Exemple #1
0
def main_sweep(argv):
    parser = argparse.ArgumentParser(
        description=
        'Sweep SA sample size and measure BLEU scores at various settings.')
    parser.add_argument(
        '-e',
        '--engine',
        dest='engine',
        help='the engine name, \'default\' will be used if absent',
        default=None)
    parser.add_argument(
        '--path',
        dest='corpora_path',
        metavar='CORPORA',
        default=None,
        help=
        'the path to the test corpora (default is the automatically splitted sample)'
    )
    args = parser.parse_args(argv)

    samples = [
        int(e) for e in
        '10 20 50 70 80 90 100 110 120 150 200 350 500 800 1000 2000 5000'.
        split()
    ]

    node = ConfiguredClusterNode(args.engine)

    # more or less copy-pasted from mmt evaluate:

    evaluator = Evaluator(node.engine, node)

    corpora = ParallelCorpus.list(args.corpora_path) if args.corpora_path is not None \
        else ParallelCorpus.list(os.path.join(node.engine.data_path, TrainingPreprocessor.TEST_FOLDER_NAME))

    lines = 0
    for corpus in corpora:
        lines += corpus.count_lines()

    # end copy-paste

    print('sample bleu')

    for sample in samples:
        node.set('suffixarrays', 'sample', sample)
        node.apply_configs()

        scores = evaluator.evaluate(corpora=corpora,
                                    google_key='1234',
                                    heval_output=None,
                                    use_sessions=True,
                                    debug=False)

        engine_scores = scores['MMT']

        if isinstance(engine_scores, str):
            raise RuntimeError(engine_scores)

        bleu = engine_scores['bleu']
        print(sample, '%.2f' % (bleu * 100))
Exemple #2
0
    def clean(self, corpora, dest_folder, langs=None):
        if langs is None and len(corpora) > 0:
            langs = (corpora[0].langs[0], corpora[0].langs[1])

        self._pool_exec(self._clean_file,
                        [(corpus, ParallelCorpus(corpus.name, dest_folder, corpus.langs), langs) for corpus in corpora])
        return ParallelCorpus.list(dest_folder)
Exemple #3
0
    def encode(self, corpora, dest_folder):
        if not os.path.isdir(dest_folder):
            fileutils.makedirs(dest_folder, exist_ok=True)

        for corpus in corpora:
            for lang in corpus.langs:
                source = corpus.get_file(lang)
                dest = ParallelCorpus(corpus.name, dest_folder,
                                      [lang]).get_file(lang)

                self.encode_file(source, dest)

        return ParallelCorpus.list(dest_folder)
Exemple #4
0
    def process(self,
                corpora,
                dest_folder,
                print_tags=True,
                print_placeholders=False,
                original_spacing=False):
        for corpus in corpora:
            for lang in corpus.langs:
                source = corpus.get_file(lang)
                dest = ParallelCorpus(corpus.name, dest_folder,
                                      [lang]).get_file(lang)

                self.__process_file(source, dest, lang, print_tags,
                                    print_placeholders, original_spacing)

        return ParallelCorpus.list(dest_folder)
Exemple #5
0
    def process(self,
                source,
                target,
                input_paths,
                output_path,
                data_path=None):
        args = ['-s', source, '-t', target, '--output', output_path, '--input']

        for root in input_paths:
            args.append(root)

        if data_path is not None:
            args.append('--dev')
            args.append(
                os.path.join(data_path, TrainingPreprocessor.DEV_FOLDER_NAME))
            args.append('--test')
            args.append(
                os.path.join(data_path, TrainingPreprocessor.TEST_FOLDER_NAME))

        command = mmt_javamain(self._java_mainclass, args)
        shell.execute(command,
                      stdin=shell.DEVNULL,
                      stdout=shell.DEVNULL,
                      stderr=shell.DEVNULL)

        return ParallelCorpus.splitlist(source, target, roots=output_path)
Exemple #6
0
    def translate(self, corpora, output):
        """
        Translate the given corpora in parallel processing fashion.
        :param corpora: list of ParallelCorpus
        :param output:  path to output directory
        :return: ([ParallelCorpus, ...], time_per_sentence, parallelism)
        """
        pool = multithread.Pool(self._threads)

        try:
            translations = []
            start_time = datetime.now()

            for corpus in corpora:
                self._before_translate(corpus)

                with open(corpus.get_file(self.source_lang)) as source:
                    output_path = os.path.join(output, corpus.name + '.' + self.target_lang)

                    for line in source:
                        translation = pool.apply_async(self._get_translation, (line, corpus))
                        translations.append((translation, output_path))

                self._after_translate(corpus)

            elapsed_time = 0
            translation_count = 0

            path = None
            stream = None

            for translation_job, output_path in translations:
                translation, elapsed = translation_job.get()

                if output_path != path:
                    if stream is not None:
                        stream.close()

                    stream = open(output_path, 'wb')
                    path = output_path

                stream.write(translation.encode('utf-8'))
                stream.write('\n')

                elapsed_time += elapsed
                translation_count += 1

            if stream is not None:
                stream.close()

            end_time = datetime.now()
            total_time = end_time - start_time

            return ParallelCorpus.list(output), (elapsed_time / translation_count), (
                elapsed_time / total_time.total_seconds())
        finally:
            pool.terminate()
Exemple #7
0
def main_sweep(argv):
    parser = argparse.ArgumentParser(description='Sweep SA sample size and measure BLEU scores at various settings.')
    parser.add_argument('-e', '--engine', dest='engine', help='the engine name, \'default\' will be used if absent',
                        default=None)
    parser.add_argument('--path', dest='corpora_path', metavar='CORPORA', default=None,
                        help='the path to the test corpora (default is the automatically splitted sample)')
    args = parser.parse_args(argv)

    samples = [int(e) for e in '10 20 50 70 80 90 100 110 120 150 200 350 500 800 1000 2000 5000'.split()]

    node = ConfiguredClusterNode(args.engine)

    # more or less copy-pasted from mmt evaluate:

    evaluator = Evaluator(node.engine, node)

    corpora = ParallelCorpus.list(args.corpora_path) if args.corpora_path is not None \
        else ParallelCorpus.list(os.path.join(node.engine.data_path, TrainingPreprocessor.TEST_FOLDER_NAME))

    lines = 0
    for corpus in corpora:
        lines += corpus.count_lines()

    # end copy-paste

    print('sample bleu')

    for sample in samples:
        node.set('suffixarrays', 'sample', sample)
        node.apply_configs()

        scores = evaluator.evaluate(corpora=corpora, google_key='1234', heval_output=None,
                                    use_sessions=True, debug=False)

        engine_scores = scores['MMT']

        if isinstance(engine_scores, str):
            raise RuntimeError(engine_scores)

        bleu = engine_scores['bleu']
        print(sample, '%.2f' % (bleu * 100))
Exemple #8
0
    def clean(self, source, target, input_paths, output_path):
        args = ['-s', source, '-t', target, '--output', output_path, '--input']

        for root in input_paths:
            args.append(root)

        command = mmt_javamain(self._java_mainclass, args)
        shell.execute(command,
                      stdin=shell.DEVNULL,
                      stdout=shell.DEVNULL,
                      stderr=shell.DEVNULL)

        return ParallelCorpus.splitlist(source, target, roots=output_path)[0]
Exemple #9
0
    def train(self, corpora, aligner, working_dir='.', log_file=None):
        if os.path.isdir(self._model) and len(os.listdir(self._model)) > 0:
            raise Exception('Model already exists at ' + self._model)

        if not os.path.isdir(self._model):
            fileutils.makedirs(self._model, exist_ok=True)

        if not os.path.isdir(working_dir):
            fileutils.makedirs(working_dir, exist_ok=True)

        l1 = self._source_lang
        l2 = self._target_lang
        langs = (l1, l2)
        langs_suffix = l1 + '-' + l2

        mct_base = self._get_model_basename()
        dmp_file = mct_base + '.dmp'
        mam_file = mct_base + '.' + langs_suffix + '.mam'
        lex_file = mct_base + '.' + langs_suffix + '.lex'

        log = shell.DEVNULL

        try:
            if log_file is not None:
                log = open(log_file, 'a')

            # Clean corpus for training
            clean_output = os.path.join(working_dir, 'clean_corpora')
            fileutils.makedirs(clean_output, exist_ok=True)
            corpora = self._cleaner.clean(corpora, clean_output, (self._source_lang, self._target_lang))

            # Create merged corpus and domains list file (dmp)
            merged_corpus = ParallelCorpus(os.path.basename(mct_base), working_dir, langs)

            fileutils.merge([corpus.get_file(l1) for corpus in corpora], merged_corpus.get_file(l1))
            fileutils.merge([corpus.get_file(l2) for corpus in corpora], merged_corpus.get_file(l2))
            with open(dmp_file, 'w') as dmp:
                for corpus in corpora:
                    dmp.write(str(corpus.name) + ' ' + str(corpus.count_lines()) + '\n')

            # Create alignments in 'bal' file and symmetrize
            bal_file = aligner.align(merged_corpus, langs, self._model, working_dir, log_file)

            symal_file = os.path.join(working_dir, 'alignments.' + langs_suffix + '.symal')
            symal_command = [self._symal_bin, '-a=g', '-d=yes', '-f=yes', '-b=yes']
            with open(bal_file) as stdin:
                with open(symal_file, 'w') as stdout:
                    shell.execute(symal_command, stdin=stdin, stdout=stdout, stderr=log)

            # Execute mtt-build
            mttbuild_command = self._get_mttbuild_command(mct_base, dmp_file, l1)
            with open(merged_corpus.get_file(l1)) as stdin:
                shell.execute(mttbuild_command, stdin=stdin, stdout=log, stderr=log)

            mttbuild_command = self._get_mttbuild_command(mct_base, dmp_file, l2)
            with open(merged_corpus.get_file(l2)) as stdin:
                shell.execute(mttbuild_command, stdin=stdin, stdout=log, stderr=log)

            # Create 'mam' file
            mam_command = [self._symal2mam_bin, mam_file]
            with open(symal_file) as stdin:
                shell.execute(mam_command, stdin=stdin, stdout=log, stderr=log)

            # Create 'lex' file
            lex_command = [self._mmlexbuild_bin, mct_base + '.', l1, l2, '-o', lex_file]
            shell.execute(lex_command, stdout=log, stderr=log)
        finally:
            if log_file is not None:
                log.close()
Exemple #10
0
    def tune(self, corpora=None, tokenize=True, debug=False, context_enabled=True):
        if corpora is None:
            corpora = ParallelCorpus.list(os.path.join(self.engine.data_path, TrainingPreprocessor.DEV_FOLDER_NAME))

        if len(corpora) == 0:
            raise IllegalArgumentException('empty corpora')

        if not self.is_running():
            raise IllegalStateException('No MMT Server running, start the engine first')

        target_lang = self.engine.target_lang
        source_lang = self.engine.source_lang

        cmdlogger = _tuning_logger(4 if tokenize else 3)
        cmdlogger.start(self, corpora)

        working_dir = self.engine.get_tempdir('tuning')
        mert_wd = os.path.join(working_dir, 'mert')

        try:
            original_corpora = corpora

            # Tokenization
            tokenized_corpora = original_corpora

            if tokenize:
                tokenizer_output = os.path.join(working_dir, 'tokenized_corpora')
                fileutils.makedirs(tokenizer_output, exist_ok=True)

                with cmdlogger.step('Corpus tokenization') as _:
                    tokenized_corpora = self.engine.preprocessor.process(corpora, tokenizer_output, print_tags=False,
                                                                         print_placeholders=True,
                                                                         original_spacing=False)

            # Create merged corpus
            with cmdlogger.step('Merging corpus') as _:
                source_merged_corpus = os.path.join(working_dir, 'corpus.' + source_lang)
                with open(source_merged_corpus, 'wb') as out:
                    original_root = original_corpora[0].root

                    for corpus in tokenized_corpora:
                        tokenized = corpus.get_file(source_lang)
                        original = os.path.join(original_root, corpus.name + '.' + source_lang)
                        out.write(tokenized + ':' + original + '\n')

                target_merged_corpus = os.path.join(working_dir, 'corpus.' + target_lang)
                fileutils.merge([corpus.get_file(target_lang) for corpus in tokenized_corpora], target_merged_corpus)

            # Run MERT algorithm
            with cmdlogger.step('Tuning') as _:
                # Start MERT
                decoder_flags = ['--port', str(self.api.port)]

                if not context_enabled:
                    decoder_flags.append('--skip-context-analysis')
                    decoder_flags.append('1')

                fileutils.makedirs(mert_wd, exist_ok=True)

                with tempfile.NamedTemporaryFile() as runtime_moses_ini:
                    command = [self._mert_script, source_merged_corpus, target_merged_corpus,
                               self._mert_i_script, runtime_moses_ini.name, '--threads',
                               str(multiprocessing.cpu_count()), '--mertdir', os.path.join(Moses.bin_path, 'bin'),
                               '--mertargs', '\'--binary --sctype BLEU\'', '--working-dir', mert_wd, '--nbest', '100',
                               '--decoder-flags', '"' + ' '.join(decoder_flags) + '"', '--nonorm', '--closest',
                               '--no-filter-phrase-table']

                    with open(self.engine.get_logfile('mert'), 'wb') as log:
                        shell.execute(' '.join(command), stdout=log, stderr=log)

            # Read optimized configuration
            with cmdlogger.step('Applying changes') as _:
                bleu_score = 0
                weights = {}
                found_weights = False

                with open(os.path.join(mert_wd, 'moses.ini')) as moses_ini:
                    for line in moses_ini:
                        line = line.strip()

                        if len(line) == 0:
                            continue
                        elif found_weights:
                            tokens = line.split()
                            weights[tokens[0].rstrip('=')] = [float(val) for val in tokens[1:]]
                        elif line.startswith('# BLEU'):
                            bleu_score = float(line.split()[2])
                        elif line == '[weight]':
                            found_weights = True

                _ = self.api.update_features(weights)

            cmdlogger.completed(bleu_score)
        finally:
            if not debug:
                self.engine.clear_tempdir()
Exemple #11
0
    def tune(self,
             corpora=None,
             tokenize=True,
             debug=False,
             context_enabled=True):
        if corpora is None:
            corpora = ParallelCorpus.list(
                os.path.join(self.engine.data_path,
                             TrainingPreprocessor.DEV_FOLDER_NAME))

        if len(corpora) == 0:
            raise IllegalArgumentException('empty corpora')

        if not self.is_running():
            raise IllegalStateException(
                'No MMT Server running, start the engine first')

        target_lang = self.engine.target_lang
        source_lang = self.engine.source_lang

        cmdlogger = _tuning_logger(4 if tokenize else 3)
        cmdlogger.start(self, corpora)

        working_dir = self.engine.get_tempdir('tuning')
        mert_wd = os.path.join(working_dir, 'mert')

        try:
            original_corpora = corpora

            # Tokenization
            tokenized_corpora = original_corpora

            if tokenize:
                tokenizer_output = os.path.join(working_dir,
                                                'tokenized_corpora')
                fileutils.makedirs(tokenizer_output, exist_ok=True)

                with cmdlogger.step('Corpus tokenization') as _:
                    tokenized_corpora = self.engine.preprocessor.process(
                        corpora,
                        tokenizer_output,
                        print_tags=False,
                        print_placeholders=True,
                        original_spacing=False)

            # Create merged corpus
            with cmdlogger.step('Merging corpus') as _:
                source_merged_corpus = os.path.join(working_dir,
                                                    'corpus.' + source_lang)
                with open(source_merged_corpus, 'wb') as out:
                    original_root = original_corpora[0].root

                    for corpus in tokenized_corpora:
                        tokenized = corpus.get_file(source_lang)
                        original = os.path.join(
                            original_root, corpus.name + '.' + source_lang)
                        out.write(tokenized + ':' + original + '\n')

                target_merged_corpus = os.path.join(working_dir,
                                                    'corpus.' + target_lang)
                fileutils.merge([
                    corpus.get_file(target_lang)
                    for corpus in tokenized_corpora
                ], target_merged_corpus)

            # Run MERT algorithm
            with cmdlogger.step('Tuning') as _:
                # Start MERT
                decoder_flags = ['--port', str(self.api.port)]

                if not context_enabled:
                    decoder_flags.append('--skip-context-analysis')
                    decoder_flags.append('1')

                fileutils.makedirs(mert_wd, exist_ok=True)

                with tempfile.NamedTemporaryFile() as runtime_moses_ini:
                    command = [
                        self._mert_script, source_merged_corpus,
                        target_merged_corpus, self._mert_i_script,
                        runtime_moses_ini.name, '--threads',
                        str(multiprocessing.cpu_count()), '--mertdir',
                        os.path.join(Moses.bin_path, 'bin'), '--mertargs',
                        '\'--binary --sctype BLEU\'', '--working-dir', mert_wd,
                        '--nbest', '100', '--decoder-flags',
                        '"' + ' '.join(decoder_flags) + '"', '--nonorm',
                        '--closest', '--no-filter-phrase-table'
                    ]

                    with open(self.engine.get_logfile('mert'), 'wb') as log:
                        shell.execute(' '.join(command),
                                      stdout=log,
                                      stderr=log)

            # Read optimized configuration
            with cmdlogger.step('Applying changes') as _:
                bleu_score = 0
                weights = {}
                found_weights = False

                with open(os.path.join(mert_wd, 'moses.ini')) as moses_ini:
                    for line in moses_ini:
                        line = line.strip()

                        if len(line) == 0:
                            continue
                        elif found_weights:
                            tokens = line.split()
                            weights[tokens[0].rstrip('=')] = [
                                float(val) for val in tokens[1:]
                            ]
                        elif line.startswith('# BLEU'):
                            bleu_score = float(line.split()[2])
                        elif line == '[weight]':
                            found_weights = True

                _ = self.api.update_features(weights)

            cmdlogger.completed(bleu_score)
        finally:
            if not debug:
                self.engine.clear_tempdir()
Exemple #12
0
    def build(self, roots, debug=False, steps=None, split_trainingset=True):
        self._temp_dir = self._engine.get_tempdir('training', ensure=True)

        source_lang = self._engine.source_lang
        target_lang = self._engine.target_lang

        bilingual_corpora, monolingual_corpora = ParallelCorpus.splitlist(source_lang, target_lang, roots=roots)

        if len(bilingual_corpora) == 0:
            raise IllegalArgumentException(
                'you project does not include %s-%s data.' % (source_lang.upper(), target_lang.upper()))

        if steps is None:
            steps = self._engine.training_steps
        else:
            unknown_steps = [step for step in steps if step not in self._engine.training_steps]
            if len(unknown_steps) > 0:
                raise IllegalArgumentException('Unknown training steps: ' + str(unknown_steps))

        cmdlogger = _builder_logger(len(steps) + 1)
        cmdlogger.start(self._engine, bilingual_corpora, monolingual_corpora)

        shutil.rmtree(self._engine.path, ignore_errors=True)
        os.makedirs(self._engine.path)

        # Check disk space constraints
        free_space_on_disk = fileutils.df(self._engine.path)[2]
        corpus_size_on_disk = 0
        for root in roots:
            corpus_size_on_disk += fileutils.du(root)
        free_memory = fileutils.free()

        recommended_mem = self.__GB * corpus_size_on_disk / (350 * self.__MB)  # 1G RAM every 350M on disk
        recommended_disk = 10 * corpus_size_on_disk

        if free_memory < recommended_mem or free_space_on_disk < recommended_disk:
            if free_memory < recommended_mem:
                print '> WARNING: more than %.fG of RAM recommended, only %.fG available' % \
                      (recommended_mem / self.__GB, free_memory / self.__GB)
            if free_space_on_disk < recommended_disk:
                print '> WARNING: more than %.fG of storage recommended, only %.fG available' % \
                      (recommended_disk / self.__GB, free_space_on_disk / self.__GB)
            print

        try:
            corpora_roots = roots

            unprocessed_bicorpora = bilingual_corpora
            unprocessed_mocorpora = monolingual_corpora

            # TM cleanup
            if 'tm_cleanup' in steps:
                with cmdlogger.step('TMs clean-up') as _:
                    cleaned_output = self._get_tempdir('clean_tms')
                    self._engine.cleaner.clean(source_lang, target_lang, roots, cleaned_output)

                    for corpus in monolingual_corpora:
                        cfile = corpus.get_file(target_lang)
                        link = os.path.join(cleaned_output, os.path.basename(cfile))
                        os.symlink(cfile, link)

                    corpora_roots = [cleaned_output]
                    unprocessed_bicorpora, unprocessed_mocorpora = ParallelCorpus.splitlist(source_lang, target_lang,
                                                                                            roots=corpora_roots)

            # Preprocessing
            processed_bicorpora = unprocessed_bicorpora
            processed_mocorpora = unprocessed_mocorpora

            if 'preprocess' in steps:
                with cmdlogger.step('Corpora preprocessing') as _:
                    preprocessor_output = self._get_tempdir('preprocessed')
                    processed_bicorpora, processed_mocorpora = self._engine.training_preprocessor.process(
                        source_lang, target_lang, corpora_roots, preprocessor_output,
                        (self._engine.data_path if split_trainingset else None)
                    )

            # Training Context Analyzer
            if 'context_analyzer' in steps:
                with cmdlogger.step('Context Analyzer training') as _:
                    log_file = self._engine.get_logfile('training.context')
                    self._engine.analyzer.create_index(unprocessed_bicorpora, source_lang, log_file=log_file)

            # Training Adaptive Language Model (on the target side of all bilingual corpora)
            if 'lm' in steps:
                with cmdlogger.step('Language Model training') as _:
                    working_dir = self._get_tempdir('lm')
                    log_file = self._engine.get_logfile('training.lm')
                    self._engine.lm.train(processed_bicorpora + processed_mocorpora, target_lang, working_dir, log_file)

            # Training Translation Model
            if 'tm' in steps:
                with cmdlogger.step('Translation Model training') as _:
                    working_dir = self._get_tempdir('tm')
                    log_file = self._engine.get_logfile('training.tm')
                    self._engine.pt.train(processed_bicorpora, self._engine.aligner, working_dir, log_file)

            # Writing config file
            with cmdlogger.step('Writing config files') as _:
                self._engine.write_configs()

            cmdlogger.completed()
        finally:
            if not debug:
                self._engine.clear_tempdir('training')
Exemple #13
0
    def build(self, roots, debug=False, steps=None, split_trainingset=True):
        self._temp_dir = self._engine.get_tempdir('training', ensure=True)

        source_lang = self._engine.source_lang
        target_lang = self._engine.target_lang

        bilingual_corpora, monolingual_corpora = ParallelCorpus.splitlist(
            source_lang, target_lang, roots=roots)

        if len(bilingual_corpora) == 0:
            raise IllegalArgumentException(
                'you project does not include %s-%s data.' %
                (source_lang.upper(), target_lang.upper()))

        if steps is None:
            steps = self._engine.training_steps
        else:
            unknown_steps = [
                step for step in steps
                if step not in self._engine.training_steps
            ]
            if len(unknown_steps) > 0:
                raise IllegalArgumentException('Unknown training steps: ' +
                                               str(unknown_steps))

        cmdlogger = _builder_logger(len(steps) + 1)
        cmdlogger.start(self._engine, bilingual_corpora, monolingual_corpora)

        shutil.rmtree(self._engine.path, ignore_errors=True)
        os.makedirs(self._engine.path)

        # Check disk space constraints
        free_space_on_disk = fileutils.df(self._engine.path)[2]
        corpus_size_on_disk = 0
        for root in roots:
            corpus_size_on_disk += fileutils.du(root)
        free_memory = fileutils.free()

        recommended_mem = self.__GB * corpus_size_on_disk / (
            350 * self.__MB)  # 1G RAM every 350M on disk
        recommended_disk = 10 * corpus_size_on_disk

        if free_memory < recommended_mem or free_space_on_disk < recommended_disk:
            if free_memory < recommended_mem:
                print '> WARNING: more than %.fG of RAM recommended, only %.fG available' % \
                      (recommended_mem / self.__GB, free_memory / self.__GB)
            if free_space_on_disk < recommended_disk:
                print '> WARNING: more than %.fG of storage recommended, only %.fG available' % \
                      (recommended_disk / self.__GB, free_space_on_disk / self.__GB)
            print

        try:
            corpora_roots = roots

            unprocessed_bicorpora = bilingual_corpora
            unprocessed_mocorpora = monolingual_corpora

            # TM cleanup
            if 'tm_cleanup' in steps:
                with cmdlogger.step('TMs clean-up') as _:
                    cleaned_output = self._get_tempdir('clean_tms')
                    self._engine.cleaner.clean(source_lang, target_lang, roots,
                                               cleaned_output)

                    for corpus in monolingual_corpora:
                        cfile = corpus.get_file(target_lang)
                        link = os.path.join(cleaned_output,
                                            os.path.basename(cfile))
                        os.symlink(cfile, link)

                    corpora_roots = [cleaned_output]
                    unprocessed_bicorpora, unprocessed_mocorpora = ParallelCorpus.splitlist(
                        source_lang, target_lang, roots=corpora_roots)

            # Preprocessing
            processed_bicorpora = unprocessed_bicorpora
            processed_mocorpora = unprocessed_mocorpora

            if 'preprocess' in steps:
                with cmdlogger.step('Corpora preprocessing') as _:
                    preprocessor_output = self._get_tempdir('preprocessed')
                    processed_bicorpora, processed_mocorpora = self._engine.training_preprocessor.process(
                        source_lang, target_lang, corpora_roots,
                        preprocessor_output, (self._engine.data_path
                                              if split_trainingset else None))

            # Training Context Analyzer
            if 'context_analyzer' in steps:
                with cmdlogger.step('Context Analyzer training') as _:
                    log_file = self._engine.get_logfile('training.context')
                    self._engine.analyzer.create_index(unprocessed_bicorpora,
                                                       source_lang,
                                                       log_file=log_file)

            # Training Adaptive Language Model (on the target side of all bilingual corpora)
            if 'lm' in steps:
                with cmdlogger.step('Language Model training') as _:
                    working_dir = self._get_tempdir('lm')
                    log_file = self._engine.get_logfile('training.lm')
                    self._engine.lm.train(
                        processed_bicorpora + processed_mocorpora, target_lang,
                        working_dir, log_file)

            # Training Translation Model
            if 'tm' in steps:
                with cmdlogger.step('Translation Model training') as _:
                    working_dir = self._get_tempdir('tm')
                    log_file = self._engine.get_logfile('training.tm')
                    self._engine.pt.train(processed_bicorpora,
                                          self._engine.aligner, working_dir,
                                          log_file)

            # Writing config file
            with cmdlogger.step('Writing config files') as _:
                self._engine.write_configs()

            cmdlogger.completed()
        finally:
            if not debug:
                self._engine.clear_tempdir('training')