def main():  
	myBroker = ALBroker("NaoAppBroker",
       "0.0.0.0",   # listen to anyone
       0,           # find a free port and use it
       NAO_IP,      # parent broker IP
       NAO_PORT)    # parent broker port
	
		
	global SpeechDetection, NaoWorkingMode
	SpeechDetection = SpeechDetectionModule("SpeechDetection")
	basicVideoProcessing = BasicVideoProcessing()
	basicVideoProcessing.connectToCamera()
	
	try:
		while True:
			img = basicVideoProcessing.getImageFromCamera()
			if (img == None):
				print "Image from camera is empty!"
				break
			else:
				if NaoWorkingMode == None:
					sample.sample()
				elif NaoWorkingMode == "color":
					print 'Working in color detection mode...'
					#cv2.imshow('Color', img) - cos nie dziala, pewnie kwestia tego, ze to kod ladowany jako modul
				elif NaoWorkingMode == "text":
					print 'Working in text detection mode...'
				elif NaoWorkingMode == "hand":
					print 'Working in hand gesture detection mode...'
				elif NaoWorkingMode == "phone":
					print 'Working in mobile phone detection mode...'
	except KeyboardInterrupt:
		print "Interrupted by user, shutting down"
	except RuntimeError, err:
		print "An error occured: " + str(err)
Exemple #2
0
def evaluateCrossSections():
	for tmpline in csFile:
		line=tmpline.split()
		if line==[]: continue
		if line[0]=='STOP': break
		if not (line[0]=='charm' or line[0]=='beauty'):
			continue
		Flavour=line[0]
		Q2Min=line[1]

		x=sample(Flavour, Q2Min, "AE", 0, '')
		x._verbose=False
		x._NumberOfEventsCrossSect=10000
		print Flavour+', Q^2> '+Q2Min+' GeV^2, resAE'
		x._calculateCrossSect()

		y=sample(Flavour, Q2Min, "C", 0, '')
		y._verbose=False
		y._NumberOfEventsCrossSect=10000
		print Flavour+', Q^2> '+Q2Min+' GeV^2, resC'
		y._calculateCrossSect()

		z=sample(Flavour, Q2Min, "BGF", 0, '')
		z._verbose=True
		z._NumberOfEventsCrossSect=10000
		print Flavour+', Q^2> '+Q2Min+' GeV^2, BGF'
		z._calculateCrossSect()
Exemple #3
0
async def on_message(message):
    global training
    if client.user.mentioned_in(message):
        sp.sample(sampleArgs, re.sub('(<@|<@!)([0-9])+>', '', message.content))
        tf.reset_default_graph()
        with open('output/output.txt', 'r') as the_file:
            lines = the_file.read().split('\\r\\n')
            # the training data im using produced a lot of double-escaped unicode, e.g. \\xf012 or something like that, so it has to decode twice, but python is funky so this is the ugly, horrible fix
            # remove the re.sub() to allow barry to tag people
            await client.send_message(discord.Object(id=client_channel), re.sub('(<@|<@!)([0-9])+>', '', lines[1].encode('ascii').decode('unicode_escape').encode('ascii').decode('unicode_escape')), tts=bool(random.getrandbits(1)))
    elif message.content.startswith('!record') and message.author.id == admin_id:
        print('Recording...')
        with open('data/input.txt', 'w') as the_file:
            async for log in client.logs_from(message.channel, limit=1000000000000000):
                messageEncode = str(log.content.encode("utf-8"))[2:-1]

                template = '{message}\n'
                try:
                    the_file.write(template.format(message=messageEncode))
                except:
                    the_file.write(template.format(message=messageEncode))
        print('Data Collected from ' + message.channel.name)
    elif message.content.startswith('!train') and message.author.id == admin_id:
        if training != True:
            # status change doesnt work right now. starting the training turns off the discord bot, probably just due to how the training function works
            await client.change_presence(game=None, status='with his brain', afk=False)
            training = True
            tr.train(trainArgs)
        elif training == True:
            await client.change_presence(game=None, status=None, afk=False)
            training = False
    elif message.content.startswith('!leave') and message.author.id == admin_id:
        await client.disconnect()
Exemple #4
0
def main():
    myBroker = ALBroker(
        "NaoAppBroker",
        "0.0.0.0",  # listen to anyone
        0,  # find a free port and use it
        NAO_IP,  # parent broker IP
        NAO_PORT)  # parent broker port

    global SpeechDetection, NaoWorkingMode
    SpeechDetection = SpeechDetectionModule("SpeechDetection")
    basicVideoProcessing = BasicVideoProcessing()
    basicVideoProcessing.connectToCamera()

    try:
        while True:
            img = basicVideoProcessing.getImageFromCamera()
            if (img == None):
                print "Image from camera is empty!"
                break
            else:
                if NaoWorkingMode == None:
                    sample.sample()
                elif NaoWorkingMode == "color":
                    print 'Working in color detection mode...'
                    #cv2.imshow('Color', img) - cos nie dziala, pewnie kwestia tego, ze to kod ladowany jako modul
                elif NaoWorkingMode == "text":
                    print 'Working in text detection mode...'
                elif NaoWorkingMode == "hand":
                    print 'Working in hand gesture detection mode...'
                elif NaoWorkingMode == "phone":
                    print 'Working in mobile phone detection mode...'
    except KeyboardInterrupt:
        print "Interrupted by user, shutting down"
    except RuntimeError, err:
        print "An error occured: " + str(err)
Exemple #5
0
def sample(checkpoint_path, sampling_type, n_samples):
    import sample
    models_path = os.path.dirname(checkpoint_path)
    models_path = os.path.join(models_path, 'models.pkl')
    with open(models_path, 'rb') as f:
        models = pkl.load(f)
    for model in models:
        sample.sample(checkpoint_path, model, sampling_type, n_samples)
 def play(self):
     abcpath = os.getcwd() + '\\music\\' + str(self.secnum) + '.abc'
     midipath = os.getcwd() + '\\music\\' + str(self.secnum) + '.mid'
     if not os.path.exists(midipath):
         sample(self.secnum)
         music21.converter.parse(abcpath).write('midi', midipath)
     pygame.mixer.music.load(midipath)
     pygame.mixer.music.play(-1)
Exemple #7
0
def sentence_gen():
    histo_text = get_words('siddhartha.txt')
    histo = histogram(histo_text)
    random_word = sample(histo)
    random_words = []
    for i in range(7):
        random_words.append(sample(histo))
    random_sentence = sentence_maker(random_words)
    return random_sentence
Exemple #8
0
 def chain_traversal(self, length=10):
     ''' Creates a sentence using the Markov Chain'''
     current_word = random.choice(list(self))
     sentence = []
     sentence.append(current_word)
     for _ in range(length):
         new_word = sample(self[current_word])
         sentence.append(sample(self[current_word]))
         current_word = new_word
     return ' '.join(sentence)
def fig1(model, output_folder):
    '''
    This function makes two 2x10 images
    showing the difference between conditioning
    and intervening
    '''

    str_step = guess_model_step(model)
    fname = os.path.join(output_folder, str_step + model.model_type)

    for key in [
            'Young', 'Smiling', 'Wearing_Lipstick', 'Male',
            'Mouth_Slightly_Open', 'Narrow_Eyes'
    ]:
        #for key in ['Mustache','Bald']:
        #for key in ['Mustache']:
        print 'Starting ', key,
        #for key in ['Bald']:

        p50, n50 = find_logit_percentile(model, key, 50)
        do_dict = {key: np.repeat([p50], 10)}
        eps = 3
        cond_dict = {key: np.repeat([+eps], 10)}

        out, _ = sample(model, do_dict=do_dict)
        intv_images = out['G']

        out, _ = sample(model, cond_dict=cond_dict)
        cond_images = out['G']

        images = np.vstack([intv_images, cond_images])
        dc_file = fname + '_' + key + '_topdo1_botcond1.pdf'
        save_figure_images(model.model_type, images, dc_file, size=[2, 10])

        do_dict = {key: np.repeat([p50, n50], 10)}
        cond_dict = {key: np.repeat([+eps, -eps], 10)}

        dout, _ = sample(model, do_dict=do_dict)
        cout, _ = sample(model, cond_dict=cond_dict)

        itv_file = fname + '_' + key + '_topdo1_botdo0.pdf'
        cond_file = fname + '_' + key + '_topcond1_botcond0.pdf'
        eps = 3

        save_figure_images(model.model_type, dout['G'], itv_file, size=[2, 10])
        save_figure_images(model.model_type,
                           cout['G'],
                           cond_file,
                           size=[2, 10])
        print '..finished ', key

    #return images,cout['G'],dout['G']
    return key
Exemple #10
0
def mplot3d(f, var1, var2, show=True):
    """
    Plot a 3d function using matplotlib/Tk.
    """

    import warnings
    warnings.filterwarnings("ignore", "Could not match \S")

    try:
        import pylab as p
        import matplotlib.axes3d as p3
    except ImportError:
        raise ImportError("Matplotlib is required to use mplot3d.")

    x, y, z = sample(f, var1, var2)

    fig = p.figure()
    ax = p3.Axes3D(fig)

    #ax.plot_surface(x,y,z) #seems to be a bug in matplotlib
    ax.plot_wireframe(x, y, z)

    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')

    if show:
        p.show()
Exemple #11
0
def create_name(start_token, dictionary):
    """ Takes dictionary, start and end tokens and makes a sentence. """
    # create sentence and add first word
    name = []
    # this is hard coded; must be changed to fit the order number; currently second
    (letter1, letter2) = start_token
    name.append(letter1)
    name.append(letter2)

    current_token = start_token
    # stop when current_token is a stop token
    while not current_token[1].isspace() and len(name) <= 10:
        for key, value in dictionary.items():
            if key == current_token:
                # sample from histogram of values
                cumulative = sample.cumulative_distribution(value)
                sample_letter = sample.sample(cumulative)
                # add new sample to name_list
                name.append(sample_letter)
                # assign second word of key and value to current token
                # this is hard coded; must be changed to fit the order number
                # unpacking the current token
                (current_token_one, current_token_two) = current_token
                current_token = (current_token_two, sample_letter)
                # get out of for loop and start process over
                break
    return name
Exemple #12
0
def hello_world():
    his = histogram_dict(original_text)
    p = s.get_probability(his)
    s_ = s.sample(p, his)

    # print("W: %s" % s)
    return "W: %s" % s_
Exemple #13
0
def encoder(message_str, context, enc, model):
    unicode_enc = True
    mode = 'arithmetic'
    block_size = 3 # for huffman and bins
    temp = 0.9 # for arithmetic
    precision = 26 # for arithmetic
    sample_tokens = 100 # for sample
    topk = 300
    finish_sent=True
    context_tokens = encode_context(context, enc)
    if mode not in ['arithmetic', 'huffman', 'bins', 'sample']:
	    raise NotImplementedError
    if unicode_enc:
        ba = bitarray.bitarray()
        ba.frombytes(message_str.encode('utf-8'))
        message = ba.tolist()
    else:
        message_ctx = [enc.encoder['<|endoftext|>']]
        message_str += '<eos>'
        message = decode_arithmetic(model, enc, message_str, message_ctx, precision=40, topk=60000)

    # Next encode bits into cover text, using arbitrary context
    Hq = 0
    if mode == 'arithmetic':
        out, nll, kl, words_per_bit, Hq = encode_arithmetic(model, enc, message, context_tokens, temp=temp, finish_sent=finish_sent, precision=precision, topk=topk)
    elif mode == 'huffman':
        out, nll, kl, words_per_bit = encode_huffman(model, enc, message, context_tokens, block_size, finish_sent=finish_sent)
    elif mode == 'bins':
        out, nll, kl, words_per_bit = encode_block(model, enc, message, context_tokens, block_size, bin2words, words2bin, finish_sent=finish_sent)
    elif mode == 'sample':
        out, nll, kl, Hq = sample(model, enc, sample_tokens, context_tokens, temperature=temp, topk=topk)
        words_per_bit = 1
    text = enc.decode(out)
    return text
Exemple #14
0
def mplot2d(f, var, show=True):
    """
    Plot a 2d function using matplotlib/Tk.
    """

    import warnings

    warnings.filterwarnings("ignore", "Could not match \S")

    p = import_module("pylab")
    if not p:
        sys.exit("Matplotlib is required to use mplot2d.")

    if not is_sequence(f):
        f = [
            f,
        ]

    for f_i in f:
        x, y = sample(f_i, var)
        p.plot(x, y)

    p.draw()
    if show:
        p.show()
def mplot3d(f, var1, var2, show=True):
    """
    Plot a 3d function using matplotlib/Tk.
    """

    import warnings
    warnings.filterwarnings("ignore", "Could not match \S")

    p = import_module('pylab')
    # Try newer version first
    p3 = import_module('mpl_toolkits.mplot3d',
                       __import__kwargs={
                           'fromlist': ['something']
                       }) or import_module('matplotlib.axes3d')
    if not p or not p3:
        sys.exit("Matplotlib is required to use mplot3d.")

    x, y, z = sample(f, var1, var2)

    fig = p.figure()
    ax = p3.Axes3D(fig)

    # ax.plot_surface(x, y, z, rstride=2, cstride=2)
    ax.plot_wireframe(x, y, z)

    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')

    if show:
        p.show()
Exemple #16
0
def minning(request):
	sample=sample.sample('F:/2016Graduate/20160922.xlsx',u'Python')
	sup=118
	fsetdict={}
	# fItems=mining.findFItem(sample.recipeTrans, sup)
	# f2set=mining.findFSet(sample.recipeTrans, fItems.keys(), 2, sup)
	# fsetdict.update(f2set)
	# f3set=mining.findFSet(sample.recipeTrans, mining.getItemInSet(f2set.keys()), 3, sup)
	# fsetdict.update(f3set)
	# f4set=mining.findFSet(sample.recipeTrans, mining.getItemInSet(f3set.keys()), 4, sup)
	# fsetdict.update(f4set)
	# r=creatrules.rulesbuilder(sample=sample,fset=fsetdict,itemcount=fItems,conf=0.7)
	# r.export2excel('F:/2016Graduate/python_result02.xls')
	# dr=drawrule.drawrule(r.rulesdict)
	# dr.drawscatter(fn='scatter02.png')
	# dr.drawbubble(fn='bubble02.png')
	# dr.drawnetwork(fn='network02.png')
	fItems=mining_adv.findFItem(sample.recipeTrans, sample.weights, sup)
	f2set=mining_adv.findFSet(sample.recipeTrans, fItems.keys(), sample.weights, 2, sup)
	fsetdict.update(f2set)
	f3set=mining_adv.findFSet(sample.recipeTrans, mining.getItemInSet(f2set.keys()), sample.weights, 3, sup)
	fsetdict.update(f3set)
	f4set=mining_adv.findFSet(sample.recipeTrans, mining.getItemInSet(f3set.keys()), sample.weights, 4, sup)
	fsetdict.update(f4set)
	r=creatrules.rulesbuilder(sample=sample,fset=fsetdict,itemcount=fItems,conf=0.7)
	r.export2excel('F:/2016Graduate/python_result_y0.xls')
    def create_sentence(self, start_token, stop_tokens, dictionary):
        """ takes dictionary, start and end tokens and makes a sentence """
        # create sentence and add first word
        sentence = []
        # this is hard coded; must be changed to fit the order number; currently third
        (word1, word2, word3) = start_token
        sentence.append(word1)
        sentence.append(word2)
        sentence.append(word3)
        # print("There should be three words", sentence)

        current_token = start_token
        # print("This is my dictionary", dictionary)
        # stop when current_token is a stop token
        while current_token not in stop_tokens or len(sentence) <= 8:
            for key, value in dictionary.items():
                if key == current_token:

                    #
                    # sample from histogram of values
                    cumulative = sample.cumulative_distribution(value)
                    sample_word = sample.sample(cumulative)
                    # add new sample to sentence_list
                    sentence.append(sample_word)
                    # assign second word of key and value to current token
                    # this is hard coded; must be changed to fit the order number
                    # I am unpacking the current token
                    (current_token_one, current_token_two,
                     current_token_three) = current_token
                    current_token = (current_token_two, current_token_three,
                                     sample_word)
                    # get out of for loop and start process over
                    break
        return sentence
Exemple #18
0
def testSample():
  model = WrappedModel(TestDistributionSystem().getModel())
  print(model.getDistribution(DistrCall('decideBias', [])))
  for i in range(20):
    res = sample(model, DistrCall('main', []))
    print(res)
    print(list(map(model.refToJSON, res)))
Exemple #19
0
 def newsample(self):
     try:
         dlg = sampleDialog()
         if (dlg.exec_() == QDialog.Accepted):
             name, pt = dlg.getValues()
             if (pt is None or np.equal(pt[:-1], None).any()):
                 raise TypeError
             self.fig.clear()
             if self.sample:
                 self.sample.disconnect_plot()
             self.sample = sample(name=name,
                                  bl=pt[0],
                                  br=pt[1],
                                  tl=pt[2],
                                  tr=pt[3],
                                  c=pt[4],
                                  temp=self.temp)
             self.sample.show(self.fig)
     except TypeError:
         logger.exception(
             "Can't create sample : At least one point is invalid")
         QMessageBox.critical(
             self, "Error",
             "Can't create sample : At least one point is invalid")
     except Exception as e:
         logger.exception("Can't create sample")
         QMessageBox.critical(self, "Error", "Can't create sample")
def update_valid(n, p):
    n = unwrap(n)
    # this grid square must have been created already in locally_early()
    q, t, r = grid[n]

    # no change if this square is already output or covered
    if isinf(t):
        return False

    p = closest_p(p, n)

    r = r - disk(p)
    r.simplify()
    # update
    grid[n] = (q, t, r)

    # Did p invalidate q?
    if too_close(q, p):
        A = r.area()
        if A == 0:
            # q's square has been covered
            grid[n] = (q, inf, False)
        else:
            # generate a new q
            q = sample.sample(r)
            t = t + random.expovariate(A)
            grid[n] = (q, t, r)

        return True
    return False
Exemple #21
0
def mplot3d(f, var1, var2, show=True):
    """
    Plot a 3d function using matplotlib/Tk.
    """

    import warnings
    warnings.filterwarnings("ignore", "Could not match \S")

    p = import_module('pylab')
    # Try newer version first
    p3 = import_module('mpl_toolkits.mplot3d',
        __import__kwargs={'fromlist':['something']}) or import_module('matplotlib.axes3d')
    if not p or not p3:
        sys.exit("Matplotlib is required to use mplot3d.")

    x, y, z = sample(f, var1, var2)

    fig = p.figure()
    ax = p3.Axes3D(fig)

    #ax.plot_surface(x,y,z) #seems to be a bug in matplotlib
    ax.plot_wireframe(x,y,z)

    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')

    if show:
        p.show()
Exemple #22
0
def mplot3d(f, var1, var2, show=True):
    """
    Plot a 3d function using matplotlib/Tk.
    """

    import warnings
    warnings.filterwarnings("ignore", "Could not match \S")

    try:
        import pylab as p
        import matplotlib.axes3d as p3
    except ImportError:
        raise ImportError("Matplotlib is required to use mplot3d.")

    x, y, z = sample(f, var1, var2)

    fig = p.figure()
    ax = p3.Axes3D(fig)

    #ax.plot_surface(x,y,z) #seems to be a bug in matplotlib
    ax.plot_wireframe(x,y,z)

    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    
    if show:
        p.show()
Exemple #23
0
    def get_sample_freq(self,
                        selected_freq,
                        SPS=40000,
                        dispFFT=False,
                        FFTchannels=[1, 2, 3],
                        axis=None,
                        raw_file=""):
        samples_count = 4096
        bytes_in_block = samples_count * 16  #4 channels, 4B per sample
        fftfreq = np.fft.rfftfreq(
            samples_count,
            d=1.0 / SPS)  # /16 -> /4 channels /4 bytes per channel
        selected_index = np.argmin(np.abs(fftfreq - selected_freq))

        #self._tail = struct.unpack_from("l", self._data, self.PRU0_OFFSET_DRAM_HEAD)[0]
        samples = self.get_sample_block(bytes_in_block)

        #Invert dimensions
        channels = np.transpose(samples)

        ref_wave = waveform(
            selected_freq,
            np.fft.rfft(channels[0])[selected_index] / samples_count)
        selected_sample = sample(ref_wave)
        for chan in FFTchannels:
            fft = np.fft.rfft(channels[chan]) / samples_count
            chan_wave = waveform(selected_freq, fft[selected_index])
            selected_sample.add_channel(chan_wave)
        return selected_sample
Exemple #24
0
 def __init__(self, maxNumber=1):
     self.n = 0
     self.mu = 0
     self.m2 = 0
     self.lo = 10**32
     self.hi = -10**32
     self.sd = 0
     self.same = sample(maxNumber)
Exemple #25
0
def nystrom(net, all_idx, k, d):
    k_set = sample(net, k, 'deg^2_prob')
    mat = net.calc_matrix_sparse(k_set, k_set).toarray()
    u, dd, v = np.linalg.svd(mat)
    reconstruct_mat = u[:, :d] @ np.diag(mydiv(dd[:d])) @ v[:d, :]
    left = net.calc_matrix_sparse(all_idx, k_set)
    right = net.calc_matrix_sparse(k_set, all_idx)
    return left @ reconstruct_mat @ right
Exemple #26
0
 def chain_traversal(self, length=20):
     ''' Creates a sentence using the Markov Chain'''
     current_word = random.choice(list(self.keys()))
     sentence = []
     for _ in range(length):
         new_word = sample(self[current_word])
         sentence.append(current_word[1])
         current_word = (current_word[1], new_word)
     return ' '.join(sentence)
Exemple #27
0
 def __init__(self):
     self.cli = sample.sample()
     self.df = pd.read_csv('soybeans-texas-collin.csv')
     self.df.columns = [
         c.lower().replace(' ', '_') for c in self.df.columns
     ]
     self.df['value'] = self.df['value'].str.replace(",", "")
     self.df['value'] = self.df['value'].apply(pd.to_numeric,
                                               errors='coerce')
def create_sample(dataset, model_name, prime, size=5000):
    output_name = "%s_%s_%d.txt" % (model_name, prime, size)
    output_file = os.path.join(dataset_dir, dataset, output_dir, output_name)
    model_file = os.path.join(dataset_dir, dataset, models_dir, model_name)
    sample_args = SampleArguments(model_file, size, prime)
    with open(output_file, "w") as out:
        tf.reset_default_graph()
        out.write(sample.sample(sample_args))
    return output_file
Exemple #29
0
def generate():
    parser = argparse.ArgumentParser(description='Sample some text from the')
    parser.add_argument('epoch', type=int, help='epoch checkpoint to sample')
    parser.add_argument('--seed', default='', help='initial seed for the text')
    parser.add_argument('--len', type=int, default=512, help='no of character')
    args = parser.parse_args()
    print(args.epoch)
    music = sample(args.epoch, args.seed, args.len)
    # return sample(args.epoch, args.seed, args.len)
    return render_template('generate.html', data=music)
Exemple #30
0
 def __init__(self, maxNumber, listNumbers):
     self.n = 0
     self.mu = 0
     self.m2 = 0
     self.lo = 10 ^ 32
     self.hi = -10 ^ 32
     self.sd = 0
     self.same = sample(maxNumber)
     for x in listNumbers:
         self.numInc(x)
Exemple #31
0
    def train(self, round):

        # Simulation Input Sampling
        self.thetas = sample.sample(self.args,
                                    self.args.simulation_budget_per_round,
                                    self.netDiscriminator,
                                    self.netPosterior,
                                    self.observation,
                                    self.prior,
                                    self.sim,
                                    round == 0,
                                    self.args.posteriorInferenceMethod == 'no',
                                    self.args.numChains,
                                    SNLE=False).detach().to(self.args.device)

        # Simulation Execution
        simulated_output = self.sim.parallel_simulator(self.thetas)
        print("simulated output : ", simulated_output.shape, self.thetas.shape)

        # Likelihood Learning
        self.training_theta, self.training_x, self.validation_theta, self.validation_x, self.netDiscriminator = \
            RatioLearning.LikelihoodToEvidenceRatioLearning(args, round, self.thetas, simulated_output, self.training_theta,
                                              self.training_x, self.validation_theta, self.validation_x,
                                                  self.netDiscriminator, self.optDiscriminator)

        # Get Training Teacher Data for Implicit Surrogate Proposal (ISP) Learning
        if self.args.posteriorInferenceMethod != 'no':
            self.teacher_theta = sample.sample(self.args,
                                               self.args.num_training,
                                               self.netDiscriminator,
                                               self.netPosterior,
                                               self.observation,
                                               self.prior,
                                               self.sim,
                                               round == -1,
                                               True,
                                               self.args.num_training,
                                               parallel=True,
                                               SNLE=False)

        # Implicit Surrogate Proposal (ISP) Distribution Learning
        self.netPosterior = PosteriorLearning.PosteriorLearning(
            args, self.sim, self.teacher_theta)
Exemple #32
0
def generate_sentence(markov_dict):
    length = 10
    first_word = start_word(markov_dict)
    sentence = first_word.capitalize()

    for word in range(random.randint(1, length)):
        second_word = sample(markov_dict[first_word])
        first_word = second_word
        sentence += ' ' + second_word

    return sentence
Exemple #33
0
def main(config):

  print('creating data')
  dataLoader = Dataclass(dotdict(config.data_details))
  training_data, valid_data = dataLoader.get_training_data()

  # creat hmm model
  # model = hmm.GaussianHMM(n_components=12, covariance_type="full")
  # model.fit(training_data)
  # feature_matrix , state_sequence = model.sample(100)

  model = None
  # The embedding dimension
  if (not config.sampling_mode):
    print('starting training')
    model = train(training_data, valid_data, config)
  if model == None:
    model = load_model(config, training_data)
  print('sampling, and generating midi')
  sample(model, config, training_data)
Exemple #34
0
def create_npz_files(n, name):
    total_frames = np.zeros((TOTAL_FRAMES, n, FRAMES, SIDE, SIDE))
    total_labels, total_sizes = np.zeros((TOTAL_FRAMES, n)), np.zeros((TOTAL_FRAMES, n))
    for i in range(TOTAL_FRAMES):
            photons = i + 1
            index = photons_to_index(photons)
            total_frames[i], total_labels[i] = sample(photons, n, index)
            total_sizes[i] = [photons] * n
    total_frames = total_frames.reshape((TOTAL_FRAMES * n, FRAMES, SIDE, SIDE), order = 'F')
    total_labels = total_labels.reshape((TOTAL_FRAMES * n), order = 'F')
    total_sizes = total_sizes.reshape((TOTAL_FRAMES * n), order = 'F')
    np.savez(name, frames = total_frames, labels = total_labels, sizes = total_sizes)
Exemple #35
0
 def __init__(self, max=512, nums=[], func=lambda x: x):
     self.max = max
     self.n = 0
     self.mu = 0
     self.m2 = 0
     self.sd = 0
     self.lo = inf
     self.hi = -inf
     self.w = 1
     self._some = sample(self.max)
     for x in nums:
         self.numInc(func(x))
Exemple #36
0
def prompt():
    prompt = request.args.get('text')
    challenger = request.args.get('challenger')
    n = int(request.args.get('n'))
    args = Namespace(prime=prompt, n=n, save_dir="save/save", sample=1)
    output = sample(args)
    new_example = output[0]
    for character in output[1:]:
        # Append an underscore if the character is uppercase.
        if character.isupper():
            new_example += '\n'
        new_example += character
    return json.dumps({"text": new_example})
Exemple #37
0
def gen_text():
    prompt = request.args.get('text')
    challenger = request.args.get('challenger')
    n = int(request.args.get('n'))
    args = Namespace(prime=prompt, n=n, save_dir="save/save", sample=1)
    output = sample(args)
    # output = clean_msg(output)
    output = output.replace("\n", "<br>")
    print output
    # output = replace_w_rhymes(output)
    print output
    #output = uniform_syl(output)
    return output
def fetch_grid((i, j)):
    """on demand generation of empty grid squares."""
    (i, j) = unwrap((i, j))
    if (i, j) not in grid:
        xloc = i * grid_spacing
        yloc = j * grid_spacing
        r = Polygon(
            [
                (xloc, yloc),
                (xloc + grid_spacing, yloc),
                (xloc + grid_spacing, yloc + grid_spacing),
                (xloc, yloc + grid_spacing),
            ]
        )
        p = sample.sample(r)
        t = random.expovariate(r.area())
        grid[i, j] = (p, t, r)
    return grid[(i, j)]
Exemple #39
0
def processConfigFile(confFileSuffix):
	configFile=open('config'+confFileSuffix+'.cfg','r')
	for tmpline in configFile:
		line=tmpline.split()
		if line==[]: continue
		if line[0]=='STOP': break
		if not (line[0]=='charm' or line[0]=='beauty'):				#to enable comments in config file
			continue
		Flavour=line[0]
		SubProcess=line[1]
		Q2Min=line[2]
		Luminosity=line[3]
		Trigger=line[4]
		print Flavour+', subprocess: '+SubProcess+', Q^2> '+Q2Min+' GeV^2'
		x=sample(Flavour, Q2Min, SubProcess, float(Luminosity), Trigger)
		x._NumberOfEventsCrossSect=1
		x._LetterToAppend='submit.letter'+confFileSuffix
		x._OutputPathPrefix=getPathPrefix(confFileSuffix)
		x._generate()
    def gibbs_iteration(self, init=False):
        """
        Uses Gibbs sampling to draw a single sample from the posterior
        distribution over token--component (i.e., token--topic)
        assignments given this instance's corpus (i.e., document
        tokens). By default (i.e., if keyword argument 'init' is set
        to the value 'False') all token--component assignments (and
        corresponding counts) are assumed to have been initialized
        previously; otherwise, they are initialized.

        Keyword arguments:

        init -- whether to initialize token--component assignments
        """

        corpus = self.corpus

        Nvt_plus_beta_n = self.Nvt_plus_beta_n
        Nt_plus_beta = self.Nt_plus_beta
        Ntd_plus_alpha_m = self.Ntd_plus_alpha_m
        Nd_plus_alpha = self.Nd_plus_alpha

        z = self.z

        for d, (doc, zd) in enumerate(iterview(zip(corpus, z), inc=200)):
            for n, (v, t) in enumerate(zip(doc.w, zd)):

                if not init:
                    Nvt_plus_beta_n[v, t] -= 1
                    Nt_plus_beta[t] -= 1
                    Ntd_plus_alpha_m[d, t] -= 1

                t = sample((Nvt_plus_beta_n[v, :] / Nt_plus_beta) * Ntd_plus_alpha_m[d, :])

                Nvt_plus_beta_n[v, t] += 1
                Nt_plus_beta[t] += 1
                Ntd_plus_alpha_m[d, t] +=1

                if init:
                    Nd_plus_alpha[d] += 1

                zd[n] = t
Exemple #41
0
def mplot2d(f, var, show=True):
    """
    Plot a 2d function using matplotlib/Tk.
    """

    import warnings
    warnings.filterwarnings("ignore", "Could not match \S")

    p = import_module('pylab')
    if not p:
        sys.exit("Matplotlib is required to use mplot2d.")

    if not ordered_iter(f):
        f = [f,]

    for f_i in f:
        x, y = sample(f_i, var)
        p.plot(x, y)

    p.draw()
    if show:
        p.show()
Exemple #42
0
def mplot2d(f, var, show=True):
    """
    Plot a 2d function using matplotlib/Tk.
    """

    import warnings
    warnings.filterwarnings("ignore", "Could not match \S")

    try:
        import pylab as p
    except ImportError:
        raise ImportError("Matplotlib is required to use mplot2d.")

    if not ordered_iter(f):
        f = [f,]

    for f_i in f:
        x, y = sample(f_i, var)
        p.plot(x, y)

    p.draw()
    if show:
        p.show()
Exemple #43
0
def processConfigFile(confFileSuffix):
	configFile=open('config'+confFileSuffix+'.cfg','r')
	for tmpline in configFile:
		line=tmpline.split()
		if line==[]: continue
		if line[0]=='STOP': break
		if not (line[0]=='charm' or line[0]=='beauty'):				# to enable any comments in config file
			continue
		Flavour=line[0]
		SubProcess=line[1]
		Q2Min=line[2]
		Luminosity=line[3]
		Trigger=line[4]
		print Flavour+', subprocess: '+SubProcess+', Q^2> '+Q2Min+' GeV^2'
		x = sample(Flavour, Q2Min, SubProcess, float(Luminosity), Trigger)
		x._NumberOfEventsCrossSect=NumberOfEventsCrossSect
		x._LetterToAppend='submit.letter'+confFileSuffix		# For each entry in the config file there will be a separate
																				# submission letter file. In addition, content of this submission letter
																				# will be appended to file specified by this variable (will be created
																				# if does not exist). There will be one such file per config file.

		x._OutputPathPrefix=getOutputPathPrefix(confFileSuffix)
		x._generate()
		x._InfoForWeb(webInfoFile)
Exemple #44
0
from sample import sample
import numpy as np

#x = np.empty(10)
x = sample(10,2)
print(x)
Exemple #45
0
 def test_cab(self):
     self.assertEqual(1, sample(3, 1, 2))
def classFactory(iface):
    # load sample class from file sample
    from sample import sample
    return sample(iface)
Exemple #47
0
    def log_predictive_prob(self, new_corpus, num_samples):
        """
        Returns an approximation of the log probability of the
        specified new corpus given this instance's corpus (i.e.,
        document tokens) AND current set of token--component (i.e.,
        token--topic) assignments according to LDA.

        Arguments:

        new_corpus -- new corpus of documents
        num_samples -- ...
        """

        V, T = self.V, self.T

        D_new = len(new_corpus)

        alpha, alpha_m = self.alpha, self.alpha_m

        Nvt_plus_beta_n = self.Nvt_plus_beta_n
        Nt_plus_beta = self.Nt_plus_beta

        Nvt_new, Nt_new, Ntd_new, z_new = [], [], [], []

        for r in xrange(num_samples):

            Nvt_new.append(zeros((V, T), dtype=int))
            Nt_new.append(zeros(T, dtype=int))
            Ntd_new.append(zeros((D_new, T), dtype=int))

            z_r = []

            for doc in new_corpus:
                z_r.append(zeros(len(doc), dtype=int))

            z_new.append(z_r)

        log_p = 0

        for d, doc in enumerate(iterview(new_corpus)):
            for n, v in enumerate(doc.w):

                tmp = zeros(num_samples, dtype=float)

                for r in xrange(num_samples):

                    # for efficiency, resample only those
                    # token--component assignments belonging to
                    # previous tokens in the current document

                    for prev_n in xrange(0, n):

                        prev_v = doc.w[prev_n]
                        t = z_new[r][d][prev_n]

                        Nvt_new[r][prev_v, t] -= 1
                        Nt_new[r][t] -= 1
                        Ntd_new[r][d, t] -= 1

                        t = sample((Nvt_new[r][prev_v, :] + Nvt_plus_beta_n[prev_v, :]) / (Nt_new[r] + Nt_plus_beta) * (Ntd_new[r][d, :] + alpha_m))

                        Nvt_new[r][prev_v, t] += 1
                        Nt_new[r][t] += 1
                        Ntd_new[r][d, t] += 1

                        z_new[r][d][prev_n] = t

                    pass # YOUR CODE GOES HERE

                    Nvt_new[r][v, t] += 1
                    Nt_new[r][t] += 1
                    Ntd_new[r][d, t] += 1

                    z_new[r][d][n] = t

                log_p += log_sum_exp(tmp) - log(num_samples)

        return log_p
Exemple #48
0
 def sample(self):
     if len(self.noteQueue) == 0:
         self.noteQueue.extend(lstm.sample(40, 1))
     next_note = self.noteQueue[0]
     self.noteQueue = self.noteQueue[1:] # shift the first element
     return next_note
Exemple #49
0
 def test_abc(self):
     self.assertEqual(1, sample(1, 2, 3))
Exemple #50
0
 def test_acb(self):
     self.assertEqual(1, sample(1, 3, 2))
Exemple #51
0
 def test_bac(self):
     self.assertEqual(1, sample(2, 1, 3))
Exemple #52
0
 def test_bca(self):
     self.assertEqual(1, sample(2, 3, 1))
Exemple #53
0
 def __init__(self):
     self.lastNotePlayed = None
     self.noteQueue = lstm.sample(40, 1)
     self.bpm = 120
Exemple #54
0
 def test_cba(self):
     self.assertEqual(1, sample(3, 2, 1))