights bbox_inside_weights = bbox_inside_weights \ .reshape((1, height, width, A * self.bbox_para_num)).transpose(0, 3, 1, 2) assert bbox_inside_weights.shape[2] == height assert bbox_inside_weights.shape[3] == width top[2].reshape(*bbox_inside_weights.shape) top[2].data[...] = bbox_inside_weights # bbox_outside_weights bbox_outside_weights = bbox_outside_weights \ .reshape((1, height, width, A * self.bbox_para_num)).transpose(0, 3, 1, 2) assert bbox_outside_weights.shape[2] == height assert bbox_outside_weights.shape[3] == width top[3].reshape(*bbox_outside_weights.shape) top[3].data[...] = bbox_outside_weights
def _sample_rois(all_rois, gt_boxes, fg_rois_per_image, rois_per_image, num_classes): """Generate a random sample of RoIs comprising foreground and background examples. """ _bbox_para_num = 5 # overlaps: (rois x gt_boxes) overlaps = rbbx_overlaps( # D np.ascontiguousarray(all_rois[:, 1: _bbox_para_num + 1], dtype=np.float32), # D np.ascontiguousarray(gt_boxes[:, :_bbox_para_num], dtype=np.float32) ,cfg.GPU_ID) # D an_gt_diffs = angle_diff(all_rois[:, 1: _bbox_para_num + 1],gt_boxes[:, :_bbox_para_num]) # D gt_assignment = overlaps.argmax(axis=1) max_overlaps = overlaps.max(axis=1) max_overlaps_angle_diff = an_gt_diffs[np.arange(len(gt_assignment)), gt_assignment] # D labels = gt_boxes[gt_assignment, 5] # D: label is in the last column # Select foreground RoIs as those with >= FG_THRESH overlap #################### angle filter # print np.shape(max_overlaps_angle_diff) fg_inds = np.where((max_overlaps >= cfg.TRAIN.FG_THRESH) & (max_overlaps_angle_diff <= cfg.TRAIN.R_POSITIVE_ANGLE_FILTER))[0] # D #################### # print 'anglediff',max_overlaps_angle_diff[fg_inds] # print gt_boxes # Guard against the case when an image has fewer than fg_rois_per_image # foreground RoIs fg_rois_per_this_image = int(min(fg_rois_per_image, fg_inds.size)) # Sample foreground regions without replacement if fg_inds.size > 0: # print(type(fg_inds)) fg_inds = npr.choice(fg_inds, size=fg_rois_per_this_image, replace=False) # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI) #################### bg_inds = np.where(((max_overlaps < cfg.TRAIN.BG_THRESH_HI) & (max_overlaps >= cfg.TRAIN.BG_THRESH_LO)) | ((max_overlaps>=cfg.TRAIN.FG_THRESH)&(max_overlaps_angle_diff>cfg.TRAIN.R_NEGATIVE_ANGLE_FILTER)))[0] #################### # print 'proposal fg',len(fg_inds),'bg',len(bg_inds) # print # Compute number of background RoIs to take from this image (guarding # against there being fewer than desired) bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image bg_rois_per_this_image = int(min(bg_rois_per_this_image, bg_inds.size)) # Sample background regions without replacement if bg_inds.size > 0: bg_inds = npr.choice(bg_inds, size=bg_rois_per_this_image, replace=False) # The indices that we're selecting (both fg and bg) keep_inds = np.append(fg_inds, bg_inds) # Select sampled values from various arrays: labels = labels[keep_inds] # Clamp labels for the background RoIs to 0 labels[fg_rois_per_this_image:] = 0 rois = all_rois[keep_inds] bbox_target_data = _compute_targets( rois[:, 1:_bbox_para_num + 1], gt_boxes[gt_assignment[keep_inds], :_bbox_para_num], labels) # D bbox_targets, bbox_inside_weights = \ _get_bbox_regression_labels(bbox_target_data, num_classes) return labels, rois, bbox_targets, bbox_inside_weights
print anchors.shape # label: 1 is positive, 0 is negative, -1 is dont care labels = np.empty((len(inds_inside), ), dtype=np.float32) labels.fill(-1) # overlaps between the anchors and the gt boxes # overlaps (ex, gt) ###################### # angle filter ###################### overlaps = rbbx_overlaps(anchors, gt_boxes, cfg.GPU_ID) an_gt_diffs = angle_diff(anchors, gt_boxes) argmax_overlaps = overlaps.argmax( axis=1) # max overlaps of anchor compared with gts max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps] max_overlaps_angle_diff = an_gt_diffs[np.arange(len(inds_inside)), argmax_overlaps] # D gt_argmax_overlaps = overlaps.argmax( axis=0) # max overlaps of gt compared with anchors gt_max_overlaps = overlaps[gt_argmax_overlaps, np.arange(overlaps.shape[1])] gt_argmax_overlaps = np.where((overlaps == gt_max_overlaps) & (an_gt_diffs <= 15))[0] if not cfg.TRAIN.RPN_CLOBBER_POSITIVES:
# foreground RoIs ''' ################## # End no angle filter ################## ################## # angle filter ################## # overlaps: (rois x gt_boxes) overlaps = rbbx_overlaps( # D all_rois[:, 1: _bbox_para_num + 1],# D gt_boxes[:, :_bbox_para_num] ,cfg.GPU_ID) # D an_gt_diffs = angle_diff(all_rois[:, 1: _bbox_para_num + 1],gt_boxes[:, :_bbox_para_num]) # D gt_assignment = overlaps.argmax(axis=1) max_overlaps = overlaps.max(axis=1) print "gt_assignment" print gt_assignment max_overlaps_angle_diff = an_gt_diffs[np.arange(len(gt_assignment)), gt_assignment] # D labels = gt_boxes[gt_assignment, 5] # D: label is in the last column # Select foreground RoIs as those with >= FG_THRESH overlap #################### angle filter fg_inds = np.where((max_overlaps >= cfg.TRAIN.FG_THRESH) & (max_overlaps_angle_diff <= 15))[0] # D