Exemple #1
0
def evalValAndDeriv(D):
    m = Material('m', D = D, rho = 2700.0)

    integral = Integral('i', order=2)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations = lhs_eqs)

    pb.time_update()
    n_rbm = dim * (dim + 1) / 2

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    eigs0, evecs0 = scipy.sparse.linalg.eigsh(mtx_k, k = 10, M = mtx_m, which = 'SM')

    eigs = eigs0[3:]
    evecs = evecs0[:, 3:]

    dydmu = numpy.array([evecs[:, i].T.dot(dKdmu.dot(evecs[:, i])) for i in range(evecs.shape[1])])
    dydlambda = numpy.array([evecs[:, i].T.dot(dKdlambda.dot(evecs[:, i])) for i in range(evecs.shape[1])])

    return eigs, dydmu, dydlambda
Exemple #2
0
def assemble(mtx_d):
    m = Material('m', D=mtx_d, rho=density)

    integral = Integral('i', order=2 * order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)

    pb.time_update()
    n_rbm = dim * (dim + 1) / 2

    pb.update_materials()

    tmp = time.time()
    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    return mtx_k, mtx_m
Exemple #3
0
def get_terms(u_field, v_field, calc_stiffness, calc_prestress):
    """Get the terms for the equation

    Args:
      u_field: the displacement field
      v_field: the test function field
      calc_stiffness: a function to calculate the stiffness tensor
      calc_prestress: a function to calculate the prestress tensor

    Returns:
      a tuple of terms for the equation
    """
    return (
        Term.new(
            "dw_lin_elastic(m.D, v, u)",
            Integral("i", order=4),
            v_field.field.region,
            m=get_material(calc_stiffness, calc_prestress),
            v=v_field,
            u=u_field,
        ),
        Term.new(
            "dw_lin_prestress(m.stress, v)",
            Integral("i", order=4),
            v_field.field.region,
            m=get_material(calc_stiffness, calc_prestress),
            v=v_field,
        ),
    )
Exemple #4
0
def make_h1_projection_data(target, eval_data):
    """
    Project scalar data given by a material-like `eval_data()` function to a
    scalar `target` field variable using the :math:`H^1` dot product.
    """
    order = target.field.approx_order * 2
    integral = Integral('i', order=order)

    un = target.name
    v = FieldVariable('v', 'test', target.field, 1, primary_var_name=un)
    lhs1 = Term.new('dw_volume_dot(v, %s)' % un,
                    integral,
                    target.field.region,
                    v=v,
                    **{un: target})
    lhs2 = Term.new('dw_laplace(v, %s)' % un,
                    integral,
                    target.field.region,
                    v=v,
                    **{un: target})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            val = eval_data(ts, coors, mode, 'val', **kwargs)
            gval = eval_data(ts, coors, mode, 'grad', **kwargs)
            return {'val': val, 'gval': gval}

    m = Material('m', function=_eval_data)
    rhs1 = Term.new('dw_volume_lvf(m.val, v)',
                    integral,
                    target.field.region,
                    m=m,
                    v=v)
    rhs2 = Term.new('dw_diffusion_r(m.gval, v)',
                    integral,
                    target.field.region,
                    m=m,
                    v=v)

    eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output('H1 projection: solver did not converge!')
Exemple #5
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version="%prog")
    parser.add_option("-s", "--show", action="store_true", dest="show", default=False, help=help["show"])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + "/meshes/2d/rectangle_tri.mesh")
    domain = Domain("domain", mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region("Omega", "all")
    gamma1 = domain.create_region("Gamma1", "vertices in x < %.10f" % (min_x + eps), "facet")
    gamma2 = domain.create_region("Gamma2", "vertices in x > %.10f" % (max_x - eps), "facet")

    field = Field.from_args("fu", nm.float64, "vector", omega, approx_order=2)

    u = FieldVariable("u", "unknown", field)
    v = FieldVariable("v", "test", field, primary_var_name="u")

    m = Material("m", lam=1.0, mu=1.0)
    f = Material("f", val=[[0.02], [0.01]])

    integral = Integral("i", order=3)

    t1 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u)
    t2 = Term.new("dw_volume_lvf(f.val, v)", integral, omega, f=f, v=v)
    eq = Equation("balance", t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC("fix_u", gamma1, {"u.all": 0.0})

    bc_fun = Function("shift_u_fun", shift_u_fun, extra_args={"shift": 0.01})
    shift_u = EssentialBC("shift_u", gamma2, {"u.0": bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem("elasticity", equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups("regions")

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state("linear_elasticity.vtk", vec)

    if options.show:
        view = Viewer("linear_elasticity.vtk")
        view(vector_mode="warp_norm", rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
def solve_problem(shape, dims, young, poisson, force, transform=None):
    domain = make_domain(dims[:2], shape, transform=transform)

    omega = domain.regions['Omega']
    gamma1 = domain.regions['Gamma1']
    gamma2 = domain.regions['Gamma2']

    field = Field.from_args('fu', nm.float64, 6, omega, approx_order=1,
                            poly_space_base='shell10x')
    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    thickness = dims[2]
    if transform is None:
        pload = [[0.0, 0.0, force / shape[1], 0.0, 0.0, 0.0]] * shape[1]

    elif transform == 'bend':
        pload = [[force / shape[1], 0.0, 0.0, 0.0, 0.0, 0.0]] * shape[1]

    elif transform == 'twist':
        pload = [[0.0, force / shape[1], 0.0, 0.0, 0.0, 0.0]] * shape[1]

    m = Material('m', D=sh.create_elastic_tensor(young=young, poisson=poisson),
                 values={'.drill' : 1e-7})
    load = Material('load', values={'.val' : pload})

    aux = Integral('i', order=3)
    qp_coors, qp_weights = aux.get_qp('3_8')
    qp_coors[:, 2] = thickness * (qp_coors[:, 2] - 0.5)
    qp_weights *= thickness

    integral = Integral('i', coors=qp_coors, weights=qp_weights, order='custom')

    t1 = Term.new('dw_shell10x(m.D, m.drill, v, u)',
                  integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_point_load(load.val, v)',
                  integral, gamma2, load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity with shell10x', equations=eqs)
    pb.set_bcs(ebcs=Conditions([fix_u]))
    pb.set_solver(nls)

    state = pb.solve()

    return pb, state, u, gamma2
def solve_problem(shape, dims, young, poisson, force, transform=None):
    domain = make_domain(dims[:2], shape, transform=transform)

    omega = domain.regions['Omega']
    gamma1 = domain.regions['Gamma1']
    gamma2 = domain.regions['Gamma2']

    field = Field.from_args('fu', nm.float64, 6, omega, approx_order=1,
                            poly_space_base='shell10x')
    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    thickness = dims[2]
    if transform is None:
        pload = [[0.0, 0.0, force / shape[1], 0.0, 0.0, 0.0]] * shape[1]

    elif transform == 'bend':
        pload = [[force / shape[1], 0.0, 0.0, 0.0, 0.0, 0.0]] * shape[1]

    elif transform == 'twist':
        pload = [[0.0, force / shape[1], 0.0, 0.0, 0.0, 0.0]] * shape[1]

    m = Material('m', D=sh.create_elastic_tensor(young=young, poisson=poisson),
                 values={'.drill' : 1e-7})
    load = Material('load', values={'.val' : pload})

    aux = Integral('i', order=3)
    qp_coors, qp_weights = aux.get_qp('3_8')
    qp_coors[:, 2] = thickness * (qp_coors[:, 2] - 0.5)
    qp_weights *= thickness

    integral = Integral('i', coors=qp_coors, weights=qp_weights, order='custom')

    t1 = Term.new('dw_shell10x(m.D, m.drill, v, u)',
                  integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_point_load(load.val, v)',
                  integral, gamma2, load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity with shell10x', equations=eqs, nls=nls, ls=ls)
    pb.time_update(ebcs=Conditions([fix_u]))

    state = pb.solve()

    return pb, state, u, gamma2
Exemple #8
0
    def test_save_ebc(self):
        from sfepy.discrete import (FieldVariable, Integral, Equation,
                                    Equations, Problem)
        from sfepy.discrete.conditions import Conditions, EssentialBC
        from sfepy.terms import Term

        name = op.join(self.options.out_dir,
                       op.splitext(op.basename(__file__))[0])

        integral = Integral('i', order=1)

        u = self.variables['u']
        v = FieldVariable('v', 'test', u.field, primary_var_name='u')

        p = self.variables['p']
        q = FieldVariable('q', 'test', p.field, primary_var_name='p')

        regions = self.problem.domain.regions
        omega = regions['Omega']

        # Problem.save_ebc() requires to have equations defined.
        t1 = Term.new('dw_lin_elastic(v, u)', integral, omega, v=v, u=u)
        t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p)
        eq = Equation('aux', t1 + t2)
        eqs = Equations([eq])

        pb = Problem('test', equations=eqs, auto_solvers=False)

        all_ebcs = []
        all_ebcs.append(
            EssentialBC('fix_u1', regions['RightFix'],
                        {'u.all': nm.array([0.0, 1.0])}))
        all_ebcs.append(
            EssentialBC('fix_u2', regions['LeftStrip'], {
                'u.0': 0.0,
                'u.1': 1.0
            }))
        all_ebcs.append(
            EssentialBC('fix_p1', regions['LeftFix'], {'p.all': 0.0}))
        all_ebcs.append(
            EssentialBC('fix_p2', regions['RightStrip'], {'p.0': 0.0}))
        ebcs = Conditions(all_ebcs)

        pb.time_update(ebcs=ebcs)

        pb.save_ebc(name + '_ebcs_f.vtk', ebcs=ebcs, force=True)
        pb.save_ebc(name + '_ebcs.vtk', ebcs=ebcs, default=-1, force=False)

        return True
Exemple #9
0
    def test_invariance_qp(self):
        from sfepy import data_dir
        from sfepy.discrete import Integral
        from sfepy.terms import Term
        from sfepy.discrete.common.mappings import get_physical_qps

        ok = True
        for name in [
            "meshes/3d/block.mesh",
            "meshes/3d/cylinder.mesh",
            "meshes/2d/square_quad.mesh",
            "meshes/2d/square_unit_tri.mesh",
        ]:
            self.report(name)

            u = prepare_variable(op.join(data_dir, name), n_components=3)
            omega = u.field.region

            integral = Integral("i", order=3)
            qps = get_physical_qps(omega, integral)
            coors = qps.values

            term = Term.new("ev_volume_integrate(u)", integral, omega, u=u)
            term.setup()
            val1 = term.evaluate(mode="qp")
            val1 = val1.ravel()

            val2 = u.evaluate_at(coors).ravel()

            self.report("value: max. difference:", nm.abs(val1 - val2).max())
            ok1 = nm.allclose(val1, val2, rtol=0.0, atol=1e-12)
            self.report("->", ok1)

            term = Term.new("ev_grad(u)", integral, omega, u=u)
            term.setup()
            val1 = term.evaluate(mode="qp")
            val1 = val1.ravel()

            val2 = u.evaluate_at(coors, mode="grad").ravel()

            self.report("gradient: max. difference:", nm.abs(val1 - val2).max())
            ok2 = nm.allclose(val1, val2, rtol=0.0, atol=1e-10)
            self.report("->", ok2)

            ok = ok and ok1 and ok2

        return ok
Exemple #10
0
def solveLaplaceEquationTetrahedral(mesh, meshVTK, boundaryPoints,
                                    boundaryConditions):
    """
    mesh: path to a 3D mesh / sfepy mesh
    
    """
    if isinstance(mesh, str):
        mesh = Mesh.from_file(mesh)

    #Set domains
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')
    boundary = domain.create_region(
        'gamma',
        'vertex  %s' % ','.join(map(str, range(meshVTK.GetNumberOfPoints()))),
        'facet')

    #set fields
    field = Field.from_args('fu', np.float64, 1, omega, approx_order=1)
    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')
    m = Material('m', val=[1.])

    #Define element integrals
    integral = Integral('i', order=3)

    #Equations defining
    t1 = Term.new('dw_laplace( v, u )', integral, omega, v=v, u=u)
    eq = Equation('balance', t1)
    eqs = Equations([eq])

    heatBoundary = boundaryConditions
    points = boundaryPoints

    #Boundary conditions
    c = ClosestPointStupid(points, heatBoundary, meshVTK)

    def u_fun(ts, coors, bc=None, problem=None, c=c):
        c.distances = []
        v = np.zeros(len(coors))
        for i, p in enumerate(coors):
            v[i] = c.interpolate(p)
            #c.findClosestPoint(p)
        return v

    bc_fun = Function('u_fun', u_fun)
    fix1 = EssentialBC('fix_u', boundary, {'u.all': bc_fun})

    #Solve problem
    ls = ScipyDirect({})
    nls = Newton({}, lin_solver=ls)

    pb = Problem('heat', equations=eqs)
    pb.set_bcs(ebcs=Conditions([fix1]))

    pb.set_solver(nls)
    state = pb.solve(verbose=False, save_results=False)
    u = state.get_parts()['u']
    return u
def run(domain, order):
    omega = domain.create_region('Omega', 'all')
    bbox = domain.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_x - min_x)
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in (x < %.10f)' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in (x > %.10f)' % (max_x - eps),
                                  'facet')
    gamma3 = domain.create_region('Gamma3',
                                  'vertices in y < %.10f' % (min_y + eps),
                                  'facet')
    gamma4 = domain.create_region('Gamma4',
                                  'vertices in y > %.10f' % (max_y - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 1, omega, approx_order=order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    integral = Integral('i', order=2*order)

    t1 = Term.new('dw_laplace(v, u)',
                  integral, omega, v=v, u=u)
    eq = Equation('eq', t1)
    eqs = Equations([eq])

    fix1 = EssentialBC('fix1', gamma1, {'u.0' : 0.4})
    fix2 = EssentialBC('fix2', gamma2, {'u.0' : 0.0})

    def get_shift(ts, coors, region):
        return nm.ones_like(coors[:, 0])

    dof_map_fun = Function('dof_map_fun', per.match_x_line)
    shift_fun = Function('shift_fun', get_shift)

    sper = LinearCombinationBC('sper', [gamma3, gamma4], {'u.0' : 'u.0'},
                               dof_map_fun, 'shifted_periodic',
                               arguments=(shift_fun,))

    ls = ScipyDirect({})

    pb = Problem('laplace', equations=eqs, auto_solvers=None)

    pb.time_update(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper]))

    ev = pb.get_evaluator()
    nls = Newton({}, lin_solver=ls,
                 fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)

    pb.set_solver(nls)

    state = pb.solve()

    return pb, state
Exemple #12
0
    def test_invariance_qp(self):
        from sfepy import data_dir
        from sfepy.discrete import Integral
        from sfepy.terms import Term
        from sfepy.discrete.common.mappings import get_physical_qps

        ok = True
        for name in [
                'meshes/3d/block.mesh', 'meshes/3d/cylinder.mesh',
                'meshes/2d/square_quad.mesh', 'meshes/2d/square_unit_tri.mesh'
        ]:
            self.report(name)

            u = prepare_variable(op.join(data_dir, name), n_components=3)
            omega = u.field.region

            integral = Integral('i', order=3)
            qps = get_physical_qps(omega, integral)
            coors = qps.values

            term = Term.new('ev_volume_integrate(u)', integral, omega, u=u)
            term.setup()
            val1 = term.evaluate(mode='qp')
            val1 = val1.ravel()

            val2 = u.evaluate_at(coors).ravel()

            self.report('value: max. difference:', nm.abs(val1 - val2).max())
            ok1 = nm.allclose(val1, val2, rtol=0.0, atol=1e-12)
            self.report('->', ok1)

            term = Term.new('ev_grad(u)', integral, omega, u=u)
            term.setup()
            val1 = term.evaluate(mode='qp')
            val1 = val1.ravel()

            val2 = u.evaluate_at(coors, mode='grad').ravel()

            self.report('gradient: max. difference:',
                        nm.abs(val1 - val2).max())
            ok2 = nm.allclose(val1, val2, rtol=0.0, atol=1e-10)
            self.report('->', ok2)

            ok = ok and ok1 and ok2

        return ok
Exemple #13
0
    def test_save_ebc(self):
        from sfepy.discrete import (FieldVariable, Integral,
                                    Equation, Equations, Problem)
        from sfepy.discrete.conditions import Conditions, EssentialBC
        from sfepy.terms import Term

        name = op.join(self.options.out_dir,
                       op.splitext(op.basename(__file__))[0])

        integral = Integral('i', order=1)

        u = self.variables['u']
        v = FieldVariable('v', 'test', u.field, primary_var_name='u')

        p = self.variables['p']
        q = FieldVariable('q', 'test', p.field, primary_var_name='p')

        regions = self.problem.domain.regions
        omega = regions['Omega']

        # Problem.save_ebc() requires to have equations defined.
        t1 = Term.new('dw_lin_elastic(v, u)',
                      integral, omega, v=v, u=u)
        t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p)
        eq = Equation('aux', t1 + t2)
        eqs = Equations([eq])

        pb = Problem('test', equations=eqs, auto_solvers=False)

        all_ebcs = []
        all_ebcs.append(EssentialBC('fix_u1', regions['RightFix'],
                                    {'u.all' : nm.array([0.0, 1.0])}))
        all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'],
                                    {'u.0' : 0.0, 'u.1' : 1.0}))
        all_ebcs.append(EssentialBC('fix_p1', regions['LeftFix'],
                                    {'p.all' : 0.0}))
        all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'],
                                    {'p.0' : 0.0}))
        ebcs = Conditions(all_ebcs)

        pb.time_update(ebcs=ebcs)

        pb.save_ebc(name + '_ebcs_f.vtk', ebcs=ebcs, force=True)
        pb.save_ebc(name + '_ebcs.vtk', ebcs=ebcs, default=-1, force=False)

        return True
Exemple #14
0
def make_h1_projection_data(target, eval_data):
    """
    Project scalar data given by a material-like `eval_data()` function to a
    scalar `target` field variable using the :math:`H^1` dot product.
    """
    order = target.field.approx_order * 2
    integral = Integral('i', order=order)

    un = target.name
    v = FieldVariable('v', 'test', target.field, primary_var_name=un)
    lhs1 = Term.new('dw_volume_dot(v, %s)' % un, integral,
                    target.field.region, v=v, **{un : target})
    lhs2 = Term.new('dw_laplace(v, %s)' % un, integral,
                    target.field.region, v=v, **{un : target})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            val = eval_data(ts, coors, mode, 'val', **kwargs)
            gval = eval_data(ts, coors, mode, 'grad', **kwargs)
            return {'val' : val, 'gval' : gval}

    m = Material('m', function=_eval_data)
    rhs1 = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region,
                    m=m, v=v)
    rhs2 = Term.new('dw_diffusion_r(m.gval, v)', integral, target.field.region,
                    m=m, v=v)

    eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output('H1 projection: solver did not converge!')
Exemple #15
0
def run(domain, order):
    omega = domain.create_region('Omega', 'all')
    bbox = domain.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_x - min_x)
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in (x < %.10f)' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in (x > %.10f)' % (max_x - eps),
                                  'facet')
    gamma3 = domain.create_region('Gamma3',
                                  'vertices in y < %.10f' % (min_y + eps),
                                  'facet')
    gamma4 = domain.create_region('Gamma4',
                                  'vertices in y > %.10f' % (max_y - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 1, omega, approx_order=order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    integral = Integral('i', order=2 * order)

    t1 = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u)
    eq = Equation('eq', t1)
    eqs = Equations([eq])

    fix1 = EssentialBC('fix1', gamma1, {'u.0': 0.4})
    fix2 = EssentialBC('fix2', gamma2, {'u.0': 0.0})

    def get_shift(ts, coors, region):
        return nm.ones_like(coors[:, 0])

    dof_map_fun = Function('dof_map_fun', per.match_x_line)
    shift_fun = Function('shift_fun', get_shift)

    sper = LinearCombinationBC('sper', [gamma3, gamma4], {'u.0': 'u.0'},
                               dof_map_fun,
                               'shifted_periodic',
                               arguments=(shift_fun, ))

    ls = ScipyDirect({})
    nls = Newton({}, lin_solver=ls)

    pb = Problem('laplace', equations=eqs)

    pb.set_bcs(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper]))

    pb.set_solver(nls)

    state = pb.solve()

    return pb, state
Exemple #16
0
def make_l2_projection(target, source):
    """
    Project `source` field variable to `target` field variable using
    :math:`L^2` dot product.
    """
    order = target.field.get_true_order()**2
    integral = Integral('i', order=order)

    un = target.name
    v = FieldVariable('v', 'test', target.field, 1, primary_var_name=un)
    lhs = Term.new('dw_mass_scalar(v, %s)' % un, integral,
                   target.field.region, v=v, **{un : target})

    def eval_variable(ts, coors, mode, **kwargs):
        if mode == 'qp':
            val = source.evaluate_at(coors)
            val.shape = val.shape + (1,)
            out = {'val' : val}
            return out

    m = Material('m', function=eval_variable)
    rhs = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region,
                   m=m, v=v)

    eq = Equation('projection', lhs - rhs)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output('L2 projection: solver did not converge!')
Exemple #17
0
def linear_projection(pb, cval):
    from sfepy.discrete import (FieldVariable, Material, Integral, Equation,
                                Equations, Problem)
    from sfepy.discrete.fem import Mesh, FEDomain, Field
    from sfepy.terms import Term
    from sfepy.solvers.ls import ScipyDirect
    from sfepy.solvers.nls import Newton
    from sfepy.base.base import IndexedStruct

    mesh = Mesh.from_file(pb.conf.filename_mesh)
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')
    field = Field.from_args('scf', nm.float64, 'scalar', omega, approx_order=1)

    g = FieldVariable('g', 'unknown', field)
    f = FieldVariable('f', 'test', field, primary_var_name='g')

    integral = Integral('i', order=2)
    m = Material('m', function=set_grad)

    t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g)
    t2 = Term.new('dw_volume_lvf(m.cs, f)', integral, omega, m=m, f=f)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])
    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({'eps_a': 1e-15}, lin_solver=ls, status=nls_status)
    pb = Problem('elasticity', equations=eqs)
    pb.set_solver(nls)

    out = nm.empty((g.n_dof, cval.shape[2]), dtype=nm.float64)
    for ii in range(cval.shape[2]):
        pb.data = nm.ascontiguousarray(cval[:, :, ii, :])
        pb.time_update()
        state = pb.solve()
        out[:, ii] = state.get_parts()['g']

    return out
Exemple #18
0
def make_l2_projection_data(target, eval_data):
    """
    Project scalar data given by a material-like `eval_data()` function to a
    scalar `target` field variable using the :math:`L^2` dot product.
    """
    order = target.field.approx_order * 2
    integral = Integral("i", order=order)

    un = target.name
    v = FieldVariable("v", "test", target.field, primary_var_name=un)
    lhs = Term.new("dw_volume_dot(v, %s)" % un, integral, target.field.region, v=v, **{un: target})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == "qp":
            val = eval_data(ts, coors, mode, **kwargs)
            return {"val": val}

    m = Material("m", function=_eval_data)
    rhs = Term.new("dw_volume_lvf(m.val, v)", integral, target.field.region, m=m, v=v)

    eq = Equation("projection", lhs - rhs)
    eqs = Equations([eq])

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition("aux", equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the target variable with the projection solution.
    pb.solve()

    if nls_status.condition != 0:
        output("L2 projection: solver did not converge!")
def run(domain, order):
    omega = domain.create_region("Omega", "all")
    bbox = domain.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    min_y, max_y = bbox[:, 1]
    eps = 1e-8 * (max_x - min_x)
    gamma1 = domain.create_region("Gamma1", "vertices in (x < %.10f)" % (min_x + eps), "facet")
    gamma2 = domain.create_region("Gamma2", "vertices in (x > %.10f)" % (max_x - eps), "facet")
    gamma3 = domain.create_region("Gamma3", "vertices in y < %.10f" % (min_y + eps), "facet")
    gamma4 = domain.create_region("Gamma4", "vertices in y > %.10f" % (max_y - eps), "facet")

    field = Field.from_args("fu", nm.float64, 1, omega, approx_order=order)

    u = FieldVariable("u", "unknown", field)
    v = FieldVariable("v", "test", field, primary_var_name="u")

    integral = Integral("i", order=2 * order)

    t1 = Term.new("dw_laplace(v, u)", integral, omega, v=v, u=u)
    eq = Equation("eq", t1)
    eqs = Equations([eq])

    fix1 = EssentialBC("fix1", gamma1, {"u.0": 0.4})
    fix2 = EssentialBC("fix2", gamma2, {"u.0": 0.0})

    def get_shift(ts, coors, region):
        return nm.ones_like(coors[:, 0])

    dof_map_fun = Function("dof_map_fun", per.match_x_line)
    shift_fun = Function("shift_fun", get_shift)

    sper = LinearCombinationBC(
        "sper", [gamma3, gamma4], {"u.0": "u.0"}, dof_map_fun, "shifted_periodic", arguments=(shift_fun,)
    )

    ls = ScipyDirect({})

    pb = Problem("laplace", equations=eqs, auto_solvers=None)

    pb.time_update(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper]))

    ev = pb.get_evaluator()
    nls = Newton({}, lin_solver=ls, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)

    pb.set_solver(nls)

    state = pb.solve()

    return pb, state
Exemple #20
0
    def test_invariance_qp(self):
        from sfepy import data_dir
        from sfepy.fem import (Mesh, Domain, H1NodalVolumeField, Variables,
                               Integral)
        from sfepy.terms import Term
        from sfepy.fem.mappings import get_physical_qps

        mesh = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh')

        bbox = mesh.get_bounding_box()
        dd = bbox[1, :] - bbox[0, :]
        data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0]) \
               * nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1])

        variables = {
            'u': ('unknown field', 'scalar_tp', 0),
            'v': ('test field', 'scalar_tp', 'u'),
        }

        domain = Domain('domain', mesh)
        omega = domain.create_region('Omega', 'all')
        field = H1NodalVolumeField('scalar_tp',
                                   nm.float64,
                                   1,
                                   omega,
                                   approx_order=1)
        ff = {field.name: field}

        vv = Variables.from_conf(transform_variables(variables), ff)
        u = vv['u']
        u.set_from_mesh_vertices(data)

        integral = Integral('i', order=2)
        term = Term.new('ev_volume_integrate(u)', integral, omega, u=u)
        term.setup()
        val1, _ = term.evaluate(mode='qp')
        val1 = val1.ravel()

        qps = get_physical_qps(omega, integral)
        coors = qps.get_merged_values()

        val2 = u.evaluate_at(coors).ravel()

        self.report('max. difference:', nm.abs(val1 - val2).max())
        ok = nm.allclose(val1, val2, rtol=0.0, atol=1e-12)
        self.report('invariance in qp: %s' % ok)

        return ok
Exemple #21
0
    def test_invariance_qp(self):
        from sfepy import data_dir
        from sfepy.discrete import Variables, Integral
        from sfepy.discrete.fem import Mesh, FEDomain, Field
        from sfepy.terms import Term
        from sfepy.discrete.common.mappings import get_physical_qps

        mesh = Mesh.from_file(data_dir + '/meshes/3d/block.mesh')

        bbox = mesh.get_bounding_box()
        dd = bbox[1,:] - bbox[0,:]
        data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0]) \
               * nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1])

        variables = {
            'u'       : ('unknown field', 'scalar_tp', 0),
            'v'       : ('test field',    'scalar_tp', 'u'),
        }

        domain = FEDomain('domain', mesh)
        omega = domain.create_region('Omega', 'all')
        field = Field.from_args('scalar_tp', nm.float64, 1, omega,
                                approx_order=1)
        ff = {field.name : field}

        vv = Variables.from_conf(transform_variables(variables), ff)
        u = vv['u']
        u.set_from_mesh_vertices(data)

        integral = Integral('i', order=2)
        term = Term.new('ev_volume_integrate(u)', integral, omega, u=u)
        term.setup()
        val1 = term.evaluate(mode='qp')
        val1 = val1.ravel()

        qps = get_physical_qps(omega, integral)
        coors = qps.values

        val2 = u.evaluate_at(coors).ravel()

        self.report('max. difference:', nm.abs(val1 - val2).max())
        ok = nm.allclose(val1, val2, rtol=0.0, atol=1e-12)
        self.report('invariance in qp: %s' % ok)

        return ok
Exemple #22
0
def get_term(property_array, delta_x, fields):
    """Get the term

    Args:
      property_array: the spatial array of property values
      delta_x: the grid spacing
      fields: the Sfepy u, v fields

    Returns:
      a new term
    """
    return Term.new(
        "dw_lin_elastic_iso(m.lam, m.mu, v, u)",
        Integral("i", order=4),
        fields[0].field.region,
        m=_get_material(property_array, fields[0].field.region.domain, delta_x),
        u=fields[0],
        v=fields[1],
    )
Exemple #23
0
def create_mass_matrix(field):
    """
    Create scalar mass matrix corresponding to the given field.

    Returns
    -------
    mtx : csr_matrix
        The mass matrix in CSR format.
    """
    u = FieldVariable('u', 'unknown', field, 1)
    v = FieldVariable('v', 'test', field, 1, primary_var_name='u')

    integral = Integral('i', order=field.approx_order * 2)
    term = Term.new('dw_volume_dot(v, u)', integral, field.region, v=v, u=u)
    eq = Equation('aux', term)
    eqs = Equations([eq])
    eqs.time_update(None)

    dummy = eqs.create_state_vector()

    mtx = eqs.create_matrix_graph()
    mtx = eqs.eval_tangent_matrices(dummy, mtx)

    return mtx
Exemple #24
0
def create_mass_matrix(field):
    """
    Create scalar mass matrix corresponding to the given field.

    Returns
    -------
    mtx : csr_matrix
        The mass matrix in CSR format.
    """
    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    integral = Integral('i', order=field.approx_order * 2)
    term = Term.new('dw_volume_dot(v, u)', integral, field.region, v=v, u=u)
    eq = Equation('aux', term)
    eqs = Equations([eq])
    eqs.time_update(None)

    dummy = eqs.create_state_vector()

    mtx = eqs.create_matrix_graph()
    mtx = eqs.eval_tangent_matrices(dummy, mtx)

    return mtx
def main():
    parser = OptionParser(usage=usage, version="%prog")
    parser.add_option(
        "-b", "--basis", metavar="name", action="store", dest="basis", default="lagrange", help=help["basis"]
    )
    parser.add_option(
        "-n",
        "--max-order",
        metavar="order",
        type=int,
        action="store",
        dest="max_order",
        default=10,
        help=help["max_order"],
    )
    parser.add_option(
        "-m",
        "--matrix",
        metavar="type",
        action="store",
        dest="matrix_type",
        default="laplace",
        help=help["matrix_type"],
    )
    parser.add_option(
        "-g", "--geometry", metavar="name", action="store", dest="geometry", default="2_4", help=help["geometry"]
    )
    options, args = parser.parse_args()

    dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
    output("reference element geometry:")
    output("  dimension: %d, vertices: %d" % (dim, n_ep))

    n_c = {"laplace": 1, "elasticity": dim}[options.matrix_type]

    output("matrix type:", options.matrix_type)
    output("number of variable components:", n_c)

    output("polynomial space:", options.basis)

    output("max. order:", options.max_order)

    mesh = Mesh.from_file(data_dir + "/meshes/elements/%s_1.mesh" % options.geometry)
    domain = Domain("domain", mesh)
    omega = domain.create_region("Omega", "all")

    orders = nm.arange(1, options.max_order + 1, dtype=nm.int)
    conds = []

    order_fix = 0 if options.geometry in ["2_4", "3_8"] else 1

    for order in orders:
        output("order:", order, "...")

        field = Field.from_args(
            "fu", nm.float64, n_c, omega, approx_order=order, space="H1", poly_space_base=options.basis
        )

        to = field.approx_order
        quad_order = 2 * (max(to - order_fix, 0))
        output("quadrature order:", quad_order)

        integral = Integral("i", order=quad_order)
        qp, _ = integral.get_qp(options.geometry)
        output("number of quadrature points:", qp.shape[0])

        u = FieldVariable("u", "unknown", field, n_c)
        v = FieldVariable("v", "test", field, n_c, primary_var_name="u")

        m = Material("m", lam=1.0, mu=1.0)

        if options.matrix_type == "laplace":
            term = Term.new("dw_laplace(m.mu, v, u)", integral, omega, m=m, v=v, u=u)
            n_zero = 1

        else:
            assert_(options.matrix_type == "elasticity")
            term = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u)
            n_zero = (dim + 1) * dim / 2

        term.setup()

        output("assembling...")
        tt = time.clock()
        mtx, iels = term.evaluate(mode="weak", diff_var="u")
        output("...done in %.2f s" % (time.clock() - tt))
        mtx = mtx[0][0, 0]

        try:
            assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10)

        except:
            from sfepy.base.base import debug

            debug()

        output("matrix shape:", mtx.shape)

        eigs = eig(mtx, method="eig.sgscipy", eigenvectors=False)
        eigs.sort()

        # Zero 'true' zeros.
        eigs[:n_zero] = 0.0

        ii = nm.where(eigs < 0.0)[0]
        if len(ii):
            output("matrix is not positive semi-definite!")

        ii = nm.where(eigs[n_zero:] < 1e-12)[0]
        if len(ii):
            output("matrix has more than %d zero eigenvalues!" % n_zero)

        output("smallest eigs:\n", eigs[:10])

        ii = nm.where(eigs > 0.0)[0]
        emin, emax = eigs[ii[[0, -1]]]

        output("min:", emin, "max:", emax)

        cond = emax / emin
        conds.append(cond)

        output("condition number:", cond)

        output("...done")

    plt.figure(1)
    plt.semilogy(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel("polynomial order")
    plt.ylabel("condition number")
    plt.grid()

    plt.figure(2)
    plt.loglog(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel("polynomial order")
    plt.ylabel("condition number")
    plt.grid()

    plt.show()
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-d',
                        '--dims',
                        metavar='dims',
                        action='store',
                        dest='dims',
                        default='[1.0, 1.0]',
                        help=helps['dims'])
    parser.add_argument('-c',
                        '--centre',
                        metavar='centre',
                        action='store',
                        dest='centre',
                        default='[0.0, 0.0]',
                        help=helps['centre'])
    parser.add_argument('-s',
                        '--shape',
                        metavar='shape',
                        action='store',
                        dest='shape',
                        default='[11, 11]',
                        help=helps['shape'])
    parser.add_argument('-b',
                        '--bc-kind',
                        metavar='kind',
                        action='store',
                        dest='bc_kind',
                        choices=['free', 'cantilever', 'fixed'],
                        default='free',
                        help=helps['bc_kind'])
    parser.add_argument('-a',
                        '--axis',
                        metavar='0, ..., dim, or -1',
                        type=int,
                        action='store',
                        dest='axis',
                        default=-1,
                        help=helps['axis'])
    parser.add_argument('--young',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='young',
                        default=200e+9,
                        help=helps['young'])
    parser.add_argument('--poisson',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='poisson',
                        default=0.3,
                        help=helps['poisson'])
    parser.add_argument('--density',
                        metavar='float',
                        type=float,
                        action='store',
                        dest='density',
                        default=7800.0,
                        help=helps['density'])
    parser.add_argument('--order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order',
                        default=1,
                        help=helps['order'])
    parser.add_argument('-n',
                        '--n-eigs',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='n_eigs',
                        default=6,
                        help=helps['n_eigs'])
    parser.add_argument('-i',
                        '--ignore',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='ignore',
                        default=None,
                        help=helps['ignore'])
    parser.add_argument('--solver', metavar='solver', action='store',
                        dest='solver',
                        default= \
                        "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000",
                        help=helps['solver'])
    parser.add_argument('--show',
                        action="store_true",
                        dest='show',
                        default=False,
                        help=helps['show'])
    #parser.add_argument('filename', nargs='?', default=None)
    #read block.mesh
    #parser.add_argument('filename', nargs='?', default="platehexat200mm.mesh")
    parser.add_argument('filename', nargs='?', default="block_1m.mesh")
    options = parser.parse_args()

    aux = options.solver.split(',')
    kwargs = {}
    for option in aux[1:]:
        key, val = option.split(':')
        kwargs[key.strip()] = eval(val)
    eig_conf = Struct(name='evp', kind=aux[0], **kwargs)

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)
    output('displacement field approximation order:', options.order)
    output('requested %d eigenvalues' % options.n_eigs)
    output('using eigenvalue problem solver:', eig_conf.kind)
    output.level += 1
    for key, val in six.iteritems(kwargs):
        output('%s: %r' % (key, val))
    output.level -= 1

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    filename = options.filename
    if filename is not None:
        mesh = Mesh.from_file(filename)
        dim = mesh.dim
        dims = nm.diff(mesh.get_bounding_box(), axis=0)

    else:
        dims = nm.array(eval(options.dims), dtype=nm.float64)
        dim = len(dims)

        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

        output('dimensions:', dims)
        output('centre:    ', centre)
        output('shape:     ', shape)

        mesh = gen_block_mesh(dims, shape, centre, name='mesh')

    output('axis:      ', options.axis)
    assert_((-dim <= options.axis < dim), 'invalid axis value!')

    eig_solver = Solver.any_from_conf(eig_conf)

    # Build the problem definition.
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_coor, max_coor = bbox[:, options.axis]
    eps = 1e-8 * (max_coor - min_coor)
    ax = 'xyz'[:dim][options.axis]

    omega = domain.create_region('Omega', 'all')
    """
    bottom = domain.create_region('Bottom',
                                  'vertices in (%s < %.10f)'
                                  % (ax, min_coor + eps),
                                  'facet')

    bottom_top = domain.create_region('BottomTop',
                                      'r.Bottom +v vertices in (%s > %.10f)'
                                      % (ax, max_coor - eps),
                                      'facet')
    """
    #import pdb; pdb.set_trace()
    left = domain.create_region('left', 'vertices in (x < -0.49)', 'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)
    """
    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) // 2

    elif options.bc_kind == 'cantilever':
        fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    elif options.bc_kind == 'fixed':
        fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    else:
        raise ValueError('unsupported BC kind! (%s)' % options.bc_kind)

    if options.ignore is not None:
        n_rbm = options.ignore
    """
    fixed = EssentialBC('Fixed', left, {'u.all': 0.0})
    pb.time_update(ebcs=Conditions([fixed]))
    n_rbm = 0

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = eig_solver(mtx_k,
                                 mtx_m,
                                 options.n_eigs + n_rbm,
                                 eigenvectors=True)

    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    output('%d eigenvalues converged (%d ignored as rigid body modes)' %
           (len(eigs), n_rbm))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    omegas = nm.sqrt(eigs)
    freqs = omegas / (2 * nm.pi)

    output('number |         eigenvalue |  angular frequency '
           '|          frequency')
    for ii, eig in enumerate(eigs):
        output('%6d | %17.12e | %17.12e | %17.12e' %
               (ii + 1, eig, omegas[ii], freqs[ii]))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64)
    for ii in range(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in range(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg',
                             verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if len(eigs) and options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in range(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements', [
                'rel_scaling=%s' % scaling, 'color_kind="tensors"',
                'color_name="strain%03d"' % ii
            ])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds,
             only_names=sorted(ds.keys()),
             is_scalar_bar=False,
             is_wireframe=True)
Exemple #27
0
    def _test_single_term(self, term_cls, domain, rname):
        from sfepy.terms import Term
        from sfepy.terms.terms import get_arg_kinds

        ok = True

        term_call = term_cls.name + '(%s)'

        arg_shapes_list = term_cls.arg_shapes
        if not isinstance(arg_shapes_list, list):
            arg_shapes_list = [arg_shapes_list]

        if term_cls.integration != 'custom':
            integral = self.integral

        else:
            integral = self.custom_integral

        poly_space_base = getattr(term_cls, 'poly_space_base', 'lagrange')

        prev_shapes = {}
        for _arg_shapes in arg_shapes_list:
            # Unset shapes are taken from the previous iteration.
            arg_shapes = copy(prev_shapes)
            arg_shapes.update(_arg_shapes)
            prev_shapes = arg_shapes

            self.report('arg_shapes:', arg_shapes)
            arg_types = term_cls.arg_types
            if not isinstance(arg_types[0], tuple):
                arg_types = (arg_types,)

            for iat, ats in enumerate(arg_types):
                self.report('arg_types:', ats)

                arg_kinds = get_arg_kinds(ats)
                modes = getattr(term_cls, 'modes', None)
                mode = modes[iat] if modes is not None else None

                if 'dw_s_dot_grad_i_s' in term_cls.name:
                    material_value = 0.0

                else:
                    material_value = 1.0
                aux = make_term_args(arg_shapes, arg_kinds, ats, mode, domain,
                                     material_value=material_value,
                                     poly_space_base=poly_space_base)
                args, str_args, materials, variables = aux

                self.report('args:', str_args)

                name = term_call % (', '.join(str_args))
                term = Term.new(name, integral, domain.regions[rname], **args)
                term.setup()

                call_mode = 'weak' if term.names.virtual else 'eval'
                self.report('call mode:', call_mode)

                out = term.evaluate(mode=call_mode, ret_status=True)

                if call_mode == 'eval':
                    vals, status = out
                    vals = nm.array(vals)

                else:
                    vals, iels, status = out

                if isinstance(vals, tuple):
                    # Dynamic connectivity terms.
                    vals = vals[0]

                _ok = nm.isfinite(vals).all()
                ok = ok and _ok
                self.report('values shape: %s' % (vals.shape,))
                if not _ok:
                    self.report('values are not finite!')
                    self.report(vals)

                _ok = status == 0
                if not _ok:
                    self.report('status is %d!' % status)

                ok = ok and _ok

                if term.names.virtual:
                    # Test differentiation w.r.t. state variables in the weak
                    # mode.
                    svars = term.get_state_variables(unknown_only=True)
                    for svar in svars:
                        vals, iels, status = term.evaluate(mode=call_mode,
                                                           diff_var=svar.name,
                                                           ret_status=True)
                        if isinstance(vals, tuple):
                            # Dynamic connectivity terms.
                            vals = vals[0]

                        _ok = status == 0
                        ok = ok and _ok
                        self.report('diff: %s' % svar.name)
                        if not _ok:
                            self.report('status is %d!' % status)

                        _ok = nm.isfinite(vals).all()
                        ok = ok and _ok
                        self.report('values shape: %s' % (vals.shape,))
                        if not _ok:
                            self.report('values are not finite!')
                            self.report(vals)

        return ok
def main():
    parser = ArgumentParser(description=__doc__)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-b',
                        '--basis',
                        metavar='name',
                        action='store',
                        dest='basis',
                        default='lagrange',
                        help=helps['basis'])
    parser.add_argument('-n',
                        '--max-order',
                        metavar='order',
                        type=int,
                        action='store',
                        dest='max_order',
                        default=10,
                        help=helps['max_order'])
    parser.add_argument('-m',
                        '--matrix',
                        action='store',
                        dest='matrix_type',
                        choices=['laplace', 'elasticity', 'smass', 'vmass'],
                        default='laplace',
                        help=helps['matrix_type'])
    parser.add_argument('-g',
                        '--geometry',
                        metavar='name',
                        action='store',
                        dest='geometry',
                        default='2_4',
                        help=helps['geometry'])
    parser.add_argument('-o',
                        '--output-dir',
                        metavar='path',
                        action='store',
                        dest='output_dir',
                        default=None,
                        help=helps['output_dir'])
    parser.add_argument('--no-show',
                        action='store_false',
                        dest='show',
                        default=True,
                        help=helps['no_show'])
    options = parser.parse_args()

    dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
    output('reference element geometry:')
    output('  dimension: %d, vertices: %d' % (dim, n_ep))

    n_c = {
        'laplace': 1,
        'elasticity': dim,
        'smass': 1,
        'vmass': dim
    }[options.matrix_type]

    output('matrix type:', options.matrix_type)
    output('number of variable components:', n_c)

    output('polynomial space:', options.basis)

    output('max. order:', options.max_order)

    mesh = Mesh.from_file(data_dir +
                          '/meshes/elements/%s_1.mesh' % options.geometry)
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')

    orders = nm.arange(1, options.max_order + 1, dtype=nm.int32)
    conds = []

    for order in orders:
        output('order:', order, '...')

        field = Field.from_args('fu',
                                nm.float64,
                                n_c,
                                omega,
                                approx_order=order,
                                space='H1',
                                poly_space_base=options.basis)

        quad_order = 2 * field.approx_order
        output('quadrature order:', quad_order)

        integral = Integral('i', order=quad_order)
        qp, _ = integral.get_qp(options.geometry)
        output('number of quadrature points:', qp.shape[0])

        u = FieldVariable('u', 'unknown', field)
        v = FieldVariable('v', 'test', field, primary_var_name='u')

        m = Material('m', D=stiffness_from_lame(dim, 1.0, 1.0))

        if options.matrix_type == 'laplace':
            term = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u)
            n_zero = 1

        elif options.matrix_type == 'elasticity':
            term = Term.new('dw_lin_elastic(m.D, v, u)',
                            integral,
                            omega,
                            m=m,
                            v=v,
                            u=u)
            n_zero = (dim + 1) * dim // 2

        elif options.matrix_type in ('smass', 'vmass'):
            term = Term.new('dw_dot(v, u)', integral, omega, v=v, u=u)
            n_zero = 0

        term.setup()

        output('assembling...')
        timer = Timer(start=True)
        mtx, iels = term.evaluate(mode='weak', diff_var='u')
        output('...done in %.2f s' % timer.stop())
        mtx = mtx[0, 0]

        try:
            assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10)

        except:
            from sfepy.base.base import debug
            debug()

        output('matrix shape:', mtx.shape)

        eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False)
        eigs.sort()

        # Zero 'true' zeros.
        eigs[:n_zero] = 0.0

        ii = nm.where(eigs < 0.0)[0]
        if len(ii):
            output('matrix is not positive semi-definite!')

        ii = nm.where(eigs[n_zero:] < 1e-12)[0]
        if len(ii):
            output('matrix has more than %d zero eigenvalues!' % n_zero)

        output('smallest eigs:\n', eigs[:10])

        ii = nm.where(eigs > 0.0)[0]
        emin, emax = eigs[ii[[0, -1]]]

        output('min:', emin, 'max:', emax)

        cond = emax / emin
        conds.append(cond)

        output('condition number:', cond)

        output('...done')

    if options.output_dir is not None:
        indir = partial(op.join, options.output_dir)

    else:
        indir = None

    plt.rcParams['font.size'] = 12
    plt.rcParams['lines.linewidth'] = 3

    fig, ax = plt.subplots()
    ax.semilogy(orders, conds)
    ax.set_xticks(orders)
    ax.set_xticklabels(orders)
    ax.set_xlabel('polynomial order')
    ax.set_ylabel('condition number')
    ax.set_title(f'{options.basis.capitalize()} basis')
    ax.grid()
    plt.tight_layout()
    if indir is not None:
        fig.savefig(indir(f'{options.basis}-{options.matrix_type}-'
                          f'{options.geometry}-{options.max_order}-xlin.png'),
                    bbox_inches='tight')

    fig, ax = plt.subplots()
    ax.loglog(orders, conds)
    ax.set_xticks(orders)
    ax.set_xticklabels(orders)
    ax.set_xlabel('polynomial order')
    ax.set_ylabel('condition number')
    ax.set_title(f'{options.basis.capitalize()} basis')
    ax.grid()
    plt.tight_layout()
    if indir is not None:
        fig.savefig(indir(f'{options.basis}-{options.matrix_type}-'
                          f'{options.geometry}-{options.max_order}-xlog.png'),
                    bbox_inches='tight')

    if options.show:
        plt.show()
def create_local_problem(omega_gi, orders):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    order_u, order_p = orders

    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    min_y, max_y = bbox[:, 1]
    eps_y = 1e-8 * (max_y - min_y)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)'
                                      % (min_x + eps_x),
                                      'facet', allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)'
                                      % (max_x - eps_x),
                                      'facet', allow_empty=True)
    gamma3_i = domain_i.create_region('Gamma3',
                                      'vertices in (y < %.10f)'
                                      % (min_y + eps_y),
                                      'facet', allow_empty=True)

    field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i,
                               approx_order=order_u)

    field2_i = Field.from_args('fp', nm.float64, 1, omega_i,
                               approx_order=order_p)

    output('field 1: number of local DOFs:', field1_i.n_nod)
    output('field 2: number of local DOFs:', field2_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field1_i, order=0)
    v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i')
    p_i = FieldVariable('p_i', 'unknown', field2_i, order=1)
    q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i')

    if mesh.dim == 2:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]])

    else:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.132],
                                [0.092], [0.092], [0.092]])

    mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5),
                   k=1, alpha=alpha)
    integral = Integral('i', order=2*(max(order_u, order_p)))

    t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)',
                   integral, omega_i, m=mat, v_i=v_i, u_i=u_i)
    t12 = Term.new('dw_biot(m.alpha, v_i, p_i)',
                   integral, omega_i, m=mat, v_i=v_i, p_i=p_i)
    t21 = Term.new('dw_biot(m.alpha, u_i, q_i)',
                   integral, omega_i, m=mat, u_i=u_i, q_i=q_i)
    t22 = Term.new('dw_laplace(m.k, q_i, p_i)',
                   integral, omega_i, m=mat, q_i=q_i, p_i=p_i)

    eq1 = Equation('eq1', t11 - t12)
    eq2 = Equation('eq1', t21 + t22)
    eqs = Equations([eq1, eq2])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05})
    def bc_fun(ts, coors, **kwargs):
        val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x))
        return val

    fun = Function('bc_fun', bc_fun)
    ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3]))
    pb.update_materials()

    return pb
Exemple #30
0
def make_l2_projection_data(target, eval_data, order=None,
                            ls=None, nls_options=None):
    """
    Project scalar data to a scalar `target` field variable using the
    :math:`L^2` dot product.

    Parameters
    ----------
    target : FieldVariable instance
        The target variable.
    eval_data : callable or array
        Either a material-like function `eval_data()`, or an array of values in
        quadrature points that has to be reshapable to the shape required by
        `order`.
    order : int, optional
        The quadrature order. If not given, it is set to
        `2 * target.field.approx_order`.
    """
    if order is None:
       order = 2 * target.field.approx_order
    integral = Integral('i', order=order)

    un = FieldVariable('u', 'unknown', target.field)

    v = FieldVariable('v', 'test', un.field, primary_var_name=un.name)
    lhs = Term.new('dw_volume_dot(v, %s)' % un.name, integral,
                   un.field.region, v=v, **{un.name : un})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            if callable(eval_data):
                val = eval_data(ts, coors, mode, **kwargs)

            else:
                val = eval_data.reshape((coors.shape[0], 1, 1))

            return {'val' : val}

    m = Material('m', function=_eval_data)
    rhs = Term.new('dw_volume_lvf(m.val, v)', integral, un.field.region,
                   m=m, v=v)

    eq = Equation('projection', lhs - rhs)
    eqs = Equations([eq])

    if ls is None:
        ls = ScipyDirect({})

    if nls_options is None:
        nls_options = {}

    nls_status = IndexedStruct()
    nls = Newton(nls_options, lin_solver=ls, status=nls_status)

    pb = Problem('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the un variable with the projection solution.
    pb.solve()

    # Copy the projection solution to target.
    target.set_data(un())

    if nls_status.condition != 0:
        output('L2 projection: solver did not converge!')
Exemple #31
0
    def _solve(self, property_array):
        """
        Solve the Sfepy problem for one sample.

        Args:
          property_array: array of shape (n_x, n_y, 2) where the last
          index is for Lame's parameter and shear modulus,
          respectively.

        Returns:
          the strain field of shape (n_x, n_y, 2) where the last
          index represents the x and y displacements

        """
        shape = property_array.shape[:-1]
        mesh = self._get_mesh(shape)
        domain = Domain('domain', mesh)

        region_all = domain.create_region('region_all', 'all')

        field = Field.from_args('fu', np.float64, 'vector', region_all, # pylint: disable=no-member
                                approx_order=2)

        u = FieldVariable('u', 'unknown', field)
        v = FieldVariable('v', 'test', field, primary_var_name='u')

        m = self._get_material(property_array, domain)

        integral = Integral('i', order=4)

        t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                      integral, region_all, m=m, v=v, u=u)
        eq = Equation('balance_of_forces', t1)
        eqs = Equations([eq])

        epbcs, functions = self._get_periodicBCs(domain)
        ebcs = self._get_displacementBCs(domain)
        lcbcs = self._get_linear_combinationBCs(domain)

        ls = ScipyDirect({})

        pb = Problem('elasticity', equations=eqs, auto_solvers=None)

        pb.time_update(
            ebcs=ebcs, epbcs=epbcs, lcbcs=lcbcs, functions=functions)

        ev = pb.get_evaluator()
        nls = Newton({}, lin_solver=ls,
                     fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix)

        try:
            pb.set_solvers_instances(ls, nls)
        except AttributeError:
            pb.set_solver(nls)

        vec = pb.solve()

        u = vec.create_output_dict()['u'].data
        u_reshape = np.reshape(u, (tuple(x + 1 for x in shape) + u.shape[-1:]))

        dims = domain.get_mesh_bounding_box().shape[1]
        strain = np.squeeze(
            pb.evaluate(
                'ev_cauchy_strain.{dim}.region_all(u)'.format(
                    dim=dims),
                mode='el_avg',
                copy_materials=False))
        strain_reshape = np.reshape(strain, (shape + strain.shape[-1:]))

        stress = np.squeeze(
            pb.evaluate(
                'ev_cauchy_stress.{dim}.region_all(m.D, u)'.format(
                    dim=dims),
                mode='el_avg',
                copy_materials=False))
        stress_reshape = np.reshape(stress, (shape + stress.shape[-1:]))

        return strain_reshape, u_reshape, stress_reshape
def main(cli_args):
    dims = parse_argument_list(cli_args.dims, float)
    shape = parse_argument_list(cli_args.shape, int)
    centre = parse_argument_list(cli_args.centre, float)
    material_parameters = parse_argument_list(cli_args.material_parameters,
                                              float)
    order = cli_args.order

    ts_vals = cli_args.ts.split(',')
    ts = {
        't0' : float(ts_vals[0]), 't1' : float(ts_vals[1]),
        'n_step' : int(ts_vals[2])}

    do_plot = cli_args.plot

    ### Mesh and regions ###
    mesh = gen_block_mesh(
        dims, shape, centre, name='block', verbose=False)
    domain = FEDomain('domain', mesh)

    omega = domain.create_region('Omega', 'all')

    lbn, rtf = domain.get_mesh_bounding_box()
    box_regions = define_box_regions(3, lbn, rtf)
    regions = dict([
        [r, domain.create_region(r, box_regions[r][0], box_regions[r][1])]
        for r in box_regions])

    ### Fields ###
    scalar_field = Field.from_args(
        'fu', np.float64, 'scalar', omega, approx_order=order-1)
    vector_field = Field.from_args(
        'fv', np.float64, 'vector', omega, approx_order=order)

    u = FieldVariable('u', 'unknown', vector_field, history=1)
    v = FieldVariable('v', 'test', vector_field, primary_var_name='u')
    p = FieldVariable('p', 'unknown', scalar_field, history=1)
    q = FieldVariable('q', 'test', scalar_field, primary_var_name='p')

    ### Material ###
    c10, c01 = material_parameters
    m = Material(
        'm', mu=2*c10, kappa=2*c01,
    )

    ### Boundary conditions ###
    x_sym = EssentialBC('x_sym', regions['Left'], {'u.0' : 0.0})
    y_sym = EssentialBC('y_sym', regions['Near'], {'u.1' : 0.0})
    z_sym = EssentialBC('z_sym', regions['Bottom'], {'u.2' : 0.0})
    disp_fun = Function('disp_fun', get_displacement)
    displacement = EssentialBC(
        'displacement', regions['Right'], {'u.0' : disp_fun})
    ebcs = Conditions([x_sym, y_sym, z_sym, displacement])

    ### Terms and equations ###
    integral = Integral('i', order=2*order)

    term_neohook = Term.new(
        'dw_tl_he_neohook(m.mu, v, u)',
        integral, omega, m=m, v=v, u=u)
    term_mooney = Term.new(
        'dw_tl_he_mooney_rivlin(m.kappa, v, u)',
        integral, omega, m=m, v=v, u=u)
    term_pressure = Term.new(
        'dw_tl_bulk_pressure(v, u, p)',
        integral, omega, v=v, u=u, p=p)

    term_volume_change = Term.new(
        'dw_tl_volume(q, u)',
        integral, omega, q=q, u=u, term_mode='volume')
    term_volume = Term.new(
        'dw_volume_integrate(q)',
        integral, omega, q=q)

    eq_balance = Equation('balance', term_neohook+term_mooney+term_pressure)
    eq_volume = Equation('volume', term_volume_change-term_volume)
    equations = Equations([eq_balance, eq_volume])

    ### Solvers ###
    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton(
        {'i_max' : 5},
        lin_solver=ls, status=nls_status
    )

    ### Problem ###
    pb = Problem('hyper', equations=equations)
    pb.set_bcs(ebcs=ebcs)
    pb.set_ics(ics=Conditions([]))
    tss = SimpleTimeSteppingSolver(ts, nls=nls, context=pb)
    pb.set_solver(tss)

    ### Solution ###
    axial_stress = []
    axial_displacement = []
    def stress_strain_fun(*args, **kwargs):
        return stress_strain(
            *args, order=order, global_stress=axial_stress,
            global_displacement=axial_displacement, **kwargs)

    pb.solve(save_results=True, post_process_hook=stress_strain_fun)

    if do_plot:
        plot_graphs(
            material_parameters, axial_stress, axial_displacement,
            undeformed_length=dims[0])
Exemple #33
0
top = domain.create_region('Top', 'vertices in z > %.10f' % (max_z - eps),
                           'vertex')

field = Field.from_args('fu', np.float64, 'vector', omega, approx_order=1)

u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')

# these are for stainless steel 316L
m = Material('m',
             D=stiffness_from_youngpoisson(dim=3, young=1.93e9, poisson=0.275),
             rho=8000.0)

integral = Integral('i', order=1)

t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
eq1 = Equation('balance_of_forces', t1)
eqs = Equations([eq1])

# materials = {
#     'solid': ({'K': 1e3, # bulk modulus
#                'mu': 20e0, # shear modulus of neoHookean term
#                'kappa': 10e0, # shear modulus of Mooney-Rivlin term
#                },),
# }
# equations = {
#     'balance': """dw_ul_he_neohook.3.Omega( solid.mu, v, u )
#                 + dw_ul_he_mooney_rivlin.3.Omega(solid.kappa, v, u)
#                 + dw_ul_bulk_penalty.3.Omega( solid.K, v, u )
#                 = 0""",
#     }
Exemple #34
0
def make_l2_projection_data(target,
                            eval_data,
                            order=None,
                            ls=None,
                            nls_options=None):
    """
    Project scalar data to a scalar `target` field variable using the
    :math:`L^2` dot product.

    Parameters
    ----------
    target : FieldVariable instance
        The target variable.
    eval_data : callable or array
        Either a material-like function `eval_data()`, or an array of values in
        quadrature points that has to be reshapable to the shape required by
        `order`.
    order : int, optional
        The quadrature order. If not given, it is set to
        `2 * target.field.approx_order`.
    """
    if order is None:
        order = 2 * target.field.approx_order
    integral = Integral('i', order=order)

    un = FieldVariable('u', 'unknown', target.field)

    v = FieldVariable('v', 'test', un.field, primary_var_name=un.name)
    lhs = Term.new('dw_volume_dot(v, %s)' % un.name,
                   integral,
                   un.field.region,
                   v=v,
                   **{un.name: un})

    def _eval_data(ts, coors, mode, **kwargs):
        if mode == 'qp':
            if callable(eval_data):
                val = eval_data(ts, coors, mode, **kwargs)

            else:
                val = eval_data.reshape((coors.shape[0], 1, 1))

            return {'val': val}

    m = Material('m', function=_eval_data)
    rhs = Term.new('dw_volume_lvf(m.val, v)',
                   integral,
                   un.field.region,
                   m=m,
                   v=v)

    eq = Equation('projection', lhs - rhs)
    eqs = Equations([eq])

    if ls is None:
        ls = ScipyDirect({})

    if nls_options is None:
        nls_options = {}

    nls_status = IndexedStruct()
    nls = Newton(nls_options, lin_solver=ls, status=nls_status)

    pb = Problem('aux', equations=eqs, nls=nls, ls=ls)

    pb.time_update()

    # This sets the un variable with the projection solution.
    pb.solve()

    # Copy the projection solution to target.
    target.set_data(un())

    if nls_status.condition != 0:
        output('L2 projection: solver did not converge!')
Exemple #35
0
c = Material('c', val=1.0)
# bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01})
f = Material('f', function=get_forcing_term)
# f = Material('f', val = 10.0)
# f = Material('f', val=[[10.0],[10.0]])
# f = Material('f', val=[[0],[0]])

integral = Integral('i', order=2)

# t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
#      integral, omega, m=m, v=v, u=u)
# t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
# eq = Equation('balance', t1 + t2)
# eqs = Equations([eq])

t1 = Term.new('dw_laplace( c.val, s, t )', integral, omega, c=c, t=t, s=s)
# t2 = Term.new('dw_volume_dot( f, s, t )', integral, omega, f=f, t=t, s=s)
t2 = Term.new('dw_volume_dot( f.val, s, t )', integral, omega, f=f, t=t, s=s)
# t2 = Term.new('dw_volume_dot( f.val, s )', integral, omega, f=f, s=s)

eq = Equation('balance', t1 - t2)
eqs = Equations([eq])

# def set_right_bc_impl(ts, coors, bc=None, problem=None, **kwargs):
#     x = coors[:,0]
#     y = coors[:,1]
#     val = np.sin(x)+np.sin(y)
#     return val


def set_bc_impl(ts, coors, bc=None, problem=None, **kwargs):
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=help['show'])
    options, args = parser.parse_args()
    options_probe = True


    folder = str(uuid.uuid4())
    os.mkdir(folder)
    os.chdir(folder)

    file = open('README.txt', 'w')
    file.write('DIMENSIONS\n')
    file.write('Lx = '+str(dims[0])+' Ly = '+str(dims[1])+' Lz = '+str(dims[2])+'\n')
    file.write('DISCRETIZATION (NX, NY, NZ)\n')
    file.write(str(NX)+'  '+str(NY)+'  '+str(NZ)+'\n')
    file.write('MATERIALS\n')
    file.write(str(E_f)+' '+str(nu_f)+' '+str(E_m)+' '+str(nu_m)+'\n')

    #mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')

    mesh = mesh_generators.gen_block_mesh(dims,shape,centre,name='block')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:,0]
    min_y, max_y = domain.get_mesh_bounding_box()[:,1]
    min_z, max_z = domain.get_mesh_bounding_box()[:,2]
    eps = 1e-8 * (max_x - min_x)
    print min_x, max_x
    print min_y, max_y
    print min_z, max_z
    R1 = domain.create_region('Ym',
                                  'vertices in z < %.10f' % (max_z/2))
    R2 = domain.create_region('Yf',
                                  'vertices in z >= %.10f' % (min_z/2))
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Left',
                                  'vertices in x < %.10f' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Right',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')
    gamma3 = domain.create_region('Front',
                                  'vertices in y < %.10f' % (min_y + eps),
                                  'facet')
    gamma4 = domain.create_region('Back',
                                  'vertices in y > %.10f' % (max_y - eps),
                                  'facet')
    gamma5 = domain.create_region('Bottom',
                                  'vertices in z < %.10f' % (min_z + eps),
                                  'facet')
    gamma6 = domain.create_region('Top',
                                  'vertices in z > %.10f' % (max_z - eps),
                                  'facet')



    field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')
    mu=1.1
    lam=1.0
    m = Material('m', lam=lam, mu=mu)
    f = Material('f', val=[[0.0], [0.0],[-1.0]])
    load = Material('Load',val=[[0.0],[0.0],[-Load]])

    D = stiffness_from_lame(3,lam, mu)
    mat = Material('Mat', D=D)

    get_mat = Function('get_mat1',get_mat1)
    get_mat_f = Function('get_mat_f',get_mat1)

    integral = Integral('i', order=3)
    s_integral = Integral('is',order=2)

    t1 = Term.new('dw_lin_elastic(Mat.D, v, u)',
         integral, omega, Mat=mat, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    #t3 = Term.new('DotProductSurfaceTerm(Load.val, v)',s_integral,gamma5,Load=load,v=v)
    t3 = Term.new('dw_surface_ltr( Load.val, v )',s_integral,gamma6,Load=load,v=v)
    eq = Equation('balance', t1 + t2 + t3)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})
    left_bc  = EssentialBC('Left',  gamma1, {'u.0' : 0.0})
    right_bc = EssentialBC('Right', gamma2, {'u.0' : 0.0})
    back_bc = EssentialBC('Front', gamma3, {'u.1' : 0.0})
    front_bc = EssentialBC('Back', gamma4, {'u.1' : 0.0})
    bottom_bc = EssentialBC('Bottom', gamma5, {'u.all' : 0.0})
    top_bc = EssentialBC('Top', gamma6, {'u.2' : 0.2})

    bc=[left_bc,right_bc,back_bc,front_bc,bottom_bc]
    #bc=[bottom_bc,top_bc]


    ##############################
    #  ##### SOLVER SECTION  #####
    ##############################

    conf = Struct(method='bcgsl', precond='jacobi', sub_precond=None,
                  i_max=10000, eps_a=1e-50, eps_r=1e-10, eps_d=1e4,
                  verbose=True)

    ls = PETScKrylovSolver(conf)

    file.write(str(ls.name)+' '+str(ls.conf.method)+' '+str(ls.conf.precond)+' '+str(ls.conf.eps_r)+' '+str(ls.conf.i_max)+'\n' )

    nls_status = IndexedStruct()
    nls = Newton({'i_max':1,'eps_a':1e-10}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)

    dd=pb.get_materials()['Mat']
    dd.set_function(get_mat1)
    #xload = pb.get_materials()['f']
    #xload.set_function(get_mat_f)

    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions(bc))

    vec = pb.solve()
    print nls_status


    file.write('TIME TO SOLVE\n')
    file.write(str(nls.status.time_stats['solve'])+'\n')
    file.write('TIME TO CREATE MATRIX\n')
    file.write(str(nls.status.time_stats['matrix'])+'\n')

    ev = pb.evaluate
    out = vec.create_output_dict()
    strain = ev('ev_cauchy_strain.3.Omega(u)', mode='el_avg')
    stress = ev('ev_cauchy_stress.3.Omega(Mat.D, u)', mode='el_avg',
                copy_materials=False)

    out['cauchy_strain'] = Struct(name='output_data', mode='cell',
                                  data=strain, dofs=None)
    out['cauchy_stress'] = Struct(name='output_data', mode='cell',
                                  data=stress, dofs=None)

    pb.save_state('strain.vtk', out=out)

    print nls_status


    file.close()
def main(cli_args):
    dims = parse_argument_list(cli_args.dims, float)
    shape = parse_argument_list(cli_args.shape, int)
    centre = parse_argument_list(cli_args.centre, float)
    material_parameters = parse_argument_list(cli_args.material_parameters,
                                              float)
    order = cli_args.order

    ts_vals = cli_args.ts.split(',')
    ts = {
        't0': float(ts_vals[0]),
        't1': float(ts_vals[1]),
        'n_step': int(ts_vals[2])
    }

    do_plot = cli_args.plot

    ### Mesh and regions ###
    mesh = gen_block_mesh(dims, shape, centre, name='block', verbose=False)
    domain = FEDomain('domain', mesh)

    omega = domain.create_region('Omega', 'all')

    lbn, rtf = domain.get_mesh_bounding_box()
    box_regions = define_box_regions(3, lbn, rtf)
    regions = dict(
        [[r, domain.create_region(r, box_regions[r][0], box_regions[r][1])]
         for r in box_regions])

    ### Fields ###
    scalar_field = Field.from_args('fu',
                                   np.float64,
                                   'scalar',
                                   omega,
                                   approx_order=order - 1)
    vector_field = Field.from_args('fv',
                                   np.float64,
                                   'vector',
                                   omega,
                                   approx_order=order)

    u = FieldVariable('u', 'unknown', vector_field, history=1)
    v = FieldVariable('v', 'test', vector_field, primary_var_name='u')
    p = FieldVariable('p', 'unknown', scalar_field, history=1)
    q = FieldVariable('q', 'test', scalar_field, primary_var_name='p')

    ### Material ###
    c10, c01 = material_parameters
    m = Material(
        'm',
        mu=2 * c10,
        kappa=2 * c01,
    )

    ### Boundary conditions ###
    x_sym = EssentialBC('x_sym', regions['Left'], {'u.0': 0.0})
    y_sym = EssentialBC('y_sym', regions['Near'], {'u.1': 0.0})
    z_sym = EssentialBC('z_sym', regions['Bottom'], {'u.2': 0.0})
    disp_fun = Function('disp_fun', get_displacement)
    displacement = EssentialBC('displacement', regions['Right'],
                               {'u.0': disp_fun})
    ebcs = Conditions([x_sym, y_sym, z_sym, displacement])

    ### Terms and equations ###
    integral = Integral('i', order=2 * order)

    term_neohook = Term.new('dw_tl_he_neohook(m.mu, v, u)',
                            integral,
                            omega,
                            m=m,
                            v=v,
                            u=u)
    term_mooney = Term.new('dw_tl_he_mooney_rivlin(m.kappa, v, u)',
                           integral,
                           omega,
                           m=m,
                           v=v,
                           u=u)
    term_pressure = Term.new('dw_tl_bulk_pressure(v, u, p)',
                             integral,
                             omega,
                             v=v,
                             u=u,
                             p=p)

    term_volume_change = Term.new('dw_tl_volume(q, u)',
                                  integral,
                                  omega,
                                  q=q,
                                  u=u,
                                  term_mode='volume')
    term_volume = Term.new('dw_volume_integrate(q)', integral, omega, q=q)

    eq_balance = Equation('balance',
                          term_neohook + term_mooney + term_pressure)
    eq_volume = Equation('volume', term_volume_change - term_volume)
    equations = Equations([eq_balance, eq_volume])

    ### Solvers ###
    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton({'i_max': 5}, lin_solver=ls, status=nls_status)

    ### Problem ###
    pb = Problem('hyper', equations=equations)
    pb.set_bcs(ebcs=ebcs)
    pb.set_ics(ics=Conditions([]))
    tss = SimpleTimeSteppingSolver(ts, nls=nls, context=pb)
    pb.set_solver(tss)

    ### Solution ###
    axial_stress = []
    axial_displacement = []

    def stress_strain_fun(*args, **kwargs):
        return stress_strain(*args,
                             order=order,
                             global_stress=axial_stress,
                             global_displacement=axial_displacement,
                             **kwargs)

    pb.solve(save_results=True, post_process_hook=stress_strain_fun)

    if do_plot:
        plot_graphs(material_parameters,
                    axial_stress,
                    axial_displacement,
                    undeformed_length=dims[0])
Exemple #38
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--young', metavar='float', type=float,
                      action='store', dest='young',
                      default=2000.0, help=helps['young'])
    parser.add_option('--poisson', metavar='float', type=float,
                      action='store', dest='poisson',
                      default=0.4, help=helps['poisson'])
    parser.add_option('--load', metavar='float', type=float,
                      action='store', dest='load',
                      default=-1000.0, help=helps['load'])
    parser.add_option('--order', metavar='int', type=int,
                      action='store', dest='order',
                      default=1, help=helps['order'])
    parser.add_option('-r', '--refine', metavar='int', type=int,
                      action='store', dest='refine',
                      default=0, help=helps['refine'])
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=helps['show'])
    parser.add_option('-p', '--probe',
                      action="store_true", dest='probe',
                      default=False, help=helps['probe'])
    options, args = parser.parse_args()

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  vertical load:', options.load)
    output('uniform mesh refinement level:', options.refine)

    # Build the problem definition.
    mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in range(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left',
                                'vertices in x < 0.001', 'facet')
    bottom = domain.create_region('Bottom',
                                  'vertices in y < 0.001', 'facet')
    top = domain.create_region('Top', 'vertex 2', 'vertex')

    field = Field.from_args('fu', nm.float64, 'vector', omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    D = stiffness_from_youngpoisson(2, options.young, options.poisson)

    asphalt = Material('Asphalt', D=D)
    load = Material('Load', values={'.val' : [0.0, options.load]})

    integral = Integral('i', order=2*options.order)
    integral0 = Integral('i', order=0)

    t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
                  integral, omega, Asphalt=asphalt, v=v, u=u)
    t2 = Term.new('dw_point_load(Load.val, v)',
                  integral0, top, Load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0})
    ysym = EssentialBC('YSym', left, {'u.0' : 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)

    pb.time_update(ebcs=Conditions([xsym, ysym]))

    # Solve the problem.
    state = pb.solve()
    output(nls_status)

    # Postprocess the solution.
    out = state.create_output_dict()
    out = stress_strain(out, pb, state, extend=True)
    pb.save_state('its2D_interactive.vtk', out=out)

    gdata = geometry_data['2_3']
    nc = len(gdata.coors)

    integral_vn = Integral('ivn', coors=gdata.coors,
                          weights=[gdata.volume / nc] * nc)

    nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))

    if options.probe:
        # Probe the solution.
        probes, labels = gen_lines(pb)

        sfield = Field.from_args('sym_tensor', nm.float64, 3, omega,
                                approx_order=options.order - 1)
        stress = FieldVariable('stress', 'parameter', sfield,
                               primary_var_name='(set-to-None)')
        strain = FieldVariable('strain', 'parameter', sfield,
                               primary_var_name='(set-to-None)')

        cfield = Field.from_args('component', nm.float64, 1, omega,
                                 approx_order=options.order - 1)
        component = FieldVariable('component', 'parameter', cfield,
                                  primary_var_name='(set-to-None)')

        ev = pb.evaluate
        order = 2 * (options.order - 1)
        strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
        stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
                       mode='qp', copy_materials=False)

        project_by_component(strain, strain_qp, component, order)
        project_by_component(stress, stress_qp, component, order)

        all_results = []
        for ii, probe in enumerate(probes):
            fig, results = probe_results(u, strain, stress, probe, labels[ii])

            fig.savefig('its2D_interactive_probe_%d.png' % ii)
            all_results.append(results)

        for ii, results in enumerate(all_results):
            output('probe %d:' % ii)
            output.level += 2
            for key, res in ordered_iteritems(results):
                output(key + ':')
                val = res[1]
                output('  min: %+.2e, mean: %+.2e, max: %+.2e'
                       % (val.min(), val.mean(), val.max()))
            output.level -= 2

    if options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer

        view = Viewer('its2D_interactive.vtk')
        view(vector_mode='warp_norm', rel_scaling=1,
             is_scalar_bar=True, is_wireframe=True)
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=help['show'])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = Domain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:,0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'nodes in x < %.10f' % (min_x + eps))
    gamma2 = domain.create_region('Gamma2',
                                  'nodes in x > %.10f' % (max_x - eps))

    field = Field('fu', nm.float64, 'vector', omega,
                  space='H1', poly_space_base='lagrange', approx_order=2)

    u = FieldVariable('u', 'unknown', field, mesh.dim)
    v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u')

    m = Material('m', lam=1.0, mu=1.0)
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
         integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm', rel_scaling=2,
             is_scalar_bar=True, is_wireframe=True)
def create_local_problem(omega_gi, order):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)' %
                                      (min_x + eps_x),
                                      'facet',
                                      allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)' %
                                      (max_x - eps_x),
                                      'facet',
                                      allow_empty=True)

    field_i = Field.from_args('fu', nm.float64, 1, omega_i, approx_order=order)

    output('number of local field DOFs:', field_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field_i)
    v_i = FieldVariable('v_i', 'test', field_i, primary_var_name='u_i')

    integral = Integral('i', order=2 * order)

    mat = Material('m', lam=10, mu=5)
    t1 = Term.new('dw_laplace(m.lam, v_i, u_i)',
                  integral,
                  omega_i,
                  m=mat,
                  v_i=v_i,
                  u_i=u_i)

    def _get_load(coors):
        val = nm.ones_like(coors[:, 0])
        for coor in coors.T:
            val *= nm.sin(4 * nm.pi * coor)
        return val

    def get_load(ts, coors, mode=None, **kwargs):
        if mode == 'qp':
            return {'val': _get_load(coors).reshape(coors.shape[0], 1, 1)}

    load = Material('load', function=Function('get_load', get_load))

    t2 = Term.new('dw_volume_lvf(load.val, v_i)',
                  integral,
                  omega_i,
                  load=load,
                  v_i=v_i)

    eq = Equation('balance', t1 - 100 * t2)
    eqs = Equations([eq])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all': 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.all': 0.1})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2]))
    pb.update_materials()

    return pb
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('-o',
                        '--output-dir',
                        default='.',
                        help=helps['output_dir'])
    parser.add_argument('--R1',
                        metavar='R1',
                        action='store',
                        dest='R1',
                        default='0.5',
                        help=helps['R1'])
    parser.add_argument('--R2',
                        metavar='R2',
                        action='store',
                        dest='R2',
                        default='1.0',
                        help=helps['R2'])
    parser.add_argument('--C1',
                        metavar='C1',
                        action='store',
                        dest='C1',
                        default='0.0,0.0',
                        help=helps['C1'])
    parser.add_argument('--C2',
                        metavar='C2',
                        action='store',
                        dest='C2',
                        default='0.0,0.0',
                        help=helps['C2'])
    parser.add_argument('--order',
                        metavar='int',
                        type=int,
                        action='store',
                        dest='order',
                        default=2,
                        help=helps['order'])
    parser.add_argument('-v',
                        '--viewpatch',
                        action='store_true',
                        dest='viewpatch',
                        default=False,
                        help=helps['viewpatch'])
    options = parser.parse_args()

    # Creation of the NURBS-patch with igakit
    R1 = eval(options.R1)
    R2 = eval(options.R2)
    C1 = list(eval(options.C1))
    C2 = list(eval(options.C2))
    order = options.order
    viewpatch = options.viewpatch
    create_patch(R1, R2, C1, C2, order=order, viewpatch=viewpatch)

    # Setting a Domain instance
    filename_domain = data_dir + '/meshes/iga/concentric_circles.iga'
    domain = IGDomain.from_file(filename_domain)

    # Sub-domains
    omega = domain.create_region('Omega', 'all')
    Gamma_out = domain.create_region('Gamma_out',
                                     'vertices of set xi01',
                                     kind='facet')
    Gamma_in = domain.create_region('Gamma_in',
                                    'vertices of set xi00',
                                    kind='facet')

    # Field (featuring order elevation)
    order_increase = order - domain.nurbs.degrees[0]
    order_increase *= int(order_increase > 0)
    field = Field.from_args('fu',
                            nm.float64,
                            'scalar',
                            omega,
                            approx_order='iga',
                            space='H1',
                            poly_space_base='iga')

    # Variables
    u = FieldVariable('u', 'unknown', field)  # unknown function
    v = FieldVariable('v', 'test', field,
                      primary_var_name='u')  # test function

    # Integral
    integral = Integral('i', order=2 * field.approx_order)

    # Term
    t = Term.new('dw_laplace( v, u )', integral, omega, v=v, u=u)

    # Equation
    eq = Equation('laplace', t)
    eqs = Equations([eq])

    # Boundary Conditions
    u_in = EssentialBC('u_in', Gamma_in, {'u.all': 7.0})
    u_out = EssentialBC('u_out', Gamma_out, {'u.all': 3.0})

    # solvers
    ls = ScipyDirect({})
    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    # problem instance
    pb = Problem('potential', equations=eqs, active_only=True)

    # Set boundary conditions
    pb.set_bcs(ebcs=Conditions([u_in, u_out]))

    # solving
    pb.set_solver(nls)
    status = IndexedStruct()
    state = pb.solve(status=status, save_results=True, verbose=True)

    # Saving the results to a classic VTK file
    filename = os.path.join(options.output_dir, 'concentric_circles.vtk')
    ensure_path(filename)
    pb.save_state(filename, state)
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--diffusivity',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='diffusivity',
                      default=1e-5,
                      help=helps['diffusivity'])
    parser.add_option('--ic-max',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='ic_max',
                      default=2.0,
                      help=helps['ic_max'])
    parser.add_option('--order',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='order',
                      default=2,
                      help=helps['order'])
    parser.add_option('-r',
                      '--refine',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='refine',
                      default=0,
                      help=helps['refine'])
    parser.add_option('-p',
                      '--probe',
                      action="store_true",
                      dest='probe',
                      default=False,
                      help=helps['probe'])
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=helps['show'])
    options, args = parser.parse_args()

    assert_((0 < options.order),
            'temperature approximation order must be at least 1!')

    output('using values:')
    output('  diffusivity:', options.diffusivity)
    output('  max. IC value:', options.ic_max)
    output('uniform mesh refinement level:', options.refine)

    mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in xrange(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements' %
                   (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet')
    right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet')

    field = Field.from_args('fu',
                            nm.float64,
                            'scalar',
                            omega,
                            approx_order=options.order)

    T = FieldVariable('T', 'unknown', field, history=1)
    s = FieldVariable('s', 'test', field, primary_var_name='T')

    m = Material('m', diffusivity=options.diffusivity * nm.eye(3))

    integral = Integral('i', order=2 * options.order)

    t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
                  integral,
                  omega,
                  m=m,
                  s=s,
                  T=T)
    t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    # Boundary conditions.
    ebc1 = EssentialBC('T1', left, {'T.0': 2.0})
    ebc2 = EssentialBC('T2', right, {'T.0': -2.0})

    # Initial conditions.
    def get_ic(coors, ic):
        x, y, z = coors.T
        return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)

    ic_fun = Function('ic_fun', get_ic)
    ic = InitialCondition('ic', omega, {'T.0': ic_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({'is_linear': True}, lin_solver=ls, status=nls_status)

    pb = Problem('heat', equations=eqs, nls=nls, ls=ls)
    pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
    pb.set_ics(Conditions([ic]))

    tss = SimpleTimeSteppingSolver({
        't0': 0.0,
        't1': 100.0,
        'n_step': 11
    },
                                   problem=pb)
    tss.init_time()

    if options.probe:
        # Prepare probe data.
        probes, labels = gen_lines(pb)

        ev = pb.evaluate
        order = 2 * (options.order - 1)

        gfield = Field.from_args('gu',
                                 nm.float64,
                                 'vector',
                                 omega,
                                 approx_order=options.order - 1)
        dvel = FieldVariable('dvel',
                             'parameter',
                             gfield,
                             primary_var_name='(set-to-None)')
        cfield = Field.from_args('gu',
                                 nm.float64,
                                 'scalar',
                                 omega,
                                 approx_order=options.order - 1)
        component = FieldVariable('component',
                                  'parameter',
                                  cfield,
                                  primary_var_name='(set-to-None)')

        nls_options = {'eps_a': 1e-16, 'i_max': 1}

        if options.show:
            plt.ion()

    # Solve the problem using the time stepping solver.
    suffix = tss.ts.suffix
    for step, time, state in tss():
        if options.probe:
            # Probe the solution.
            dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' %
                         order,
                         copy_materials=False,
                         mode='qp')
            project_by_component(dvel,
                                 dvel_qp,
                                 component,
                                 order,
                                 nls_options=nls_options)

            all_results = []
            for ii, probe in enumerate(probes):
                fig, results = probe_results(ii, T, dvel, probe, labels[ii])

                all_results.append(results)

            plt.tight_layout()
            fig.savefig('time_poisson_interactive_probe_%s.png' %
                        (suffix % step),
                        bbox_inches='tight')

            if options.show:
                plt.draw()

            for ii, results in enumerate(all_results):
                output('probe %d (%s):' % (ii, probes[ii].name))
                output.level += 2
                for key, res in ordered_iteritems(results):
                    output(key + ':')
                    val = res[1]
                    output('  min: %+.2e, mean: %+.2e, max: %+.2e' %
                           (val.min(), val.mean(), val.max()))
                output.level -= 2
Exemple #43
0
def create_local_problem(omega_gi, order):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)'
                                      % (min_x + eps_x),
                                      'facet', allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)'
                                      % (max_x - eps_x),
                                      'facet', allow_empty=True)

    field_i = Field.from_args('fu', nm.float64, 1, omega_i,
                              approx_order=order)

    output('number of local field DOFs:', field_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field_i)
    v_i = FieldVariable('v_i', 'test', field_i, primary_var_name='u_i')

    integral = Integral('i', order=2*order)

    mat = Material('m', lam=10, mu=5)
    t1 = Term.new('dw_laplace(m.lam, v_i, u_i)',
                  integral, omega_i, m=mat, v_i=v_i, u_i=u_i)

    def _get_load(coors):
        val = nm.ones_like(coors[:, 0])
        for coor in coors.T:
            val *= nm.sin(4 * nm.pi * coor)
        return val

    def get_load(ts, coors, mode=None, **kwargs):
        if mode == 'qp':
            return {'val' : _get_load(coors).reshape(coors.shape[0], 1, 1)}

    load = Material('load', function=Function('get_load', get_load))

    t2 = Term.new('dw_volume_lvf(load.val, v_i)',
                  integral, omega_i, load=load, v_i=v_i)

    eq = Equation('balance', t1 - 100 * t2)
    eqs = Equations([eq])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.all' : 0.1})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2]))
    pb.update_materials()

    return pb
def main():
    from sfepy import data_dir

    parser = ArgumentParser()
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-s', '--show',
                        action="store_true", dest='show',
                        default=False, help=helps['show'])
    options = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = FEDomain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:,0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'vertices in x < %.10f' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in x > %.10f' % (max_x - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 'vector', omega,
                            approx_order=2)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    m = Material('m', D=stiffness_from_lame(dim=2, lam=1.0, mu=1.0))
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)',
                  integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun,
                      extra_args={'shift' : 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs)
    pb.save_regions_as_groups('regions')

    pb.set_bcs(ebcs=Conditions([fix_u, shift_u]))

    pb.set_solver(nls)

    status = IndexedStruct()
    state = pb.solve(status=status)

    print('Nonlinear solver status:\n', nls_status)
    print('Stationary solver status:\n', status)

    pb.save_state('linear_elasticity.vtk', state)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm', rel_scaling=2,
             is_scalar_bar=True, is_wireframe=True)
Exemple #45
0
def main():
    parser = ArgumentParser(description=__doc__,
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-d', '--dims', metavar='dims',
                        action='store', dest='dims',
                        default='[1.0, 1.0]', help=helps['dims'])
    parser.add_argument('-c', '--centre', metavar='centre',
                        action='store', dest='centre',
                        default='[0.0, 0.0]', help=helps['centre'])
    parser.add_argument('-s', '--shape', metavar='shape',
                        action='store', dest='shape',
                        default='[11, 11]', help=helps['shape'])
    parser.add_argument('-b', '--bc-kind', metavar='kind',
                        action='store', dest='bc_kind',
                        choices=['free', 'cantilever', 'fixed'],
                        default='free', help=helps['bc_kind'])
    parser.add_argument('-a', '--axis', metavar='0, ..., dim, or -1',
                        type=int, action='store', dest='axis',
                        default=-1, help=helps['axis'])
    parser.add_argument('--young', metavar='float', type=float,
                        action='store', dest='young',
                        default=6.80e+10, help=helps['young'])
    parser.add_argument('--poisson', metavar='float', type=float,
                        action='store', dest='poisson',
                        default=0.36, help=helps['poisson'])
    parser.add_argument('--density', metavar='float', type=float,
                        action='store', dest='density',
                        default=2700.0, help=helps['density'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=1, help=helps['order'])
    parser.add_argument('-n', '--n-eigs', metavar='int', type=int,
                        action='store', dest='n_eigs',
                        default=6, help=helps['n_eigs'])
    parser.add_argument('-i', '--ignore', metavar='int', type=int,
                        action='store', dest='ignore',
                        default=None, help=helps['ignore'])
    parser.add_argument('--solver', metavar='solver', action='store',
                        dest='solver',
                        default= \
                        "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000",
                        help=helps['solver'])
    parser.add_argument('--show',
                        action="store_true", dest='show',
                        default=False, help=helps['show'])
    parser.add_argument('filename', nargs='?', default=None)
    options = parser.parse_args()

    aux = options.solver.split(',')
    kwargs = {}
    for option in aux[1:]:
        key, val = option.split(':')
        kwargs[key.strip()] = eval(val)
    eig_conf = Struct(name='evp', kind=aux[0], **kwargs)

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  density:', options.density)
    output('displacement field approximation order:', options.order)
    output('requested %d eigenvalues' % options.n_eigs)
    output('using eigenvalue problem solver:', eig_conf.kind)
    output.level += 1
    for key, val in six.iteritems(kwargs):
        output('%s: %r' % (key, val))
    output.level -= 1

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    filename = options.filename
    if filename is not None:
        mesh = Mesh.from_file(filename)
        dim = mesh.dim
        dims = nm.diff(mesh.get_bounding_box(), axis=0)

    else:
        dims = nm.array(eval(options.dims), dtype=nm.float64)
        dim = len(dims)

        centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]
        shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]

        output('dimensions:', dims)
        output('centre:    ', centre)
        output('shape:     ', shape)

        mesh = gen_block_mesh(dims, shape, centre, name='mesh')

    output('axis:      ', options.axis)
    assert_((-dim <= options.axis < dim), 'invalid axis value!')

    eig_solver = Solver.any_from_conf(eig_conf)

    # Build the problem definition.
    domain = FEDomain('domain', mesh)

    bbox = domain.get_mesh_bounding_box()
    min_coor, max_coor = bbox[:, options.axis]
    eps = 1e-8 * (max_coor - min_coor)
    ax = 'xyz'[:dim][options.axis]

    omega = domain.create_region('Omega', 'all')
    bottom = domain.create_region('Bottom',
                                  'vertices in (%s < %.10f)'
                                  % (ax, min_coor + eps),
                                  'facet')
    bottom_top = domain.create_region('BottomTop',
                                      'r.Bottom +v vertices in (%s > %.10f)'
                                      % (ax, max_coor - eps),
                                      'facet')

    field = Field.from_args('fu', nm.float64, 'vector', omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson)

    m = Material('m', D=mtx_d, rho=options.density)

    integral = Integral('i', order=2*options.order)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations=lhs_eqs)

    if options.bc_kind == 'free':
        pb.time_update()
        n_rbm = dim * (dim + 1) / 2

    elif options.bc_kind == 'cantilever':
        fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    elif options.bc_kind == 'fixed':
        fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0})
        pb.time_update(ebcs=Conditions([fixed]))
        n_rbm = 0

    else:
        raise ValueError('unsupported BC kind! (%s)' % options.bc_kind)

    if options.ignore is not None:
        n_rbm = options.ignore

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
    mtx_m.data[:] = 0.0
    mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m)

    try:
        eigs, svecs = eig_solver(mtx_k, mtx_m, options.n_eigs + n_rbm,
                                 eigenvectors=True)

    except sla.ArpackNoConvergence as ee:
        eigs = ee.eigenvalues
        svecs = ee.eigenvectors
        output('only %d eigenvalues converged!' % len(eigs))

    output('%d eigenvalues converged (%d ignored as rigid body modes)' %
           (len(eigs), n_rbm))

    eigs = eigs[n_rbm:]
    svecs = svecs[:, n_rbm:]

    omegas = nm.sqrt(eigs)
    freqs = omegas / (2 * nm.pi)

    output('number |         eigenvalue |  angular frequency '
           '|          frequency')
    for ii, eig in enumerate(eigs):
        output('%6d | %17.12e | %17.12e | %17.12e'
               % (ii + 1, eig, omegas[ii], freqs[ii]))

    # Make full eigenvectors (add DOFs fixed by boundary conditions).
    variables = pb.get_variables()

    vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]),
                    dtype=nm.float64)
    for ii in range(svecs.shape[1]):
        vecs[:, ii] = variables.make_full_vec(svecs[:, ii])

    # Save the eigenvectors.
    out = {}
    state = pb.create_state()
    for ii in range(eigs.shape[0]):
        state.set_full(vecs[:, ii])
        aux = state.create_output_dict()
        strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)',
                             integrals=Integrals([integral]),
                             mode='el_avg', verbose=False)
        out['u%03d' % ii] = aux.popitem()[1]
        out['strain%03d' % ii] = Struct(mode='cell', data=strain)

    pb.save_state('eigenshapes.vtk', out=out)
    pb.save_regions_as_groups('regions')

    if len(eigs) and options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer
        from sfepy.postprocess.domain_specific import DomainSpecificPlot

        scaling = 0.05 * dims.max() / nm.abs(vecs).max()

        ds = {}
        for ii in range(eigs.shape[0]):
            pd = DomainSpecificPlot('plot_displacements',
                                    ['rel_scaling=%s' % scaling,
                                     'color_kind="tensors"',
                                     'color_name="strain%03d"' % ii])
            ds['u%03d' % ii] = pd

        view = Viewer('eigenshapes.vtk')
        view(domain_specific=ds, only_names=sorted(ds.keys()),
             is_scalar_bar=False, is_wireframe=True)
Exemple #46
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=help['show'])
    options, args = parser.parse_args()

    mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh')
    domain = Domain('domain', mesh)

    min_x, max_x = domain.get_mesh_bounding_box()[:, 0]
    eps = 1e-8 * (max_x - min_x)
    omega = domain.create_region('Omega', 'all')
    gamma1 = domain.create_region('Gamma1',
                                  'nodes in x < %.10f' % (min_x + eps))
    gamma2 = domain.create_region('Gamma2',
                                  'nodes in x > %.10f' % (max_x - eps))

    field = H1NodalVolumeField('fu',
                               nm.float64,
                               'vector',
                               omega,
                               approx_order=2)

    u = FieldVariable('u', 'unknown', field, mesh.dim)
    v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u')

    m = Material('m', lam=1.0, mu=1.0)
    f = Material('f', val=[[0.02], [0.01]])

    integral = Integral('i', order=3)

    t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                  integral,
                  omega,
                  m=m,
                  v=v,
                  u=u)
    t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0})

    bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01})
    shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls)
    pb.save_regions_as_groups('regions')

    pb.time_update(ebcs=Conditions([fix_u, shift_u]))

    vec = pb.solve()
    print nls_status

    pb.save_state('linear_elasticity.vtk', vec)

    if options.show:
        view = Viewer('linear_elasticity.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=2,
             is_scalar_bar=True,
             is_wireframe=True)
def main():
    parser = ArgumentParser(description=__doc__.rstrip(),
                            formatter_class=RawDescriptionHelpFormatter)
    parser.add_argument('output_dir', help=helps['output_dir'])
    parser.add_argument('--dims', metavar='dims',
                        action='store', dest='dims',
                        default='1.0,1.0,1.0', help=helps['dims'])
    parser.add_argument('--shape', metavar='shape',
                        action='store', dest='shape',
                        default='7,7,7', help=helps['shape'])
    parser.add_argument('--centre', metavar='centre',
                        action='store', dest='centre',
                        default='0.0,0.0,0.0', help=helps['centre'])
    parser.add_argument('-3', '--3d',
                        action='store_true', dest='is_3d',
                        default=False, help=helps['3d'])
    parser.add_argument('--order', metavar='int', type=int,
                        action='store', dest='order',
                        default=1, help=helps['order'])
    options = parser.parse_args()

    dim = 3 if options.is_3d else 2
    dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim]
    shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim]
    centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim]

    output('dimensions:', dims)
    output('shape:     ', shape)
    output('centre:    ', centre)

    mesh0 = gen_block_mesh(dims, shape, centre, name='block-fem',
                           verbose=True)
    domain0 = FEDomain('d', mesh0)

    bbox = domain0.get_mesh_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps = 1e-8 * (max_x - min_x)

    cnt = (shape[0] - 1) // 2
    g0 = 0.5 * dims[0]
    grading = nm.array([g0 / 2**ii for ii in range(cnt)]) + eps + centre[0] - g0

    domain, subs = refine_towards_facet(domain0, grading, 'x <')

    omega = domain.create_region('Omega', 'all')

    gamma1 = domain.create_region('Gamma1',
                                  'vertices in (x < %.10f)' % (min_x + eps),
                                  'facet')
    gamma2 = domain.create_region('Gamma2',
                                  'vertices in (x > %.10f)' % (max_x - eps),
                                  'facet')

    field = Field.from_args('fu', nm.float64, 1, omega,
                            approx_order=options.order)

    if subs is not None:
        field.substitute_dofs(subs)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    integral = Integral('i', order=2*options.order)

    t1 = Term.new('dw_laplace(v, u)',
                  integral, omega, v=v, u=u)
    eq = Equation('eq', t1)
    eqs = Equations([eq])

    def u_fun(ts, coors, bc=None, problem=None):
        """
        Define a displacement depending on the y coordinate.
        """
        if coors.shape[1] == 2:
            min_y, max_y = bbox[:, 1]
            y = (coors[:, 1] - min_y) / (max_y - min_y)

            val = (max_y - min_y) * nm.cos(3 * nm.pi * y)

        else:
            min_y, max_y = bbox[:, 1]
            min_z, max_z = bbox[:, 2]
            y = (coors[:, 1] - min_y) / (max_y - min_y)
            z = (coors[:, 2] - min_z) / (max_z - min_z)

            val = ((max_y - min_y) * (max_z - min_z)
                   * nm.cos(3 * nm.pi * y) * (1.0 + 3.0 * (z - 0.5)**2))

        return val

    bc_fun = Function('u_fun', u_fun)
    fix1 = EssentialBC('shift_u', gamma1, {'u.0' : bc_fun})
    fix2 = EssentialBC('fix2', gamma2, {'u.all' : 0.0})

    ls = ScipyDirect({})

    nls = Newton({}, lin_solver=ls)

    pb = Problem('heat', equations=eqs, nls=nls, ls=ls)

    pb.time_update(ebcs=Conditions([fix1, fix2]))
    state = pb.solve()

    if subs is not None:
        field.restore_dofs()

    filename = os.path.join(options.output_dir, 'hanging.vtk')
    ensure_path(filename)

    pb.save_state(filename, state)
    if options.order > 1:
        pb.save_state(filename, state, linearization=Struct(kind='adaptive',
                                                            min_level=0,
                                                            max_level=8,
                                                            eps=1e-3))
                              'facet')
top = domain.create_region('Top',
                           'vertices in y > 0.999',
                           'facet')

domain.save_regions_as_groups('regions.vtk')

field_t = Field.from_args('temperature', np.float64,
                          'scalar', omega, 2)
t = FieldVariable('t', 'unknown', field_t, 1)
s = FieldVariable('s', 'test', field_t, 1,
                  primary_var_name='t')

integral = Integral('i', order=2)

term = Term.new('dw_laplace(s, t)', integral, omega,
                s=s, t=t)
eq = Equation('temperature', term)
eqs = Equations([eq])

t_left = EssentialBC('t_left',
                     left, {'t.0' : 10.0})
t_right = EssentialBC('t_right',
                      right, {'t.0' : 30.0})

ls = ScipyDirect({})
nls = Newton({}, lin_solver=ls)

pb = ProblemDefinition('temperature', equations=eqs,
                       nls=nls, ls=ls)
pb.time_update(ebcs=Conditions([t_left, t_right]))
Exemple #49
0
def create_local_problem(omega_gi, orders):
    """
    Local problem definition using a domain corresponding to the global region
    `omega_gi`.
    """
    order_u, order_p = orders

    mesh = omega_gi.domain.mesh

    # All tasks have the whole mesh.
    bbox = mesh.get_bounding_box()
    min_x, max_x = bbox[:, 0]
    eps_x = 1e-8 * (max_x - min_x)

    min_y, max_y = bbox[:, 1]
    eps_y = 1e-8 * (max_y - min_y)

    mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
    domain_i = FEDomain('domain_i', mesh_i)
    omega_i = domain_i.create_region('Omega', 'all')

    gamma1_i = domain_i.create_region('Gamma1',
                                      'vertices in (x < %.10f)'
                                      % (min_x + eps_x),
                                      'facet', allow_empty=True)
    gamma2_i = domain_i.create_region('Gamma2',
                                      'vertices in (x > %.10f)'
                                      % (max_x - eps_x),
                                      'facet', allow_empty=True)
    gamma3_i = domain_i.create_region('Gamma3',
                                      'vertices in (y < %.10f)'
                                      % (min_y + eps_y),
                                      'facet', allow_empty=True)

    field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i,
                               approx_order=order_u)

    field2_i = Field.from_args('fp', nm.float64, 1, omega_i,
                               approx_order=order_p)

    output('field 1: number of local DOFs:', field1_i.n_nod)
    output('field 2: number of local DOFs:', field2_i.n_nod)

    u_i = FieldVariable('u_i', 'unknown', field1_i, order=0)
    v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i')
    p_i = FieldVariable('p_i', 'unknown', field2_i, order=1)
    q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i')

    if mesh.dim == 2:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]])

    else:
        alpha = 1e2 * nm.array([[0.132], [0.132], [0.132],
                                [0.092], [0.092], [0.092]])

    mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5),
                   k=1, alpha=alpha)
    integral = Integral('i', order=2*(max(order_u, order_p)))

    t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)',
                   integral, omega_i, m=mat, v_i=v_i, u_i=u_i)
    t12 = Term.new('dw_biot(m.alpha, v_i, p_i)',
                   integral, omega_i, m=mat, v_i=v_i, p_i=p_i)
    t21 = Term.new('dw_biot(m.alpha, u_i, q_i)',
                   integral, omega_i, m=mat, u_i=u_i, q_i=q_i)
    t22 = Term.new('dw_laplace(m.k, q_i, p_i)',
                   integral, omega_i, m=mat, q_i=q_i, p_i=p_i)

    eq1 = Equation('eq1', t11 - t12)
    eq2 = Equation('eq1', t21 + t22)
    eqs = Equations([eq1, eq2])

    ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0})
    ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05})
    def bc_fun(ts, coors, **kwargs):
        val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x))
        return val

    fun = Function('bc_fun', bc_fun)
    ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun})

    pb = Problem('problem_i', equations=eqs, active_only=False)
    pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3]))
    pb.update_materials()

    return pb
Exemple #50
0
Ddmu = numpy.array([[2.0, 0.0, 0.0],
                    [0.0, 2.0, 0.0],
                    [0.0, 0.0, 1.0]])

Ddlambda = numpy.array([[1.0, 1.0, 0.0],
                        [1.0, 1.0, 0.0],
                        [0.0, 0.0, 0.0]])

Ks = []
Ms = []
for D in [Ddmu, Ddlambda]:#, D2, D3]
    m = Material('m', D = D, rho = 2700.0)

    integral = Integral('i', order=2)

    t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
    t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u)
    eq1 = Equation('stiffness', t1)
    eq2 = Equation('mass', t2)
    lhs_eqs = Equations([eq1, eq2])

    pb = Problem('modal', equations = lhs_eqs)

    pb.time_update()
    n_rbm = dim * (dim + 1) / 2

    pb.update_materials()

    # Assemble stiffness and mass matrices.
    mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a)
    mtx_m = mtx_k.copy()
Exemple #51
0
def FarField(eltype,
             points,
             boundary,
             lcar,
             epsilon,
             meshfile,
             thickness=None,
             verbose=False):
    """
    This function determines a geometric factor F within a single element. 
    The element type can be triangular, quadrilateral, tetrahedral or 
    hexahedral. For these types eltype is set to  "CTRIA3", "CQUAD4"
    "CTETRA" and "CHEXA8" respectively. The vertices of the element are 
    provided in the input parameter points. The input parameter boundary is of 
    boolean type and has the same size as points. Those points which are
    part of the conductive interface CI are flagged True. Epsilon sets
    a tolerance to determine which mesh vertices are considered part of
    the FF boundary. The meshing of the element is stored in a location
    provided by meshfile.
    
    Parameters
    ----------
    
    eltype:   string
              'CTRIA3' for triangular surface elements,
              'CQUAD4' for quadrilateral surface elements,
              'CTETRA' for tetrahedral volume elements.
              'CHEXA8' for hexahedral volume elements.
    points:   array like
              Array containing the coordinates of the element
    boundary: array like
              Array containing the entries of the boundary points
    lcar:     float
              Characteristic length value provided to gmsh for mesh sizing.
    epsilon:  float
              Numerical tolerance on criterion for far field
              boundary
    meshfile: string
              Filename and location for storing temporary mesh file
    verbose:  boolean
              Indicate whether intermediate results should be displayed
              or not
         
    Returns
    -------
    : array like
        Array with boolean entries stating True for those items
        on the boundary and False otherwise
    """

    if verbose is True:
        output.set_output(quiet=False)
    else:
        output.set_output(quiet=True)

    if (eltype == "CTRIA3") or (eltype == "CQUAD4"):
        sdim = 2
    else:
        sdim = 3

    boundpnts = []
    for i in range(len(points)):
        if boundary[i]:
            boundpnts.append(points[i])

    mesh = sfedis.fem.Mesh.from_file(meshfile)

    domain = sfedis.fem.FEDomain('domain', mesh)

    c = sfedis.Material('c', val=1.0)

    omega = domain.create_region('Omega', 'all')

    if verbose is True:
        coors = mesh.coors
        fixed_vert = _is_on_bound(coors,
                                  bound=boundpnts,
                                  sdim=sdim,
                                  epsilon=epsilon)
        print "fixed vertices:"
        print fixed_vert

    is_on_bound = sfedis.Functions([
        sfedis.Function('_is_on_bound',
                        _is_on_bound,
                        extra_args={
                            'bound': boundpnts,
                            'sdim': sdim,
                            'epsilon': lcar / 100.
                        }),
    ])
    fixed = domain.create_region('fixed',
                                 'vertices by _is_on_bound',
                                 'facet',
                                 functions=is_on_bound,
                                 add_to_regions=True)

    field_t = sfedis.fem.Field.from_args('temperature',
                                         np.float64,
                                         'scalar',
                                         omega,
                                         approx_order=2)
    t = sfedis.FieldVariable('t', 'unknown', field_t, 1)
    s = sfedis.FieldVariable('s', 'test', field_t, 1, primary_var_name='t')

    integral = sfedis.Integral('i', order=4)

    term1 = Term.new('dw_laplace(s, t)', integral, omega, s=s, t=t)
    term2 = Term.new('dw_volume_integrate(c.val, s)',
                     integral,
                     omega,
                     c=c,
                     s=s)  # heat source term for 1st step of far field
    eq = sfedis.Equation('temperature', term1 - term2)
    eqs = sfedis.Equations([eq])

    t_fixed = EssentialBC('t_fixed', fixed, {'t.0': 0.0})

    ls = ScipyDirect({})
    nls = Newton({'i_max': 1, 'eps_a': 1e-10}, lin_solver=ls)

    pb = sfedis.Problem('temperature', equations=eqs, nls=nls, ls=ls)
    pb.time_update(ebcs=Conditions([
        t_fixed,
    ]))

    temperature = pb.solve()
    out = temperature.create_output_dict()

    if verbose is True:
        pb.save_state('result.vtk', out=out)
        view = Viewer('result.vtk')
        view(is_wireframe=True, rel_scaling=1, is_scalar_bar=True)
        print "Maximum temperature: %f" % np.max(out['t'].data)

    data = [i[0] for i in out['t'].data]

    FF = _get_far(eltype, points, data, mesh, sdim, epsilon)
    str1 = ''.join(str(v) + ', ' for v in FF)[:-2]
    try:
        far = domain.create_region('far',
                                   'vertex %s' % str1,
                                   'facet',
                                   add_to_regions=True)
    except Exception as e:
        print "Far field region creation failed!"
        print(e)
        t.reset()
        s.reset()
        return

    area_source = pb.evaluate('d_surface.3.far(t)')

    fluxval = 1.0 / (area_source)
    c2 = sfedis.Material(
        'c2', val=fluxval
    )  # So that total heat at the far field is 1W equally distributed over all elements

    term1A = Term.new('dw_laplace(c.val, s, t)',
                      integral,
                      omega,
                      c=c,
                      s=s,
                      t=t)
    term2A = Term.new('dw_surface_integrate(c2.val, s)',
                      integral,
                      far,
                      c2=c2,
                      s=s)
    eq2 = sfedis.Equation('temperature2', term1A - term2A)
    eqs2 = sfedis.Equations([eq2])

    pb2 = sfedis.Problem('temperature2', equations=eqs2, nls=nls, ls=ls)
    pb2.time_update(ebcs=Conditions([
        t_fixed,
    ]))

    temperature2 = pb2.solve()
    out2 = temperature2.create_output_dict()
    volume = pb2.evaluate('d_volume.3.Omega(t)')

    t_int = pb2.evaluate('ev_volume_integrate.3.Omega(t)')

    avg_t = t_int / volume
    F = 1.0 / avg_t

    if verbose is True:
        print "Average temperature: %f" % avg_t

    if thickness:
        'Correction factor 1e-3 is due to geometry in mm instead of m'
        F = F * thickness * 1e-3

    if verbose is True:
        pb.save_state('result.vtk', out=out2)
        view = Viewer('result.vtk')
        view(is_wireframe=True, rel_scaling=1, is_scalar_bar=True)

    t.reset()
    s.reset()

    return F
def get_hyperelastic_Y(pb, term, micro_state, im, region_name='Y'):
    from sfepy.terms import Term

    region = pb.domain.regions[region_name]
    el = region.get_cells().shape[0]
    nqp = tuple(term.integral.qps.values())[0].n_point
    npts = el * nqp

    mvars = pb.create_variables(['U', 'P'] +
                                ['P%d' % ch for ch in pb.conf.chs])
    state_u, state_p = mvars['U'], mvars['P']

    termY = Term.new('ev_grad(U)', term.integral, region, U=mvars['U'])

    if state_u.data[0] is None:
        state_u.init_data()

    u_mic = micro_state['coors'][im] - pb.domain.get_mesh_coors(actual=False)
    state_u.set_data(u_mic)
    state_u.field.clear_mappings()
    family_data = pb.family_data(state_u, region, term.integral,
                                 term.integration)

    if len(state_u.field.mappings0) == 0:
        state_u.field.save_mappings()

    n_el, n_qp, dim, _, _ = state_u.get_data_shape(term.integral,
                                                   term.integration,
                                                   region_name)

    # relative displacement
    state_u.set_data(micro_state['coors'][im] -
                     micro_state['coors_prev'][im])  # \bar u (du_prev)
    grad_du_qp = state_u.evaluate(mode='grad', integral=term.integral).reshape(
        (npts, dim, dim))
    div_du_qp = nm.trace(grad_du_qp, axis1=1, axis2=2).reshape((npts, 1, 1))

    press_qp = nm.zeros((n_el, n_qp, 1, 1), dtype=nm.float64)
    grad_press_qp = nm.zeros((n_el, n_qp, dim, 1), dtype=nm.float64)

    if micro_state['p'] is not None:
        p_mic = micro_state['p'][im]
        state_p.set_data(p_mic)
        cells = state_p.field.region.get_cells()
        press_qp[cells, ...] = state_p.evaluate(integral=term.integral)
        grad_press_qp[cells, ...] = state_p.evaluate(mode='grad',
                                                     integral=term.integral)

        pch_mic = {}
        for ch in pb.conf.chs:
            state_pi = mvars['P%d' % ch]
            pch_mic[ch] = micro_state['p%d' % ch][im]
            state_pi.set_data(micro_state['p%d' % ch][im])
            cells = mvars['P%d' % ch].field.region.get_cells()
            press_qp[cells, ...] = state_pi.evaluate(integral=term.integral)
            grad_press_qp[cells,
                          ...] = state_pi.evaluate(mode='grad',
                                                   integral=term.integral)

        press_qp = press_qp.reshape((npts, 1, 1))
        grad_press_qp = grad_press_qp.reshape((npts, dim, 1))
    else:
        p_mic = nm.zeros((state_p.n_dof, ), dtype=nm.float64)
        pch_mic = {
            ch: nm.zeros((mvars['P%d' % ch].n_dof, ), dtype=nm.float64)
            for ch in pb.conf.chs
        }
        press_qp = nm.zeros((npts, 1, 1), dtype=nm.float64)
        grad_press_qp = nm.zeros((npts, dim, 1), dtype=nm.float64)

    conf_mat = pb.conf.materials
    solid_key = [key for key in conf_mat.keys() if 'solid' in key][0]
    solid_mat = conf_mat[solid_key].values
    mat = {}
    for mat_key in ['mu', 'K']:
        if isinstance(solid_mat[mat_key], dict):
            mat_fun = ConstantFunctionByRegion({mat_key: solid_mat[mat_key]})
            mat0 = mat_fun.function(ts=None,
                                    coors=nm.empty(npts),
                                    mode='qp',
                                    term=termY,
                                    problem=pb)[mat_key]
            mat[mat_key] = mat0.reshape((n_el, n_qp) + mat0.shape[-2:])
        else:
            mat[mat_key] = nm.ones((n_el, n_qp, 1, 1)) * solid_mat[mat_key]

    shape = family_data.green_strain.shape[:2]
    assert (npts == nm.prod(shape))
    sym = family_data.green_strain.shape[-2]
    dim2 = dim**2

    fargs = [
        family_data.get(name) for name in NeoHookeanULTerm.family_data_names
    ]
    stress_eff = nm.empty(shape + (sym, 1), dtype=nm.float64)
    tanmod_eff = nm.empty(shape + (sym, sym), dtype=nm.float64)
    NeoHookeanULTerm.stress_function(stress_eff, mat['mu'], *fargs)
    NeoHookeanULTerm.tan_mod_function(tanmod_eff, mat['mu'], *fargs)

    stress_eff_ns = nm.zeros(shape + (dim2, dim2), dtype=nm.float64)
    tanmod_eff_ns = nm.zeros(shape + (dim2, dim2), dtype=nm.float64)
    sym2nonsym(stress_eff_ns, stress_eff)
    sym2nonsym(tanmod_eff_ns, tanmod_eff)

    J = family_data.det_f.reshape((npts, 1, 1))
    mtx_f = family_data.mtx_f.reshape((npts, dim, dim))

    stress_p = -press_qp * J * sym_eye[dim]

    mat_A = (tanmod_eff_ns + stress_eff_ns).reshape((npts, dim2, dim2))\
        + J * press_qp * nonsym_delta[dim]

    mtxI = nm.eye(dim)
    mat_BI = (mtxI * div_du_qp - grad_du_qp).transpose(0, 2, 1) + mtxI

    mat['K'] = mat['K'].reshape((npts, dim, dim))
    mat_H = div_du_qp * mat['K']\
        - la.dot_sequences(mat['K'], grad_du_qp, 'ABT')\
        - la.dot_sequences(grad_du_qp, mat['K'], 'ABT')

    out = {
        'E': 0.5 *
        (la.dot_sequences(mtx_f, mtx_f, 'ATB') - nm.eye(dim)),  # Green strain
        'S': (stress_eff.reshape(
            (npts, sym, 1)) + stress_p) / J,  # Cauchy stress
        'A': mat_A / J,  # tangent elastic tensor, eq. (20)
        'BI': mat_BI,
        'KH': mat['K'] + mat_H,
        'H': mat_H,
        'dK': mat['K'] * 0,  # constant permeability => dK = 0
        'w': -grad_press_qp * mat['K'],  # perfusion velocity
    }

    return out
    def _test_single_term(self, term_cls, domain, rname):
        from sfepy.terms import Term
        from sfepy.terms.terms import get_arg_kinds

        ok = True

        term_call = term_cls.name + '(%s)'

        arg_shapes_list = term_cls.arg_shapes
        if not isinstance(arg_shapes_list, list):
            arg_shapes_list = [arg_shapes_list]

        prev_shapes = {}
        for _arg_shapes in arg_shapes_list:
            # Unset shapes are taken from the previous iteration.
            arg_shapes = copy(prev_shapes)
            arg_shapes.update(_arg_shapes)
            prev_shapes = arg_shapes

            self.report('arg_shapes:', arg_shapes)
            arg_types = term_cls.arg_types
            if not isinstance(arg_types[0], tuple):
                arg_types = (arg_types, )

            for iat, ats in enumerate(arg_types):
                self.report('arg_types:', ats)

                arg_kinds = get_arg_kinds(ats)
                modes = getattr(term_cls, 'modes', None)
                mode = modes[iat] if modes is not None else None
                aux = make_term_args(arg_shapes, arg_kinds, ats, mode, domain)
                args, str_args, materials, variables = aux

                self.report('args:', str_args)

                name = term_call % (', '.join(str_args))
                term = Term.new(name, self.integral, domain.regions[rname],
                                **args)
                term.setup()

                call_mode = 'weak' if term.names.virtual else 'eval'
                self.report('call mode:', call_mode)

                out = term.evaluate(mode=call_mode, ret_status=True)

                if call_mode == 'eval':
                    vals, status = out
                    vals = nm.array(vals)

                else:
                    vals, iels, status = out
                    vals = vals[0]

                _ok = nm.isfinite(vals).all()
                ok = ok and _ok
                self.report('values shape: %s' % (vals.shape, ))
                if not _ok:
                    self.report('values are not finite!')
                    self.report(vals)

                _ok = status == 0
                if not _ok:
                    self.report('status is %d!' % status)

                ok = ok and _ok

                if term.names.virtual:
                    # Test differentiation w.r.t. state variables in the weak
                    # mode.
                    svars = term.get_state_variables(unknown_only=True)
                    for svar in svars:
                        vals, iels, status = term.evaluate(mode=call_mode,
                                                           diff_var=svar.name,
                                                           ret_status=True)
                        vals = vals[0]

                        _ok = status == 0
                        ok = ok and _ok
                        self.report('diff: %s' % svar.name)
                        if not _ok:
                            self.report('status is %d!' % status)

                        _ok = nm.isfinite(vals).all()
                        ok = ok and _ok
                        self.report('values shape: %s' % (vals.shape, ))
                        if not _ok:
                            self.report('values are not finite!')
                            self.report(vals)

        return ok
def main():
    parser = ArgumentParser(description=__doc__)
    parser.add_argument('--version', action='version', version='%(prog)s')
    parser.add_argument('-b',
                        '--basis',
                        metavar='name',
                        action='store',
                        dest='basis',
                        default='lagrange',
                        help=help['basis'])
    parser.add_argument('-n',
                        '--max-order',
                        metavar='order',
                        type=int,
                        action='store',
                        dest='max_order',
                        default=10,
                        help=help['max_order'])
    parser.add_argument('-m',
                        '--matrix',
                        metavar='type',
                        action='store',
                        dest='matrix_type',
                        default='laplace',
                        help=help['matrix_type'])
    parser.add_argument('-g',
                        '--geometry',
                        metavar='name',
                        action='store',
                        dest='geometry',
                        default='2_4',
                        help=help['geometry'])
    options = parser.parse_args()

    dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
    output('reference element geometry:')
    output('  dimension: %d, vertices: %d' % (dim, n_ep))

    n_c = {'laplace': 1, 'elasticity': dim}[options.matrix_type]

    output('matrix type:', options.matrix_type)
    output('number of variable components:', n_c)

    output('polynomial space:', options.basis)

    output('max. order:', options.max_order)

    mesh = Mesh.from_file(data_dir +
                          '/meshes/elements/%s_1.mesh' % options.geometry)
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')

    orders = nm.arange(1, options.max_order + 1, dtype=nm.int)
    conds = []

    order_fix = 0 if options.geometry in ['2_4', '3_8'] else 1

    for order in orders:
        output('order:', order, '...')

        field = Field.from_args('fu',
                                nm.float64,
                                n_c,
                                omega,
                                approx_order=order,
                                space='H1',
                                poly_space_base=options.basis)

        to = field.approx_order
        quad_order = 2 * (max(to - order_fix, 0))
        output('quadrature order:', quad_order)

        integral = Integral('i', order=quad_order)
        qp, _ = integral.get_qp(options.geometry)
        output('number of quadrature points:', qp.shape[0])

        u = FieldVariable('u', 'unknown', field)
        v = FieldVariable('v', 'test', field, primary_var_name='u')

        m = Material('m', D=stiffness_from_lame(dim, 1.0, 1.0), mu=1.0)

        if options.matrix_type == 'laplace':
            term = Term.new('dw_laplace(m.mu, v, u)',
                            integral,
                            omega,
                            m=m,
                            v=v,
                            u=u)
            n_zero = 1

        else:
            assert_(options.matrix_type == 'elasticity')
            term = Term.new('dw_lin_elastic(m.D, v, u)',
                            integral,
                            omega,
                            m=m,
                            v=v,
                            u=u)
            n_zero = (dim + 1) * dim / 2

        term.setup()

        output('assembling...')
        tt = time.clock()
        mtx, iels = term.evaluate(mode='weak', diff_var='u')
        output('...done in %.2f s' % (time.clock() - tt))
        mtx = mtx[0, 0]

        try:
            assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10)

        except:
            from sfepy.base.base import debug
            debug()

        output('matrix shape:', mtx.shape)

        eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False)
        eigs.sort()

        # Zero 'true' zeros.
        eigs[:n_zero] = 0.0

        ii = nm.where(eigs < 0.0)[0]
        if len(ii):
            output('matrix is not positive semi-definite!')

        ii = nm.where(eigs[n_zero:] < 1e-12)[0]
        if len(ii):
            output('matrix has more than %d zero eigenvalues!' % n_zero)

        output('smallest eigs:\n', eigs[:10])

        ii = nm.where(eigs > 0.0)[0]
        emin, emax = eigs[ii[[0, -1]]]

        output('min:', emin, 'max:', emax)

        cond = emax / emin
        conds.append(cond)

        output('condition number:', cond)

        output('...done')

    plt.figure(1)
    plt.semilogy(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel('polynomial order')
    plt.ylabel('condition number')
    plt.grid()

    plt.figure(2)
    plt.loglog(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel('polynomial order')
    plt.ylabel('condition number')
    plt.grid()

    plt.show()
def main():
    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('-b', '--basis', metavar='name',
                      action='store', dest='basis',
                      default='lagrange', help=help['basis'])
    parser.add_option('-n', '--max-order', metavar='order', type=int,
                      action='store', dest='max_order',
                      default=10, help=help['max_order'])
    parser.add_option('-m', '--matrix', metavar='type',
                      action='store', dest='matrix_type',
                      default='laplace', help=help['matrix_type'])
    parser.add_option('-g', '--geometry', metavar='name',
                      action='store', dest='geometry',
                      default='2_4', help=help['geometry'])
    options, args = parser.parse_args()

    dim, n_ep = int(options.geometry[0]), int(options.geometry[2])
    output('reference element geometry:')
    output('  dimension: %d, vertices: %d' % (dim, n_ep))

    n_c = {'laplace' : 1, 'elasticity' : dim}[options.matrix_type]

    output('matrix type:', options.matrix_type)
    output('number of variable components:',  n_c)

    output('polynomial space:', options.basis)

    output('max. order:', options.max_order)

    mesh = Mesh.from_file(data_dir + '/meshes/elements/%s_1.mesh'
                          % options.geometry)
    domain = FEDomain('domain', mesh)
    omega = domain.create_region('Omega', 'all')

    orders = nm.arange(1, options.max_order + 1, dtype=nm.int)
    conds = []

    order_fix = 0 if  options.geometry in ['2_4', '3_8'] else 1

    for order in orders:
        output('order:', order, '...')

        field = Field.from_args('fu', nm.float64, n_c, omega,
                                approx_order=order,
                                space='H1', poly_space_base=options.basis)

        to = field.approx_order
        quad_order = 2 * (max(to - order_fix, 0))
        output('quadrature order:', quad_order)

        integral = Integral('i', order=quad_order)
        qp, _ = integral.get_qp(options.geometry)
        output('number of quadrature points:', qp.shape[0])

        u = FieldVariable('u', 'unknown', field)
        v = FieldVariable('v', 'test', field, primary_var_name='u')

        m = Material('m', lam=1.0, mu=1.0)

        if options.matrix_type == 'laplace':
            term = Term.new('dw_laplace(m.mu, v, u)',
                            integral, omega, m=m, v=v, u=u)
            n_zero = 1

        else:
            assert_(options.matrix_type == 'elasticity')
            term = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)',
                            integral, omega, m=m, v=v, u=u)
            n_zero = (dim + 1) * dim / 2

        term.setup()

        output('assembling...')
        tt = time.clock()
        mtx, iels = term.evaluate(mode='weak', diff_var='u')
        output('...done in %.2f s' % (time.clock() - tt))
        mtx = mtx[0][0, 0]

        try:
            assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10)

        except:
            from sfepy.base.base import debug; debug()

        output('matrix shape:', mtx.shape)

        eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False)
        eigs.sort()

        # Zero 'true' zeros.
        eigs[:n_zero] = 0.0

        ii = nm.where(eigs < 0.0)[0]
        if len(ii):
            output('matrix is not positive semi-definite!')

        ii = nm.where(eigs[n_zero:] < 1e-12)[0]
        if len(ii):
            output('matrix has more than %d zero eigenvalues!' % n_zero)

        output('smallest eigs:\n', eigs[:10])

        ii = nm.where(eigs > 0.0)[0]
        emin, emax = eigs[ii[[0, -1]]]

        output('min:', emin, 'max:', emax)

        cond = emax / emin
        conds.append(cond)

        output('condition number:', cond)

        output('...done')

    plt.figure(1)
    plt.semilogy(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel('polynomial order')
    plt.ylabel('condition number')
    plt.grid()

    plt.figure(2)
    plt.loglog(orders, conds)
    plt.xticks(orders, orders)
    plt.xlabel('polynomial order')
    plt.ylabel('condition number')
    plt.grid()

    plt.show()
                           'vertex')
top = domain.create_region('Top', 'vertices in z > %.10f' % (max_z - eps),
                           'vertex')

field = Field.from_args('fu', np.float64, 'vector', omega, approx_order=1)

u = FieldVariable('u', 'unknown', field)
v = FieldVariable('v', 'test', field, primary_var_name='u')

m = Material('m',
             D=stiffness_from_youngpoisson(dim=3, young=6.8e10, poisson=0.36),
             rho=2700.0)

integral = Integral('i', order=1)

t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u)
eq1 = Equation('balance_of_forces', t1)
eqs = Equations([eq1])

z_displacements = np.linspace(0, 0.05, 6)
vm_stresses = np.zeros([len(z_displacements), 2])
for i, z_displacement in enumerate(z_displacements):

    fix_bot = EssentialBC('fix_bot', bot, {'u.all': 0.0})
    fix_top = EssentialBC('fix_top', top, {
        'u.[0,1]': 0.0,
        'u.[2]': -z_displacement
    })

    ls = ScipyDirect({})
Exemple #57
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--diffusivity', metavar='float', type=float,
                      action='store', dest='diffusivity',
                      default=1e-5, help=helps['diffusivity'])
    parser.add_option('--ic-max', metavar='float', type=float,
                      action='store', dest='ic_max',
                      default=2.0, help=helps['ic_max'])
    parser.add_option('--order', metavar='int', type=int,
                      action='store', dest='order',
                      default=2, help=helps['order'])
    parser.add_option('-r', '--refine', metavar='int', type=int,
                      action='store', dest='refine',
                      default=0, help=helps['refine'])
    parser.add_option('-p', '--probe',
                      action="store_true", dest='probe',
                      default=False, help=helps['probe'])
    parser.add_option('-s', '--show',
                      action="store_true", dest='show',
                      default=False, help=helps['show'])
    options, args = parser.parse_args()

    assert_((0 < options.order),
            'temperature approximation order must be at least 1!')

    output('using values:')
    output('  diffusivity:', options.diffusivity)
    output('  max. IC value:', options.ic_max)
    output('uniform mesh refinement level:', options.refine)

    mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in range(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements'
                   % (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left',
                                'vertices in x < 0.00001', 'facet')
    right = domain.create_region('Right',
                                 'vertices in x > 0.099999', 'facet')

    field = Field.from_args('fu', nm.float64, 'scalar', omega,
                            approx_order=options.order)

    T = FieldVariable('T', 'unknown', field, history=1)
    s = FieldVariable('s', 'test', field, primary_var_name='T')

    m = Material('m', diffusivity=options.diffusivity * nm.eye(3))

    integral = Integral('i', order=2*options.order)

    t1 = Term.new('dw_diffusion(m.diffusivity, s, T)',
                  integral, omega, m=m, s=s, T=T)
    t2 = Term.new('dw_volume_dot(s, dT/dt)',
                  integral, omega, s=s, T=T)
    eq = Equation('balance', t1 + t2)
    eqs = Equations([eq])

    # Boundary conditions.
    ebc1 = EssentialBC('T1', left, {'T.0' : 2.0})
    ebc2 = EssentialBC('T2', right, {'T.0' : -2.0})

    # Initial conditions.
    def get_ic(coors, ic):
        x, y, z = coors.T
        return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1)
    ic_fun = Function('ic_fun', get_ic)
    ic = InitialCondition('ic', omega, {'T.0' : ic_fun})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status)

    pb = Problem('heat', equations=eqs, nls=nls, ls=ls)
    pb.set_bcs(ebcs=Conditions([ebc1, ebc2]))
    pb.set_ics(Conditions([ic]))

    tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11},
                                   problem=pb)
    tss.init_time()

    if options.probe:
        # Prepare probe data.
        probes, labels = gen_lines(pb)

        ev = pb.evaluate
        order = 2 * (options.order - 1)

        gfield = Field.from_args('gu', nm.float64, 'vector', omega,
                                approx_order=options.order - 1)
        dvel = FieldVariable('dvel', 'parameter', gfield,
                             primary_var_name='(set-to-None)')
        cfield = Field.from_args('gu', nm.float64, 'scalar', omega,
                                approx_order=options.order - 1)
        component = FieldVariable('component', 'parameter', cfield,
                                  primary_var_name='(set-to-None)')

        nls_options = {'eps_a' : 1e-16, 'i_max' : 1}

        if options.show:
            plt.ion()

    # Solve the problem using the time stepping solver.
    suffix = tss.ts.suffix
    for step, time, state in tss():
        if options.probe:
            # Probe the solution.
            dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)'
                         % order, copy_materials=False, mode='qp')
            project_by_component(dvel, dvel_qp, component, order,
                                 nls_options=nls_options)

            all_results = []
            for ii, probe in enumerate(probes):
                fig, results = probe_results(ii, T, dvel, probe, labels[ii])

                all_results.append(results)

            plt.tight_layout()
            fig.savefig('time_poisson_interactive_probe_%s.png'
                        % (suffix % step), bbox_inches='tight')

            if options.show:
                plt.draw()

            for ii, results in enumerate(all_results):
                output('probe %d (%s):' % (ii, probes[ii].name))
                output.level += 2
                for key, res in ordered_iteritems(results):
                    output(key + ':')
                    val = res[1]
                    output('  min: %+.2e, mean: %+.2e, max: %+.2e'
                           % (val.min(), val.mean(), val.max()))
                output.level -= 2
Exemple #58
0
def main():
    from sfepy import data_dir

    parser = OptionParser(usage=usage, version='%prog')
    parser.add_option('--young',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='young',
                      default=2000.0,
                      help=helps['young'])
    parser.add_option('--poisson',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='poisson',
                      default=0.4,
                      help=helps['poisson'])
    parser.add_option('--load',
                      metavar='float',
                      type=float,
                      action='store',
                      dest='load',
                      default=-1000.0,
                      help=helps['load'])
    parser.add_option('--order',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='order',
                      default=1,
                      help=helps['order'])
    parser.add_option('-r',
                      '--refine',
                      metavar='int',
                      type=int,
                      action='store',
                      dest='refine',
                      default=0,
                      help=helps['refine'])
    parser.add_option('-s',
                      '--show',
                      action="store_true",
                      dest='show',
                      default=False,
                      help=helps['show'])
    parser.add_option('-p',
                      '--probe',
                      action="store_true",
                      dest='probe',
                      default=False,
                      help=helps['probe'])
    options, args = parser.parse_args()

    assert_((0.0 < options.poisson < 0.5),
            "Poisson's ratio must be in ]0, 0.5[!")
    assert_((0 < options.order),
            'displacement approximation order must be at least 1!')

    output('using values:')
    output("  Young's modulus:", options.young)
    output("  Poisson's ratio:", options.poisson)
    output('  vertical load:', options.load)
    output('uniform mesh refinement level:', options.refine)

    # Build the problem definition.
    mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh')
    domain = FEDomain('domain', mesh)

    if options.refine > 0:
        for ii in xrange(options.refine):
            output('refine %d...' % ii)
            domain = domain.refine()
            output('... %d nodes %d elements' %
                   (domain.shape.n_nod, domain.shape.n_el))

    omega = domain.create_region('Omega', 'all')
    left = domain.create_region('Left', 'vertices in x < 0.001', 'facet')
    bottom = domain.create_region('Bottom', 'vertices in y < 0.001', 'facet')
    top = domain.create_region('Top', 'vertex 2', 'vertex')

    field = Field.from_args('fu',
                            nm.float64,
                            'vector',
                            omega,
                            approx_order=options.order)

    u = FieldVariable('u', 'unknown', field)
    v = FieldVariable('v', 'test', field, primary_var_name='u')

    D = stiffness_from_youngpoisson(2, options.young, options.poisson)

    asphalt = Material('Asphalt', D=D)
    load = Material('Load', values={'.val': [0.0, options.load]})

    integral = Integral('i', order=2 * options.order)
    integral0 = Integral('i', order=0)

    t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)',
                  integral,
                  omega,
                  Asphalt=asphalt,
                  v=v,
                  u=u)
    t2 = Term.new('dw_point_load(Load.val, v)', integral0, top, Load=load, v=v)
    eq = Equation('balance', t1 - t2)
    eqs = Equations([eq])

    xsym = EssentialBC('XSym', bottom, {'u.1': 0.0})
    ysym = EssentialBC('YSym', left, {'u.0': 0.0})

    ls = ScipyDirect({})

    nls_status = IndexedStruct()
    nls = Newton({}, lin_solver=ls, status=nls_status)

    pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls)

    pb.time_update(ebcs=Conditions([xsym, ysym]))

    # Solve the problem.
    state = pb.solve()
    output(nls_status)

    # Postprocess the solution.
    out = state.create_output_dict()
    out = stress_strain(out, pb, state, extend=True)
    pb.save_state('its2D_interactive.vtk', out=out)

    gdata = geometry_data['2_3']
    nc = len(gdata.coors)

    integral_vn = Integral('ivn',
                           coors=gdata.coors,
                           weights=[gdata.volume / nc] * nc)

    nodal_stress(out, pb, state, integrals=Integrals([integral_vn]))

    if options.probe:
        # Probe the solution.
        probes, labels = gen_lines(pb)

        sfield = Field.from_args('sym_tensor',
                                 nm.float64,
                                 3,
                                 omega,
                                 approx_order=options.order - 1)
        stress = FieldVariable('stress',
                               'parameter',
                               sfield,
                               primary_var_name='(set-to-None)')
        strain = FieldVariable('strain',
                               'parameter',
                               sfield,
                               primary_var_name='(set-to-None)')

        cfield = Field.from_args('component',
                                 nm.float64,
                                 1,
                                 omega,
                                 approx_order=options.order - 1)
        component = FieldVariable('component',
                                  'parameter',
                                  cfield,
                                  primary_var_name='(set-to-None)')

        ev = pb.evaluate
        order = 2 * (options.order - 1)
        strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp')
        stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order,
                       mode='qp',
                       copy_materials=False)

        project_by_component(strain, strain_qp, component, order)
        project_by_component(stress, stress_qp, component, order)

        all_results = []
        for ii, probe in enumerate(probes):
            fig, results = probe_results(u, strain, stress, probe, labels[ii])

            fig.savefig('its2D_interactive_probe_%d.png' % ii)
            all_results.append(results)

        for ii, results in enumerate(all_results):
            output('probe %d:' % ii)
            output.level += 2
            for key, res in ordered_iteritems(results):
                output(key + ':')
                val = res[1]
                output('  min: %+.2e, mean: %+.2e, max: %+.2e' %
                       (val.min(), val.mean(), val.max()))
            output.level -= 2

    if options.show:
        # Show the solution. If the approximation order is greater than 1, the
        # extra DOFs are simply thrown away.
        from sfepy.postprocess.viewer import Viewer

        view = Viewer('its2D_interactive.vtk')
        view(vector_mode='warp_norm',
             rel_scaling=1,
             is_scalar_bar=True,
             is_wireframe=True)