def evalValAndDeriv(D): m = Material('m', D = D, rho = 2700.0) integral = Integral('i', order=2) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('stiffness', t1) eq2 = Equation('mass', t2) lhs_eqs = Equations([eq1, eq2]) pb = Problem('modal', equations = lhs_eqs) pb.time_update() n_rbm = dim * (dim + 1) / 2 pb.update_materials() # Assemble stiffness and mass matrices. mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a) mtx_m = mtx_k.copy() mtx_m.data[:] = 0.0 mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m) eigs0, evecs0 = scipy.sparse.linalg.eigsh(mtx_k, k = 10, M = mtx_m, which = 'SM') eigs = eigs0[3:] evecs = evecs0[:, 3:] dydmu = numpy.array([evecs[:, i].T.dot(dKdmu.dot(evecs[:, i])) for i in range(evecs.shape[1])]) dydlambda = numpy.array([evecs[:, i].T.dot(dKdlambda.dot(evecs[:, i])) for i in range(evecs.shape[1])]) return eigs, dydmu, dydlambda
def assemble(mtx_d): m = Material('m', D=mtx_d, rho=density) integral = Integral('i', order=2 * order) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('stiffness', t1) eq2 = Equation('mass', t2) lhs_eqs = Equations([eq1, eq2]) pb = Problem('modal', equations=lhs_eqs) pb.time_update() n_rbm = dim * (dim + 1) / 2 pb.update_materials() tmp = time.time() # Assemble stiffness and mass matrices. mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a) mtx_m = mtx_k.copy() mtx_m.data[:] = 0.0 mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m) return mtx_k, mtx_m
def get_terms(u_field, v_field, calc_stiffness, calc_prestress): """Get the terms for the equation Args: u_field: the displacement field v_field: the test function field calc_stiffness: a function to calculate the stiffness tensor calc_prestress: a function to calculate the prestress tensor Returns: a tuple of terms for the equation """ return ( Term.new( "dw_lin_elastic(m.D, v, u)", Integral("i", order=4), v_field.field.region, m=get_material(calc_stiffness, calc_prestress), v=v_field, u=u_field, ), Term.new( "dw_lin_prestress(m.stress, v)", Integral("i", order=4), v_field.field.region, m=get_material(calc_stiffness, calc_prestress), v=v_field, ), )
def make_h1_projection_data(target, eval_data): """ Project scalar data given by a material-like `eval_data()` function to a scalar `target` field variable using the :math:`H^1` dot product. """ order = target.field.approx_order * 2 integral = Integral('i', order=order) un = target.name v = FieldVariable('v', 'test', target.field, 1, primary_var_name=un) lhs1 = Term.new('dw_volume_dot(v, %s)' % un, integral, target.field.region, v=v, **{un: target}) lhs2 = Term.new('dw_laplace(v, %s)' % un, integral, target.field.region, v=v, **{un: target}) def _eval_data(ts, coors, mode, **kwargs): if mode == 'qp': val = eval_data(ts, coors, mode, 'val', **kwargs) gval = eval_data(ts, coors, mode, 'grad', **kwargs) return {'val': val, 'gval': gval} m = Material('m', function=_eval_data) rhs1 = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region, m=m, v=v) rhs2 = Term.new('dw_diffusion_r(m.gval, v)', integral, target.field.region, m=m, v=v) eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2) eqs = Equations([eq]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = ProblemDefinition('aux', equations=eqs, nls=nls, ls=ls) pb.time_update() # This sets the target variable with the projection solution. pb.solve() if nls_status.condition != 0: output('H1 projection: solver did not converge!')
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version="%prog") parser.add_option("-s", "--show", action="store_true", dest="show", default=False, help=help["show"]) options, args = parser.parse_args() mesh = Mesh.from_file(data_dir + "/meshes/2d/rectangle_tri.mesh") domain = Domain("domain", mesh) min_x, max_x = domain.get_mesh_bounding_box()[:, 0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region("Omega", "all") gamma1 = domain.create_region("Gamma1", "vertices in x < %.10f" % (min_x + eps), "facet") gamma2 = domain.create_region("Gamma2", "vertices in x > %.10f" % (max_x - eps), "facet") field = Field.from_args("fu", nm.float64, "vector", omega, approx_order=2) u = FieldVariable("u", "unknown", field) v = FieldVariable("v", "test", field, primary_var_name="u") m = Material("m", lam=1.0, mu=1.0) f = Material("f", val=[[0.02], [0.01]]) integral = Integral("i", order=3) t1 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u) t2 = Term.new("dw_volume_lvf(f.val, v)", integral, omega, f=f, v=v) eq = Equation("balance", t1 + t2) eqs = Equations([eq]) fix_u = EssentialBC("fix_u", gamma1, {"u.all": 0.0}) bc_fun = Function("shift_u_fun", shift_u_fun, extra_args={"shift": 0.01}) shift_u = EssentialBC("shift_u", gamma2, {"u.0": bc_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem("elasticity", equations=eqs, nls=nls, ls=ls) pb.save_regions_as_groups("regions") pb.time_update(ebcs=Conditions([fix_u, shift_u])) vec = pb.solve() print nls_status pb.save_state("linear_elasticity.vtk", vec) if options.show: view = Viewer("linear_elasticity.vtk") view(vector_mode="warp_norm", rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
def solve_problem(shape, dims, young, poisson, force, transform=None): domain = make_domain(dims[:2], shape, transform=transform) omega = domain.regions['Omega'] gamma1 = domain.regions['Gamma1'] gamma2 = domain.regions['Gamma2'] field = Field.from_args('fu', nm.float64, 6, omega, approx_order=1, poly_space_base='shell10x') u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') thickness = dims[2] if transform is None: pload = [[0.0, 0.0, force / shape[1], 0.0, 0.0, 0.0]] * shape[1] elif transform == 'bend': pload = [[force / shape[1], 0.0, 0.0, 0.0, 0.0, 0.0]] * shape[1] elif transform == 'twist': pload = [[0.0, force / shape[1], 0.0, 0.0, 0.0, 0.0]] * shape[1] m = Material('m', D=sh.create_elastic_tensor(young=young, poisson=poisson), values={'.drill' : 1e-7}) load = Material('load', values={'.val' : pload}) aux = Integral('i', order=3) qp_coors, qp_weights = aux.get_qp('3_8') qp_coors[:, 2] = thickness * (qp_coors[:, 2] - 0.5) qp_weights *= thickness integral = Integral('i', coors=qp_coors, weights=qp_weights, order='custom') t1 = Term.new('dw_shell10x(m.D, m.drill, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_point_load(load.val, v)', integral, gamma2, load=load, v=v) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity with shell10x', equations=eqs) pb.set_bcs(ebcs=Conditions([fix_u])) pb.set_solver(nls) state = pb.solve() return pb, state, u, gamma2
def solve_problem(shape, dims, young, poisson, force, transform=None): domain = make_domain(dims[:2], shape, transform=transform) omega = domain.regions['Omega'] gamma1 = domain.regions['Gamma1'] gamma2 = domain.regions['Gamma2'] field = Field.from_args('fu', nm.float64, 6, omega, approx_order=1, poly_space_base='shell10x') u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') thickness = dims[2] if transform is None: pload = [[0.0, 0.0, force / shape[1], 0.0, 0.0, 0.0]] * shape[1] elif transform == 'bend': pload = [[force / shape[1], 0.0, 0.0, 0.0, 0.0, 0.0]] * shape[1] elif transform == 'twist': pload = [[0.0, force / shape[1], 0.0, 0.0, 0.0, 0.0]] * shape[1] m = Material('m', D=sh.create_elastic_tensor(young=young, poisson=poisson), values={'.drill' : 1e-7}) load = Material('load', values={'.val' : pload}) aux = Integral('i', order=3) qp_coors, qp_weights = aux.get_qp('3_8') qp_coors[:, 2] = thickness * (qp_coors[:, 2] - 0.5) qp_weights *= thickness integral = Integral('i', coors=qp_coors, weights=qp_weights, order='custom') t1 = Term.new('dw_shell10x(m.D, m.drill, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_point_load(load.val, v)', integral, gamma2, load=load, v=v) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity with shell10x', equations=eqs, nls=nls, ls=ls) pb.time_update(ebcs=Conditions([fix_u])) state = pb.solve() return pb, state, u, gamma2
def test_save_ebc(self): from sfepy.discrete import (FieldVariable, Integral, Equation, Equations, Problem) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term name = op.join(self.options.out_dir, op.splitext(op.basename(__file__))[0]) integral = Integral('i', order=1) u = self.variables['u'] v = FieldVariable('v', 'test', u.field, primary_var_name='u') p = self.variables['p'] q = FieldVariable('q', 'test', p.field, primary_var_name='p') regions = self.problem.domain.regions omega = regions['Omega'] # Problem.save_ebc() requires to have equations defined. t1 = Term.new('dw_lin_elastic(v, u)', integral, omega, v=v, u=u) t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p) eq = Equation('aux', t1 + t2) eqs = Equations([eq]) pb = Problem('test', equations=eqs, auto_solvers=False) all_ebcs = [] all_ebcs.append( EssentialBC('fix_u1', regions['RightFix'], {'u.all': nm.array([0.0, 1.0])})) all_ebcs.append( EssentialBC('fix_u2', regions['LeftStrip'], { 'u.0': 0.0, 'u.1': 1.0 })) all_ebcs.append( EssentialBC('fix_p1', regions['LeftFix'], {'p.all': 0.0})) all_ebcs.append( EssentialBC('fix_p2', regions['RightStrip'], {'p.0': 0.0})) ebcs = Conditions(all_ebcs) pb.time_update(ebcs=ebcs) pb.save_ebc(name + '_ebcs_f.vtk', ebcs=ebcs, force=True) pb.save_ebc(name + '_ebcs.vtk', ebcs=ebcs, default=-1, force=False) return True
def test_invariance_qp(self): from sfepy import data_dir from sfepy.discrete import Integral from sfepy.terms import Term from sfepy.discrete.common.mappings import get_physical_qps ok = True for name in [ "meshes/3d/block.mesh", "meshes/3d/cylinder.mesh", "meshes/2d/square_quad.mesh", "meshes/2d/square_unit_tri.mesh", ]: self.report(name) u = prepare_variable(op.join(data_dir, name), n_components=3) omega = u.field.region integral = Integral("i", order=3) qps = get_physical_qps(omega, integral) coors = qps.values term = Term.new("ev_volume_integrate(u)", integral, omega, u=u) term.setup() val1 = term.evaluate(mode="qp") val1 = val1.ravel() val2 = u.evaluate_at(coors).ravel() self.report("value: max. difference:", nm.abs(val1 - val2).max()) ok1 = nm.allclose(val1, val2, rtol=0.0, atol=1e-12) self.report("->", ok1) term = Term.new("ev_grad(u)", integral, omega, u=u) term.setup() val1 = term.evaluate(mode="qp") val1 = val1.ravel() val2 = u.evaluate_at(coors, mode="grad").ravel() self.report("gradient: max. difference:", nm.abs(val1 - val2).max()) ok2 = nm.allclose(val1, val2, rtol=0.0, atol=1e-10) self.report("->", ok2) ok = ok and ok1 and ok2 return ok
def solveLaplaceEquationTetrahedral(mesh, meshVTK, boundaryPoints, boundaryConditions): """ mesh: path to a 3D mesh / sfepy mesh """ if isinstance(mesh, str): mesh = Mesh.from_file(mesh) #Set domains domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') boundary = domain.create_region( 'gamma', 'vertex %s' % ','.join(map(str, range(meshVTK.GetNumberOfPoints()))), 'facet') #set fields field = Field.from_args('fu', np.float64, 1, omega, approx_order=1) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', val=[1.]) #Define element integrals integral = Integral('i', order=3) #Equations defining t1 = Term.new('dw_laplace( v, u )', integral, omega, v=v, u=u) eq = Equation('balance', t1) eqs = Equations([eq]) heatBoundary = boundaryConditions points = boundaryPoints #Boundary conditions c = ClosestPointStupid(points, heatBoundary, meshVTK) def u_fun(ts, coors, bc=None, problem=None, c=c): c.distances = [] v = np.zeros(len(coors)) for i, p in enumerate(coors): v[i] = c.interpolate(p) #c.findClosestPoint(p) return v bc_fun = Function('u_fun', u_fun) fix1 = EssentialBC('fix_u', boundary, {'u.all': bc_fun}) #Solve problem ls = ScipyDirect({}) nls = Newton({}, lin_solver=ls) pb = Problem('heat', equations=eqs) pb.set_bcs(ebcs=Conditions([fix1])) pb.set_solver(nls) state = pb.solve(verbose=False, save_results=False) u = state.get_parts()['u'] return u
def run(domain, order): omega = domain.create_region('Omega', 'all') bbox = domain.get_mesh_bounding_box() min_x, max_x = bbox[:, 0] min_y, max_y = bbox[:, 1] eps = 1e-8 * (max_x - min_x) gamma1 = domain.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps), 'facet') gamma2 = domain.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps), 'facet') gamma3 = domain.create_region('Gamma3', 'vertices in y < %.10f' % (min_y + eps), 'facet') gamma4 = domain.create_region('Gamma4', 'vertices in y > %.10f' % (max_y - eps), 'facet') field = Field.from_args('fu', nm.float64, 1, omega, approx_order=order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') integral = Integral('i', order=2*order) t1 = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u) eq = Equation('eq', t1) eqs = Equations([eq]) fix1 = EssentialBC('fix1', gamma1, {'u.0' : 0.4}) fix2 = EssentialBC('fix2', gamma2, {'u.0' : 0.0}) def get_shift(ts, coors, region): return nm.ones_like(coors[:, 0]) dof_map_fun = Function('dof_map_fun', per.match_x_line) shift_fun = Function('shift_fun', get_shift) sper = LinearCombinationBC('sper', [gamma3, gamma4], {'u.0' : 'u.0'}, dof_map_fun, 'shifted_periodic', arguments=(shift_fun,)) ls = ScipyDirect({}) pb = Problem('laplace', equations=eqs, auto_solvers=None) pb.time_update(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper])) ev = pb.get_evaluator() nls = Newton({}, lin_solver=ls, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix) pb.set_solver(nls) state = pb.solve() return pb, state
def test_invariance_qp(self): from sfepy import data_dir from sfepy.discrete import Integral from sfepy.terms import Term from sfepy.discrete.common.mappings import get_physical_qps ok = True for name in [ 'meshes/3d/block.mesh', 'meshes/3d/cylinder.mesh', 'meshes/2d/square_quad.mesh', 'meshes/2d/square_unit_tri.mesh' ]: self.report(name) u = prepare_variable(op.join(data_dir, name), n_components=3) omega = u.field.region integral = Integral('i', order=3) qps = get_physical_qps(omega, integral) coors = qps.values term = Term.new('ev_volume_integrate(u)', integral, omega, u=u) term.setup() val1 = term.evaluate(mode='qp') val1 = val1.ravel() val2 = u.evaluate_at(coors).ravel() self.report('value: max. difference:', nm.abs(val1 - val2).max()) ok1 = nm.allclose(val1, val2, rtol=0.0, atol=1e-12) self.report('->', ok1) term = Term.new('ev_grad(u)', integral, omega, u=u) term.setup() val1 = term.evaluate(mode='qp') val1 = val1.ravel() val2 = u.evaluate_at(coors, mode='grad').ravel() self.report('gradient: max. difference:', nm.abs(val1 - val2).max()) ok2 = nm.allclose(val1, val2, rtol=0.0, atol=1e-10) self.report('->', ok2) ok = ok and ok1 and ok2 return ok
def test_save_ebc(self): from sfepy.discrete import (FieldVariable, Integral, Equation, Equations, Problem) from sfepy.discrete.conditions import Conditions, EssentialBC from sfepy.terms import Term name = op.join(self.options.out_dir, op.splitext(op.basename(__file__))[0]) integral = Integral('i', order=1) u = self.variables['u'] v = FieldVariable('v', 'test', u.field, primary_var_name='u') p = self.variables['p'] q = FieldVariable('q', 'test', p.field, primary_var_name='p') regions = self.problem.domain.regions omega = regions['Omega'] # Problem.save_ebc() requires to have equations defined. t1 = Term.new('dw_lin_elastic(v, u)', integral, omega, v=v, u=u) t2 = Term.new('dw_laplace(q, p)', integral, omega, q=q, p=p) eq = Equation('aux', t1 + t2) eqs = Equations([eq]) pb = Problem('test', equations=eqs, auto_solvers=False) all_ebcs = [] all_ebcs.append(EssentialBC('fix_u1', regions['RightFix'], {'u.all' : nm.array([0.0, 1.0])})) all_ebcs.append(EssentialBC('fix_u2', regions['LeftStrip'], {'u.0' : 0.0, 'u.1' : 1.0})) all_ebcs.append(EssentialBC('fix_p1', regions['LeftFix'], {'p.all' : 0.0})) all_ebcs.append(EssentialBC('fix_p2', regions['RightStrip'], {'p.0' : 0.0})) ebcs = Conditions(all_ebcs) pb.time_update(ebcs=ebcs) pb.save_ebc(name + '_ebcs_f.vtk', ebcs=ebcs, force=True) pb.save_ebc(name + '_ebcs.vtk', ebcs=ebcs, default=-1, force=False) return True
def make_h1_projection_data(target, eval_data): """ Project scalar data given by a material-like `eval_data()` function to a scalar `target` field variable using the :math:`H^1` dot product. """ order = target.field.approx_order * 2 integral = Integral('i', order=order) un = target.name v = FieldVariable('v', 'test', target.field, primary_var_name=un) lhs1 = Term.new('dw_volume_dot(v, %s)' % un, integral, target.field.region, v=v, **{un : target}) lhs2 = Term.new('dw_laplace(v, %s)' % un, integral, target.field.region, v=v, **{un : target}) def _eval_data(ts, coors, mode, **kwargs): if mode == 'qp': val = eval_data(ts, coors, mode, 'val', **kwargs) gval = eval_data(ts, coors, mode, 'grad', **kwargs) return {'val' : val, 'gval' : gval} m = Material('m', function=_eval_data) rhs1 = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region, m=m, v=v) rhs2 = Term.new('dw_diffusion_r(m.gval, v)', integral, target.field.region, m=m, v=v) eq = Equation('projection', lhs1 + lhs2 - rhs1 - rhs2) eqs = Equations([eq]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('aux', equations=eqs, nls=nls, ls=ls) pb.time_update() # This sets the target variable with the projection solution. pb.solve() if nls_status.condition != 0: output('H1 projection: solver did not converge!')
def run(domain, order): omega = domain.create_region('Omega', 'all') bbox = domain.get_mesh_bounding_box() min_x, max_x = bbox[:, 0] min_y, max_y = bbox[:, 1] eps = 1e-8 * (max_x - min_x) gamma1 = domain.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps), 'facet') gamma2 = domain.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps), 'facet') gamma3 = domain.create_region('Gamma3', 'vertices in y < %.10f' % (min_y + eps), 'facet') gamma4 = domain.create_region('Gamma4', 'vertices in y > %.10f' % (max_y - eps), 'facet') field = Field.from_args('fu', nm.float64, 1, omega, approx_order=order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') integral = Integral('i', order=2 * order) t1 = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u) eq = Equation('eq', t1) eqs = Equations([eq]) fix1 = EssentialBC('fix1', gamma1, {'u.0': 0.4}) fix2 = EssentialBC('fix2', gamma2, {'u.0': 0.0}) def get_shift(ts, coors, region): return nm.ones_like(coors[:, 0]) dof_map_fun = Function('dof_map_fun', per.match_x_line) shift_fun = Function('shift_fun', get_shift) sper = LinearCombinationBC('sper', [gamma3, gamma4], {'u.0': 'u.0'}, dof_map_fun, 'shifted_periodic', arguments=(shift_fun, )) ls = ScipyDirect({}) nls = Newton({}, lin_solver=ls) pb = Problem('laplace', equations=eqs) pb.set_bcs(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper])) pb.set_solver(nls) state = pb.solve() return pb, state
def make_l2_projection(target, source): """ Project `source` field variable to `target` field variable using :math:`L^2` dot product. """ order = target.field.get_true_order()**2 integral = Integral('i', order=order) un = target.name v = FieldVariable('v', 'test', target.field, 1, primary_var_name=un) lhs = Term.new('dw_mass_scalar(v, %s)' % un, integral, target.field.region, v=v, **{un : target}) def eval_variable(ts, coors, mode, **kwargs): if mode == 'qp': val = source.evaluate_at(coors) val.shape = val.shape + (1,) out = {'val' : val} return out m = Material('m', function=eval_variable) rhs = Term.new('dw_volume_lvf(m.val, v)', integral, target.field.region, m=m, v=v) eq = Equation('projection', lhs - rhs) eqs = Equations([eq]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = ProblemDefinition('aux', equations=eqs, nls=nls, ls=ls) pb.time_update() # This sets the target variable with the projection solution. pb.solve() if nls_status.condition != 0: output('L2 projection: solver did not converge!')
def linear_projection(pb, cval): from sfepy.discrete import (FieldVariable, Material, Integral, Equation, Equations, Problem) from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.solvers.ls import ScipyDirect from sfepy.solvers.nls import Newton from sfepy.base.base import IndexedStruct mesh = Mesh.from_file(pb.conf.filename_mesh) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field = Field.from_args('scf', nm.float64, 'scalar', omega, approx_order=1) g = FieldVariable('g', 'unknown', field) f = FieldVariable('f', 'test', field, primary_var_name='g') integral = Integral('i', order=2) m = Material('m', function=set_grad) t1 = Term.new('dw_volume_dot(f, g)', integral, omega, f=f, g=g) t2 = Term.new('dw_volume_lvf(m.cs, f)', integral, omega, m=m, f=f) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'eps_a': 1e-15}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs) pb.set_solver(nls) out = nm.empty((g.n_dof, cval.shape[2]), dtype=nm.float64) for ii in range(cval.shape[2]): pb.data = nm.ascontiguousarray(cval[:, :, ii, :]) pb.time_update() state = pb.solve() out[:, ii] = state.get_parts()['g'] return out
def make_l2_projection_data(target, eval_data): """ Project scalar data given by a material-like `eval_data()` function to a scalar `target` field variable using the :math:`L^2` dot product. """ order = target.field.approx_order * 2 integral = Integral("i", order=order) un = target.name v = FieldVariable("v", "test", target.field, primary_var_name=un) lhs = Term.new("dw_volume_dot(v, %s)" % un, integral, target.field.region, v=v, **{un: target}) def _eval_data(ts, coors, mode, **kwargs): if mode == "qp": val = eval_data(ts, coors, mode, **kwargs) return {"val": val} m = Material("m", function=_eval_data) rhs = Term.new("dw_volume_lvf(m.val, v)", integral, target.field.region, m=m, v=v) eq = Equation("projection", lhs - rhs) eqs = Equations([eq]) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = ProblemDefinition("aux", equations=eqs, nls=nls, ls=ls) pb.time_update() # This sets the target variable with the projection solution. pb.solve() if nls_status.condition != 0: output("L2 projection: solver did not converge!")
def run(domain, order): omega = domain.create_region("Omega", "all") bbox = domain.get_mesh_bounding_box() min_x, max_x = bbox[:, 0] min_y, max_y = bbox[:, 1] eps = 1e-8 * (max_x - min_x) gamma1 = domain.create_region("Gamma1", "vertices in (x < %.10f)" % (min_x + eps), "facet") gamma2 = domain.create_region("Gamma2", "vertices in (x > %.10f)" % (max_x - eps), "facet") gamma3 = domain.create_region("Gamma3", "vertices in y < %.10f" % (min_y + eps), "facet") gamma4 = domain.create_region("Gamma4", "vertices in y > %.10f" % (max_y - eps), "facet") field = Field.from_args("fu", nm.float64, 1, omega, approx_order=order) u = FieldVariable("u", "unknown", field) v = FieldVariable("v", "test", field, primary_var_name="u") integral = Integral("i", order=2 * order) t1 = Term.new("dw_laplace(v, u)", integral, omega, v=v, u=u) eq = Equation("eq", t1) eqs = Equations([eq]) fix1 = EssentialBC("fix1", gamma1, {"u.0": 0.4}) fix2 = EssentialBC("fix2", gamma2, {"u.0": 0.0}) def get_shift(ts, coors, region): return nm.ones_like(coors[:, 0]) dof_map_fun = Function("dof_map_fun", per.match_x_line) shift_fun = Function("shift_fun", get_shift) sper = LinearCombinationBC( "sper", [gamma3, gamma4], {"u.0": "u.0"}, dof_map_fun, "shifted_periodic", arguments=(shift_fun,) ) ls = ScipyDirect({}) pb = Problem("laplace", equations=eqs, auto_solvers=None) pb.time_update(ebcs=Conditions([fix1, fix2]), lcbcs=Conditions([sper])) ev = pb.get_evaluator() nls = Newton({}, lin_solver=ls, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix) pb.set_solver(nls) state = pb.solve() return pb, state
def test_invariance_qp(self): from sfepy import data_dir from sfepy.fem import (Mesh, Domain, H1NodalVolumeField, Variables, Integral) from sfepy.terms import Term from sfepy.fem.mappings import get_physical_qps mesh = Mesh('source mesh', data_dir + '/meshes/3d/block.mesh') bbox = mesh.get_bounding_box() dd = bbox[1, :] - bbox[0, :] data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0]) \ * nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1]) variables = { 'u': ('unknown field', 'scalar_tp', 0), 'v': ('test field', 'scalar_tp', 'u'), } domain = Domain('domain', mesh) omega = domain.create_region('Omega', 'all') field = H1NodalVolumeField('scalar_tp', nm.float64, 1, omega, approx_order=1) ff = {field.name: field} vv = Variables.from_conf(transform_variables(variables), ff) u = vv['u'] u.set_from_mesh_vertices(data) integral = Integral('i', order=2) term = Term.new('ev_volume_integrate(u)', integral, omega, u=u) term.setup() val1, _ = term.evaluate(mode='qp') val1 = val1.ravel() qps = get_physical_qps(omega, integral) coors = qps.get_merged_values() val2 = u.evaluate_at(coors).ravel() self.report('max. difference:', nm.abs(val1 - val2).max()) ok = nm.allclose(val1, val2, rtol=0.0, atol=1e-12) self.report('invariance in qp: %s' % ok) return ok
def test_invariance_qp(self): from sfepy import data_dir from sfepy.discrete import Variables, Integral from sfepy.discrete.fem import Mesh, FEDomain, Field from sfepy.terms import Term from sfepy.discrete.common.mappings import get_physical_qps mesh = Mesh.from_file(data_dir + '/meshes/3d/block.mesh') bbox = mesh.get_bounding_box() dd = bbox[1,:] - bbox[0,:] data = nm.sin(4.0 * nm.pi * mesh.coors[:,0:1] / dd[0]) \ * nm.cos(4.0 * nm.pi * mesh.coors[:,1:2] / dd[1]) variables = { 'u' : ('unknown field', 'scalar_tp', 0), 'v' : ('test field', 'scalar_tp', 'u'), } domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') field = Field.from_args('scalar_tp', nm.float64, 1, omega, approx_order=1) ff = {field.name : field} vv = Variables.from_conf(transform_variables(variables), ff) u = vv['u'] u.set_from_mesh_vertices(data) integral = Integral('i', order=2) term = Term.new('ev_volume_integrate(u)', integral, omega, u=u) term.setup() val1 = term.evaluate(mode='qp') val1 = val1.ravel() qps = get_physical_qps(omega, integral) coors = qps.values val2 = u.evaluate_at(coors).ravel() self.report('max. difference:', nm.abs(val1 - val2).max()) ok = nm.allclose(val1, val2, rtol=0.0, atol=1e-12) self.report('invariance in qp: %s' % ok) return ok
def get_term(property_array, delta_x, fields): """Get the term Args: property_array: the spatial array of property values delta_x: the grid spacing fields: the Sfepy u, v fields Returns: a new term """ return Term.new( "dw_lin_elastic_iso(m.lam, m.mu, v, u)", Integral("i", order=4), fields[0].field.region, m=_get_material(property_array, fields[0].field.region.domain, delta_x), u=fields[0], v=fields[1], )
def create_mass_matrix(field): """ Create scalar mass matrix corresponding to the given field. Returns ------- mtx : csr_matrix The mass matrix in CSR format. """ u = FieldVariable('u', 'unknown', field, 1) v = FieldVariable('v', 'test', field, 1, primary_var_name='u') integral = Integral('i', order=field.approx_order * 2) term = Term.new('dw_volume_dot(v, u)', integral, field.region, v=v, u=u) eq = Equation('aux', term) eqs = Equations([eq]) eqs.time_update(None) dummy = eqs.create_state_vector() mtx = eqs.create_matrix_graph() mtx = eqs.eval_tangent_matrices(dummy, mtx) return mtx
def create_mass_matrix(field): """ Create scalar mass matrix corresponding to the given field. Returns ------- mtx : csr_matrix The mass matrix in CSR format. """ u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') integral = Integral('i', order=field.approx_order * 2) term = Term.new('dw_volume_dot(v, u)', integral, field.region, v=v, u=u) eq = Equation('aux', term) eqs = Equations([eq]) eqs.time_update(None) dummy = eqs.create_state_vector() mtx = eqs.create_matrix_graph() mtx = eqs.eval_tangent_matrices(dummy, mtx) return mtx
def main(): parser = OptionParser(usage=usage, version="%prog") parser.add_option( "-b", "--basis", metavar="name", action="store", dest="basis", default="lagrange", help=help["basis"] ) parser.add_option( "-n", "--max-order", metavar="order", type=int, action="store", dest="max_order", default=10, help=help["max_order"], ) parser.add_option( "-m", "--matrix", metavar="type", action="store", dest="matrix_type", default="laplace", help=help["matrix_type"], ) parser.add_option( "-g", "--geometry", metavar="name", action="store", dest="geometry", default="2_4", help=help["geometry"] ) options, args = parser.parse_args() dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output("reference element geometry:") output(" dimension: %d, vertices: %d" % (dim, n_ep)) n_c = {"laplace": 1, "elasticity": dim}[options.matrix_type] output("matrix type:", options.matrix_type) output("number of variable components:", n_c) output("polynomial space:", options.basis) output("max. order:", options.max_order) mesh = Mesh.from_file(data_dir + "/meshes/elements/%s_1.mesh" % options.geometry) domain = Domain("domain", mesh) omega = domain.create_region("Omega", "all") orders = nm.arange(1, options.max_order + 1, dtype=nm.int) conds = [] order_fix = 0 if options.geometry in ["2_4", "3_8"] else 1 for order in orders: output("order:", order, "...") field = Field.from_args( "fu", nm.float64, n_c, omega, approx_order=order, space="H1", poly_space_base=options.basis ) to = field.approx_order quad_order = 2 * (max(to - order_fix, 0)) output("quadrature order:", quad_order) integral = Integral("i", order=quad_order) qp, _ = integral.get_qp(options.geometry) output("number of quadrature points:", qp.shape[0]) u = FieldVariable("u", "unknown", field, n_c) v = FieldVariable("v", "test", field, n_c, primary_var_name="u") m = Material("m", lam=1.0, mu=1.0) if options.matrix_type == "laplace": term = Term.new("dw_laplace(m.mu, v, u)", integral, omega, m=m, v=v, u=u) n_zero = 1 else: assert_(options.matrix_type == "elasticity") term = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v, u)", integral, omega, m=m, v=v, u=u) n_zero = (dim + 1) * dim / 2 term.setup() output("assembling...") tt = time.clock() mtx, iels = term.evaluate(mode="weak", diff_var="u") output("...done in %.2f s" % (time.clock() - tt)) mtx = mtx[0][0, 0] try: assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10) except: from sfepy.base.base import debug debug() output("matrix shape:", mtx.shape) eigs = eig(mtx, method="eig.sgscipy", eigenvectors=False) eigs.sort() # Zero 'true' zeros. eigs[:n_zero] = 0.0 ii = nm.where(eigs < 0.0)[0] if len(ii): output("matrix is not positive semi-definite!") ii = nm.where(eigs[n_zero:] < 1e-12)[0] if len(ii): output("matrix has more than %d zero eigenvalues!" % n_zero) output("smallest eigs:\n", eigs[:10]) ii = nm.where(eigs > 0.0)[0] emin, emax = eigs[ii[[0, -1]]] output("min:", emin, "max:", emax) cond = emax / emin conds.append(cond) output("condition number:", cond) output("...done") plt.figure(1) plt.semilogy(orders, conds) plt.xticks(orders, orders) plt.xlabel("polynomial order") plt.ylabel("condition number") plt.grid() plt.figure(2) plt.loglog(orders, conds) plt.xticks(orders, orders) plt.xlabel("polynomial order") plt.ylabel("condition number") plt.grid() plt.show()
def main(): parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-d', '--dims', metavar='dims', action='store', dest='dims', default='[1.0, 1.0]', help=helps['dims']) parser.add_argument('-c', '--centre', metavar='centre', action='store', dest='centre', default='[0.0, 0.0]', help=helps['centre']) parser.add_argument('-s', '--shape', metavar='shape', action='store', dest='shape', default='[11, 11]', help=helps['shape']) parser.add_argument('-b', '--bc-kind', metavar='kind', action='store', dest='bc_kind', choices=['free', 'cantilever', 'fixed'], default='free', help=helps['bc_kind']) parser.add_argument('-a', '--axis', metavar='0, ..., dim, or -1', type=int, action='store', dest='axis', default=-1, help=helps['axis']) parser.add_argument('--young', metavar='float', type=float, action='store', dest='young', default=200e+9, help=helps['young']) parser.add_argument('--poisson', metavar='float', type=float, action='store', dest='poisson', default=0.3, help=helps['poisson']) parser.add_argument('--density', metavar='float', type=float, action='store', dest='density', default=7800.0, help=helps['density']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) parser.add_argument('-n', '--n-eigs', metavar='int', type=int, action='store', dest='n_eigs', default=6, help=helps['n_eigs']) parser.add_argument('-i', '--ignore', metavar='int', type=int, action='store', dest='ignore', default=None, help=helps['ignore']) parser.add_argument('--solver', metavar='solver', action='store', dest='solver', default= \ "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000", help=helps['solver']) parser.add_argument('--show', action="store_true", dest='show', default=False, help=helps['show']) #parser.add_argument('filename', nargs='?', default=None) #read block.mesh #parser.add_argument('filename', nargs='?', default="platehexat200mm.mesh") parser.add_argument('filename', nargs='?', default="block_1m.mesh") options = parser.parse_args() aux = options.solver.split(',') kwargs = {} for option in aux[1:]: key, val = option.split(':') kwargs[key.strip()] = eval(val) eig_conf = Struct(name='evp', kind=aux[0], **kwargs) output('using values:') output(" Young's modulus:", options.young) output(" Poisson's ratio:", options.poisson) output(' density:', options.density) output('displacement field approximation order:', options.order) output('requested %d eigenvalues' % options.n_eigs) output('using eigenvalue problem solver:', eig_conf.kind) output.level += 1 for key, val in six.iteritems(kwargs): output('%s: %r' % (key, val)) output.level -= 1 assert_((0.0 < options.poisson < 0.5), "Poisson's ratio must be in ]0, 0.5[!") assert_((0 < options.order), 'displacement approximation order must be at least 1!') filename = options.filename if filename is not None: mesh = Mesh.from_file(filename) dim = mesh.dim dims = nm.diff(mesh.get_bounding_box(), axis=0) else: dims = nm.array(eval(options.dims), dtype=nm.float64) dim = len(dims) centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] output('dimensions:', dims) output('centre: ', centre) output('shape: ', shape) mesh = gen_block_mesh(dims, shape, centre, name='mesh') output('axis: ', options.axis) assert_((-dim <= options.axis < dim), 'invalid axis value!') eig_solver = Solver.any_from_conf(eig_conf) # Build the problem definition. domain = FEDomain('domain', mesh) bbox = domain.get_mesh_bounding_box() min_coor, max_coor = bbox[:, options.axis] eps = 1e-8 * (max_coor - min_coor) ax = 'xyz'[:dim][options.axis] omega = domain.create_region('Omega', 'all') """ bottom = domain.create_region('Bottom', 'vertices in (%s < %.10f)' % (ax, min_coor + eps), 'facet') bottom_top = domain.create_region('BottomTop', 'r.Bottom +v vertices in (%s > %.10f)' % (ax, max_coor - eps), 'facet') """ #import pdb; pdb.set_trace() left = domain.create_region('left', 'vertices in (x < -0.49)', 'facet') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=options.order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson) m = Material('m', D=mtx_d, rho=options.density) integral = Integral('i', order=2 * options.order) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('stiffness', t1) eq2 = Equation('mass', t2) lhs_eqs = Equations([eq1, eq2]) pb = Problem('modal', equations=lhs_eqs) """ if options.bc_kind == 'free': pb.time_update() n_rbm = dim * (dim + 1) // 2 elif options.bc_kind == 'cantilever': fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0}) pb.time_update(ebcs=Conditions([fixed])) n_rbm = 0 elif options.bc_kind == 'fixed': fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0}) pb.time_update(ebcs=Conditions([fixed])) n_rbm = 0 else: raise ValueError('unsupported BC kind! (%s)' % options.bc_kind) if options.ignore is not None: n_rbm = options.ignore """ fixed = EssentialBC('Fixed', left, {'u.all': 0.0}) pb.time_update(ebcs=Conditions([fixed])) n_rbm = 0 pb.update_materials() # Assemble stiffness and mass matrices. mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a) mtx_m = mtx_k.copy() mtx_m.data[:] = 0.0 mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m) try: eigs, svecs = eig_solver(mtx_k, mtx_m, options.n_eigs + n_rbm, eigenvectors=True) except sla.ArpackNoConvergence as ee: eigs = ee.eigenvalues svecs = ee.eigenvectors output('only %d eigenvalues converged!' % len(eigs)) output('%d eigenvalues converged (%d ignored as rigid body modes)' % (len(eigs), n_rbm)) eigs = eigs[n_rbm:] svecs = svecs[:, n_rbm:] omegas = nm.sqrt(eigs) freqs = omegas / (2 * nm.pi) output('number | eigenvalue | angular frequency ' '| frequency') for ii, eig in enumerate(eigs): output('%6d | %17.12e | %17.12e | %17.12e' % (ii + 1, eig, omegas[ii], freqs[ii])) # Make full eigenvectors (add DOFs fixed by boundary conditions). variables = pb.get_variables() vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64) for ii in range(svecs.shape[1]): vecs[:, ii] = variables.make_full_vec(svecs[:, ii]) # Save the eigenvectors. out = {} state = pb.create_state() for ii in range(eigs.shape[0]): state.set_full(vecs[:, ii]) aux = state.create_output_dict() strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)', integrals=Integrals([integral]), mode='el_avg', verbose=False) out['u%03d' % ii] = aux.popitem()[1] out['strain%03d' % ii] = Struct(mode='cell', data=strain) pb.save_state('eigenshapes.vtk', out=out) pb.save_regions_as_groups('regions') if len(eigs) and options.show: # Show the solution. If the approximation order is greater than 1, the # extra DOFs are simply thrown away. from sfepy.postprocess.viewer import Viewer from sfepy.postprocess.domain_specific import DomainSpecificPlot scaling = 0.05 * dims.max() / nm.abs(vecs).max() ds = {} for ii in range(eigs.shape[0]): pd = DomainSpecificPlot('plot_displacements', [ 'rel_scaling=%s' % scaling, 'color_kind="tensors"', 'color_name="strain%03d"' % ii ]) ds['u%03d' % ii] = pd view = Viewer('eigenshapes.vtk') view(domain_specific=ds, only_names=sorted(ds.keys()), is_scalar_bar=False, is_wireframe=True)
def _test_single_term(self, term_cls, domain, rname): from sfepy.terms import Term from sfepy.terms.terms import get_arg_kinds ok = True term_call = term_cls.name + '(%s)' arg_shapes_list = term_cls.arg_shapes if not isinstance(arg_shapes_list, list): arg_shapes_list = [arg_shapes_list] if term_cls.integration != 'custom': integral = self.integral else: integral = self.custom_integral poly_space_base = getattr(term_cls, 'poly_space_base', 'lagrange') prev_shapes = {} for _arg_shapes in arg_shapes_list: # Unset shapes are taken from the previous iteration. arg_shapes = copy(prev_shapes) arg_shapes.update(_arg_shapes) prev_shapes = arg_shapes self.report('arg_shapes:', arg_shapes) arg_types = term_cls.arg_types if not isinstance(arg_types[0], tuple): arg_types = (arg_types,) for iat, ats in enumerate(arg_types): self.report('arg_types:', ats) arg_kinds = get_arg_kinds(ats) modes = getattr(term_cls, 'modes', None) mode = modes[iat] if modes is not None else None if 'dw_s_dot_grad_i_s' in term_cls.name: material_value = 0.0 else: material_value = 1.0 aux = make_term_args(arg_shapes, arg_kinds, ats, mode, domain, material_value=material_value, poly_space_base=poly_space_base) args, str_args, materials, variables = aux self.report('args:', str_args) name = term_call % (', '.join(str_args)) term = Term.new(name, integral, domain.regions[rname], **args) term.setup() call_mode = 'weak' if term.names.virtual else 'eval' self.report('call mode:', call_mode) out = term.evaluate(mode=call_mode, ret_status=True) if call_mode == 'eval': vals, status = out vals = nm.array(vals) else: vals, iels, status = out if isinstance(vals, tuple): # Dynamic connectivity terms. vals = vals[0] _ok = nm.isfinite(vals).all() ok = ok and _ok self.report('values shape: %s' % (vals.shape,)) if not _ok: self.report('values are not finite!') self.report(vals) _ok = status == 0 if not _ok: self.report('status is %d!' % status) ok = ok and _ok if term.names.virtual: # Test differentiation w.r.t. state variables in the weak # mode. svars = term.get_state_variables(unknown_only=True) for svar in svars: vals, iels, status = term.evaluate(mode=call_mode, diff_var=svar.name, ret_status=True) if isinstance(vals, tuple): # Dynamic connectivity terms. vals = vals[0] _ok = status == 0 ok = ok and _ok self.report('diff: %s' % svar.name) if not _ok: self.report('status is %d!' % status) _ok = nm.isfinite(vals).all() ok = ok and _ok self.report('values shape: %s' % (vals.shape,)) if not _ok: self.report('values are not finite!') self.report(vals) return ok
def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-b', '--basis', metavar='name', action='store', dest='basis', default='lagrange', help=helps['basis']) parser.add_argument('-n', '--max-order', metavar='order', type=int, action='store', dest='max_order', default=10, help=helps['max_order']) parser.add_argument('-m', '--matrix', action='store', dest='matrix_type', choices=['laplace', 'elasticity', 'smass', 'vmass'], default='laplace', help=helps['matrix_type']) parser.add_argument('-g', '--geometry', metavar='name', action='store', dest='geometry', default='2_4', help=helps['geometry']) parser.add_argument('-o', '--output-dir', metavar='path', action='store', dest='output_dir', default=None, help=helps['output_dir']) parser.add_argument('--no-show', action='store_false', dest='show', default=True, help=helps['no_show']) options = parser.parse_args() dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output('reference element geometry:') output(' dimension: %d, vertices: %d' % (dim, n_ep)) n_c = { 'laplace': 1, 'elasticity': dim, 'smass': 1, 'vmass': dim }[options.matrix_type] output('matrix type:', options.matrix_type) output('number of variable components:', n_c) output('polynomial space:', options.basis) output('max. order:', options.max_order) mesh = Mesh.from_file(data_dir + '/meshes/elements/%s_1.mesh' % options.geometry) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') orders = nm.arange(1, options.max_order + 1, dtype=nm.int32) conds = [] for order in orders: output('order:', order, '...') field = Field.from_args('fu', nm.float64, n_c, omega, approx_order=order, space='H1', poly_space_base=options.basis) quad_order = 2 * field.approx_order output('quadrature order:', quad_order) integral = Integral('i', order=quad_order) qp, _ = integral.get_qp(options.geometry) output('number of quadrature points:', qp.shape[0]) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', D=stiffness_from_lame(dim, 1.0, 1.0)) if options.matrix_type == 'laplace': term = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u) n_zero = 1 elif options.matrix_type == 'elasticity': term = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) n_zero = (dim + 1) * dim // 2 elif options.matrix_type in ('smass', 'vmass'): term = Term.new('dw_dot(v, u)', integral, omega, v=v, u=u) n_zero = 0 term.setup() output('assembling...') timer = Timer(start=True) mtx, iels = term.evaluate(mode='weak', diff_var='u') output('...done in %.2f s' % timer.stop()) mtx = mtx[0, 0] try: assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10) except: from sfepy.base.base import debug debug() output('matrix shape:', mtx.shape) eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False) eigs.sort() # Zero 'true' zeros. eigs[:n_zero] = 0.0 ii = nm.where(eigs < 0.0)[0] if len(ii): output('matrix is not positive semi-definite!') ii = nm.where(eigs[n_zero:] < 1e-12)[0] if len(ii): output('matrix has more than %d zero eigenvalues!' % n_zero) output('smallest eigs:\n', eigs[:10]) ii = nm.where(eigs > 0.0)[0] emin, emax = eigs[ii[[0, -1]]] output('min:', emin, 'max:', emax) cond = emax / emin conds.append(cond) output('condition number:', cond) output('...done') if options.output_dir is not None: indir = partial(op.join, options.output_dir) else: indir = None plt.rcParams['font.size'] = 12 plt.rcParams['lines.linewidth'] = 3 fig, ax = plt.subplots() ax.semilogy(orders, conds) ax.set_xticks(orders) ax.set_xticklabels(orders) ax.set_xlabel('polynomial order') ax.set_ylabel('condition number') ax.set_title(f'{options.basis.capitalize()} basis') ax.grid() plt.tight_layout() if indir is not None: fig.savefig(indir(f'{options.basis}-{options.matrix_type}-' f'{options.geometry}-{options.max_order}-xlin.png'), bbox_inches='tight') fig, ax = plt.subplots() ax.loglog(orders, conds) ax.set_xticks(orders) ax.set_xticklabels(orders) ax.set_xlabel('polynomial order') ax.set_ylabel('condition number') ax.set_title(f'{options.basis.capitalize()} basis') ax.grid() plt.tight_layout() if indir is not None: fig.savefig(indir(f'{options.basis}-{options.matrix_type}-' f'{options.geometry}-{options.max_order}-xlog.png'), bbox_inches='tight') if options.show: plt.show()
def create_local_problem(omega_gi, orders): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ order_u, order_p = orders mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) min_y, max_y = bbox[:, 1] eps_y = 1e-8 * (max_y - min_y) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) gamma3_i = domain_i.create_region('Gamma3', 'vertices in (y < %.10f)' % (min_y + eps_y), 'facet', allow_empty=True) field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i, approx_order=order_u) field2_i = Field.from_args('fp', nm.float64, 1, omega_i, approx_order=order_p) output('field 1: number of local DOFs:', field1_i.n_nod) output('field 2: number of local DOFs:', field2_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field1_i, order=0) v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i') p_i = FieldVariable('p_i', 'unknown', field2_i, order=1) q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i') if mesh.dim == 2: alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]]) else: alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]]) mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5), k=1, alpha=alpha) integral = Integral('i', order=2*(max(order_u, order_p))) t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) t12 = Term.new('dw_biot(m.alpha, v_i, p_i)', integral, omega_i, m=mat, v_i=v_i, p_i=p_i) t21 = Term.new('dw_biot(m.alpha, u_i, q_i)', integral, omega_i, m=mat, u_i=u_i, q_i=q_i) t22 = Term.new('dw_laplace(m.k, q_i, p_i)', integral, omega_i, m=mat, q_i=q_i, p_i=p_i) eq1 = Equation('eq1', t11 - t12) eq2 = Equation('eq1', t21 + t22) eqs = Equations([eq1, eq2]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05}) def bc_fun(ts, coors, **kwargs): val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x)) return val fun = Function('bc_fun', bc_fun) ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3])) pb.update_materials() return pb
def make_l2_projection_data(target, eval_data, order=None, ls=None, nls_options=None): """ Project scalar data to a scalar `target` field variable using the :math:`L^2` dot product. Parameters ---------- target : FieldVariable instance The target variable. eval_data : callable or array Either a material-like function `eval_data()`, or an array of values in quadrature points that has to be reshapable to the shape required by `order`. order : int, optional The quadrature order. If not given, it is set to `2 * target.field.approx_order`. """ if order is None: order = 2 * target.field.approx_order integral = Integral('i', order=order) un = FieldVariable('u', 'unknown', target.field) v = FieldVariable('v', 'test', un.field, primary_var_name=un.name) lhs = Term.new('dw_volume_dot(v, %s)' % un.name, integral, un.field.region, v=v, **{un.name : un}) def _eval_data(ts, coors, mode, **kwargs): if mode == 'qp': if callable(eval_data): val = eval_data(ts, coors, mode, **kwargs) else: val = eval_data.reshape((coors.shape[0], 1, 1)) return {'val' : val} m = Material('m', function=_eval_data) rhs = Term.new('dw_volume_lvf(m.val, v)', integral, un.field.region, m=m, v=v) eq = Equation('projection', lhs - rhs) eqs = Equations([eq]) if ls is None: ls = ScipyDirect({}) if nls_options is None: nls_options = {} nls_status = IndexedStruct() nls = Newton(nls_options, lin_solver=ls, status=nls_status) pb = Problem('aux', equations=eqs, nls=nls, ls=ls) pb.time_update() # This sets the un variable with the projection solution. pb.solve() # Copy the projection solution to target. target.set_data(un()) if nls_status.condition != 0: output('L2 projection: solver did not converge!')
def _solve(self, property_array): """ Solve the Sfepy problem for one sample. Args: property_array: array of shape (n_x, n_y, 2) where the last index is for Lame's parameter and shear modulus, respectively. Returns: the strain field of shape (n_x, n_y, 2) where the last index represents the x and y displacements """ shape = property_array.shape[:-1] mesh = self._get_mesh(shape) domain = Domain('domain', mesh) region_all = domain.create_region('region_all', 'all') field = Field.from_args('fu', np.float64, 'vector', region_all, # pylint: disable=no-member approx_order=2) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = self._get_material(property_array, domain) integral = Integral('i', order=4) t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, region_all, m=m, v=v, u=u) eq = Equation('balance_of_forces', t1) eqs = Equations([eq]) epbcs, functions = self._get_periodicBCs(domain) ebcs = self._get_displacementBCs(domain) lcbcs = self._get_linear_combinationBCs(domain) ls = ScipyDirect({}) pb = Problem('elasticity', equations=eqs, auto_solvers=None) pb.time_update( ebcs=ebcs, epbcs=epbcs, lcbcs=lcbcs, functions=functions) ev = pb.get_evaluator() nls = Newton({}, lin_solver=ls, fun=ev.eval_residual, fun_grad=ev.eval_tangent_matrix) try: pb.set_solvers_instances(ls, nls) except AttributeError: pb.set_solver(nls) vec = pb.solve() u = vec.create_output_dict()['u'].data u_reshape = np.reshape(u, (tuple(x + 1 for x in shape) + u.shape[-1:])) dims = domain.get_mesh_bounding_box().shape[1] strain = np.squeeze( pb.evaluate( 'ev_cauchy_strain.{dim}.region_all(u)'.format( dim=dims), mode='el_avg', copy_materials=False)) strain_reshape = np.reshape(strain, (shape + strain.shape[-1:])) stress = np.squeeze( pb.evaluate( 'ev_cauchy_stress.{dim}.region_all(m.D, u)'.format( dim=dims), mode='el_avg', copy_materials=False)) stress_reshape = np.reshape(stress, (shape + stress.shape[-1:])) return strain_reshape, u_reshape, stress_reshape
def main(cli_args): dims = parse_argument_list(cli_args.dims, float) shape = parse_argument_list(cli_args.shape, int) centre = parse_argument_list(cli_args.centre, float) material_parameters = parse_argument_list(cli_args.material_parameters, float) order = cli_args.order ts_vals = cli_args.ts.split(',') ts = { 't0' : float(ts_vals[0]), 't1' : float(ts_vals[1]), 'n_step' : int(ts_vals[2])} do_plot = cli_args.plot ### Mesh and regions ### mesh = gen_block_mesh( dims, shape, centre, name='block', verbose=False) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') lbn, rtf = domain.get_mesh_bounding_box() box_regions = define_box_regions(3, lbn, rtf) regions = dict([ [r, domain.create_region(r, box_regions[r][0], box_regions[r][1])] for r in box_regions]) ### Fields ### scalar_field = Field.from_args( 'fu', np.float64, 'scalar', omega, approx_order=order-1) vector_field = Field.from_args( 'fv', np.float64, 'vector', omega, approx_order=order) u = FieldVariable('u', 'unknown', vector_field, history=1) v = FieldVariable('v', 'test', vector_field, primary_var_name='u') p = FieldVariable('p', 'unknown', scalar_field, history=1) q = FieldVariable('q', 'test', scalar_field, primary_var_name='p') ### Material ### c10, c01 = material_parameters m = Material( 'm', mu=2*c10, kappa=2*c01, ) ### Boundary conditions ### x_sym = EssentialBC('x_sym', regions['Left'], {'u.0' : 0.0}) y_sym = EssentialBC('y_sym', regions['Near'], {'u.1' : 0.0}) z_sym = EssentialBC('z_sym', regions['Bottom'], {'u.2' : 0.0}) disp_fun = Function('disp_fun', get_displacement) displacement = EssentialBC( 'displacement', regions['Right'], {'u.0' : disp_fun}) ebcs = Conditions([x_sym, y_sym, z_sym, displacement]) ### Terms and equations ### integral = Integral('i', order=2*order) term_neohook = Term.new( 'dw_tl_he_neohook(m.mu, v, u)', integral, omega, m=m, v=v, u=u) term_mooney = Term.new( 'dw_tl_he_mooney_rivlin(m.kappa, v, u)', integral, omega, m=m, v=v, u=u) term_pressure = Term.new( 'dw_tl_bulk_pressure(v, u, p)', integral, omega, v=v, u=u, p=p) term_volume_change = Term.new( 'dw_tl_volume(q, u)', integral, omega, q=q, u=u, term_mode='volume') term_volume = Term.new( 'dw_volume_integrate(q)', integral, omega, q=q) eq_balance = Equation('balance', term_neohook+term_mooney+term_pressure) eq_volume = Equation('volume', term_volume_change-term_volume) equations = Equations([eq_balance, eq_volume]) ### Solvers ### ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton( {'i_max' : 5}, lin_solver=ls, status=nls_status ) ### Problem ### pb = Problem('hyper', equations=equations) pb.set_bcs(ebcs=ebcs) pb.set_ics(ics=Conditions([])) tss = SimpleTimeSteppingSolver(ts, nls=nls, context=pb) pb.set_solver(tss) ### Solution ### axial_stress = [] axial_displacement = [] def stress_strain_fun(*args, **kwargs): return stress_strain( *args, order=order, global_stress=axial_stress, global_displacement=axial_displacement, **kwargs) pb.solve(save_results=True, post_process_hook=stress_strain_fun) if do_plot: plot_graphs( material_parameters, axial_stress, axial_displacement, undeformed_length=dims[0])
top = domain.create_region('Top', 'vertices in z > %.10f' % (max_z - eps), 'vertex') field = Field.from_args('fu', np.float64, 'vector', omega, approx_order=1) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') # these are for stainless steel 316L m = Material('m', D=stiffness_from_youngpoisson(dim=3, young=1.93e9, poisson=0.275), rho=8000.0) integral = Integral('i', order=1) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('balance_of_forces', t1) eqs = Equations([eq1]) # materials = { # 'solid': ({'K': 1e3, # bulk modulus # 'mu': 20e0, # shear modulus of neoHookean term # 'kappa': 10e0, # shear modulus of Mooney-Rivlin term # },), # } # equations = { # 'balance': """dw_ul_he_neohook.3.Omega( solid.mu, v, u ) # + dw_ul_he_mooney_rivlin.3.Omega(solid.kappa, v, u) # + dw_ul_bulk_penalty.3.Omega( solid.K, v, u ) # = 0""", # }
def make_l2_projection_data(target, eval_data, order=None, ls=None, nls_options=None): """ Project scalar data to a scalar `target` field variable using the :math:`L^2` dot product. Parameters ---------- target : FieldVariable instance The target variable. eval_data : callable or array Either a material-like function `eval_data()`, or an array of values in quadrature points that has to be reshapable to the shape required by `order`. order : int, optional The quadrature order. If not given, it is set to `2 * target.field.approx_order`. """ if order is None: order = 2 * target.field.approx_order integral = Integral('i', order=order) un = FieldVariable('u', 'unknown', target.field) v = FieldVariable('v', 'test', un.field, primary_var_name=un.name) lhs = Term.new('dw_volume_dot(v, %s)' % un.name, integral, un.field.region, v=v, **{un.name: un}) def _eval_data(ts, coors, mode, **kwargs): if mode == 'qp': if callable(eval_data): val = eval_data(ts, coors, mode, **kwargs) else: val = eval_data.reshape((coors.shape[0], 1, 1)) return {'val': val} m = Material('m', function=_eval_data) rhs = Term.new('dw_volume_lvf(m.val, v)', integral, un.field.region, m=m, v=v) eq = Equation('projection', lhs - rhs) eqs = Equations([eq]) if ls is None: ls = ScipyDirect({}) if nls_options is None: nls_options = {} nls_status = IndexedStruct() nls = Newton(nls_options, lin_solver=ls, status=nls_status) pb = Problem('aux', equations=eqs, nls=nls, ls=ls) pb.time_update() # This sets the un variable with the projection solution. pb.solve() # Copy the projection solution to target. target.set_data(un()) if nls_status.condition != 0: output('L2 projection: solver did not converge!')
c = Material('c', val=1.0) # bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01}) f = Material('f', function=get_forcing_term) # f = Material('f', val = 10.0) # f = Material('f', val=[[10.0],[10.0]]) # f = Material('f', val=[[0],[0]]) integral = Integral('i', order=2) # t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', # integral, omega, m=m, v=v, u=u) # t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) # eq = Equation('balance', t1 + t2) # eqs = Equations([eq]) t1 = Term.new('dw_laplace( c.val, s, t )', integral, omega, c=c, t=t, s=s) # t2 = Term.new('dw_volume_dot( f, s, t )', integral, omega, f=f, t=t, s=s) t2 = Term.new('dw_volume_dot( f.val, s, t )', integral, omega, f=f, t=t, s=s) # t2 = Term.new('dw_volume_dot( f.val, s )', integral, omega, f=f, s=s) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) # def set_right_bc_impl(ts, coors, bc=None, problem=None, **kwargs): # x = coors[:,0] # y = coors[:,1] # val = np.sin(x)+np.sin(y) # return val def set_bc_impl(ts, coors, bc=None, problem=None, **kwargs):
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=help['show']) options, args = parser.parse_args() options_probe = True folder = str(uuid.uuid4()) os.mkdir(folder) os.chdir(folder) file = open('README.txt', 'w') file.write('DIMENSIONS\n') file.write('Lx = '+str(dims[0])+' Ly = '+str(dims[1])+' Lz = '+str(dims[2])+'\n') file.write('DISCRETIZATION (NX, NY, NZ)\n') file.write(str(NX)+' '+str(NY)+' '+str(NZ)+'\n') file.write('MATERIALS\n') file.write(str(E_f)+' '+str(nu_f)+' '+str(E_m)+' '+str(nu_m)+'\n') #mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh') mesh = mesh_generators.gen_block_mesh(dims,shape,centre,name='block') domain = FEDomain('domain', mesh) min_x, max_x = domain.get_mesh_bounding_box()[:,0] min_y, max_y = domain.get_mesh_bounding_box()[:,1] min_z, max_z = domain.get_mesh_bounding_box()[:,2] eps = 1e-8 * (max_x - min_x) print min_x, max_x print min_y, max_y print min_z, max_z R1 = domain.create_region('Ym', 'vertices in z < %.10f' % (max_z/2)) R2 = domain.create_region('Yf', 'vertices in z >= %.10f' % (min_z/2)) omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Left', 'vertices in x < %.10f' % (min_x + eps), 'facet') gamma2 = domain.create_region('Right', 'vertices in x > %.10f' % (max_x - eps), 'facet') gamma3 = domain.create_region('Front', 'vertices in y < %.10f' % (min_y + eps), 'facet') gamma4 = domain.create_region('Back', 'vertices in y > %.10f' % (max_y - eps), 'facet') gamma5 = domain.create_region('Bottom', 'vertices in z < %.10f' % (min_z + eps), 'facet') gamma6 = domain.create_region('Top', 'vertices in z > %.10f' % (max_z - eps), 'facet') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') mu=1.1 lam=1.0 m = Material('m', lam=lam, mu=mu) f = Material('f', val=[[0.0], [0.0],[-1.0]]) load = Material('Load',val=[[0.0],[0.0],[-Load]]) D = stiffness_from_lame(3,lam, mu) mat = Material('Mat', D=D) get_mat = Function('get_mat1',get_mat1) get_mat_f = Function('get_mat_f',get_mat1) integral = Integral('i', order=3) s_integral = Integral('is',order=2) t1 = Term.new('dw_lin_elastic(Mat.D, v, u)', integral, omega, Mat=mat, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) #t3 = Term.new('DotProductSurfaceTerm(Load.val, v)',s_integral,gamma5,Load=load,v=v) t3 = Term.new('dw_surface_ltr( Load.val, v )',s_integral,gamma6,Load=load,v=v) eq = Equation('balance', t1 + t2 + t3) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0}) left_bc = EssentialBC('Left', gamma1, {'u.0' : 0.0}) right_bc = EssentialBC('Right', gamma2, {'u.0' : 0.0}) back_bc = EssentialBC('Front', gamma3, {'u.1' : 0.0}) front_bc = EssentialBC('Back', gamma4, {'u.1' : 0.0}) bottom_bc = EssentialBC('Bottom', gamma5, {'u.all' : 0.0}) top_bc = EssentialBC('Top', gamma6, {'u.2' : 0.2}) bc=[left_bc,right_bc,back_bc,front_bc,bottom_bc] #bc=[bottom_bc,top_bc] ############################## # ##### SOLVER SECTION ##### ############################## conf = Struct(method='bcgsl', precond='jacobi', sub_precond=None, i_max=10000, eps_a=1e-50, eps_r=1e-10, eps_d=1e4, verbose=True) ls = PETScKrylovSolver(conf) file.write(str(ls.name)+' '+str(ls.conf.method)+' '+str(ls.conf.precond)+' '+str(ls.conf.eps_r)+' '+str(ls.conf.i_max)+'\n' ) nls_status = IndexedStruct() nls = Newton({'i_max':1,'eps_a':1e-10}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls) dd=pb.get_materials()['Mat'] dd.set_function(get_mat1) #xload = pb.get_materials()['f'] #xload.set_function(get_mat_f) pb.save_regions_as_groups('regions') pb.time_update(ebcs=Conditions(bc)) vec = pb.solve() print nls_status file.write('TIME TO SOLVE\n') file.write(str(nls.status.time_stats['solve'])+'\n') file.write('TIME TO CREATE MATRIX\n') file.write(str(nls.status.time_stats['matrix'])+'\n') ev = pb.evaluate out = vec.create_output_dict() strain = ev('ev_cauchy_strain.3.Omega(u)', mode='el_avg') stress = ev('ev_cauchy_stress.3.Omega(Mat.D, u)', mode='el_avg', copy_materials=False) out['cauchy_strain'] = Struct(name='output_data', mode='cell', data=strain, dofs=None) out['cauchy_stress'] = Struct(name='output_data', mode='cell', data=stress, dofs=None) pb.save_state('strain.vtk', out=out) print nls_status file.close()
def main(cli_args): dims = parse_argument_list(cli_args.dims, float) shape = parse_argument_list(cli_args.shape, int) centre = parse_argument_list(cli_args.centre, float) material_parameters = parse_argument_list(cli_args.material_parameters, float) order = cli_args.order ts_vals = cli_args.ts.split(',') ts = { 't0': float(ts_vals[0]), 't1': float(ts_vals[1]), 'n_step': int(ts_vals[2]) } do_plot = cli_args.plot ### Mesh and regions ### mesh = gen_block_mesh(dims, shape, centre, name='block', verbose=False) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') lbn, rtf = domain.get_mesh_bounding_box() box_regions = define_box_regions(3, lbn, rtf) regions = dict( [[r, domain.create_region(r, box_regions[r][0], box_regions[r][1])] for r in box_regions]) ### Fields ### scalar_field = Field.from_args('fu', np.float64, 'scalar', omega, approx_order=order - 1) vector_field = Field.from_args('fv', np.float64, 'vector', omega, approx_order=order) u = FieldVariable('u', 'unknown', vector_field, history=1) v = FieldVariable('v', 'test', vector_field, primary_var_name='u') p = FieldVariable('p', 'unknown', scalar_field, history=1) q = FieldVariable('q', 'test', scalar_field, primary_var_name='p') ### Material ### c10, c01 = material_parameters m = Material( 'm', mu=2 * c10, kappa=2 * c01, ) ### Boundary conditions ### x_sym = EssentialBC('x_sym', regions['Left'], {'u.0': 0.0}) y_sym = EssentialBC('y_sym', regions['Near'], {'u.1': 0.0}) z_sym = EssentialBC('z_sym', regions['Bottom'], {'u.2': 0.0}) disp_fun = Function('disp_fun', get_displacement) displacement = EssentialBC('displacement', regions['Right'], {'u.0': disp_fun}) ebcs = Conditions([x_sym, y_sym, z_sym, displacement]) ### Terms and equations ### integral = Integral('i', order=2 * order) term_neohook = Term.new('dw_tl_he_neohook(m.mu, v, u)', integral, omega, m=m, v=v, u=u) term_mooney = Term.new('dw_tl_he_mooney_rivlin(m.kappa, v, u)', integral, omega, m=m, v=v, u=u) term_pressure = Term.new('dw_tl_bulk_pressure(v, u, p)', integral, omega, v=v, u=u, p=p) term_volume_change = Term.new('dw_tl_volume(q, u)', integral, omega, q=q, u=u, term_mode='volume') term_volume = Term.new('dw_volume_integrate(q)', integral, omega, q=q) eq_balance = Equation('balance', term_neohook + term_mooney + term_pressure) eq_volume = Equation('volume', term_volume_change - term_volume) equations = Equations([eq_balance, eq_volume]) ### Solvers ### ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'i_max': 5}, lin_solver=ls, status=nls_status) ### Problem ### pb = Problem('hyper', equations=equations) pb.set_bcs(ebcs=ebcs) pb.set_ics(ics=Conditions([])) tss = SimpleTimeSteppingSolver(ts, nls=nls, context=pb) pb.set_solver(tss) ### Solution ### axial_stress = [] axial_displacement = [] def stress_strain_fun(*args, **kwargs): return stress_strain(*args, order=order, global_stress=axial_stress, global_displacement=axial_displacement, **kwargs) pb.solve(save_results=True, post_process_hook=stress_strain_fun) if do_plot: plot_graphs(material_parameters, axial_stress, axial_displacement, undeformed_length=dims[0])
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('--young', metavar='float', type=float, action='store', dest='young', default=2000.0, help=helps['young']) parser.add_option('--poisson', metavar='float', type=float, action='store', dest='poisson', default=0.4, help=helps['poisson']) parser.add_option('--load', metavar='float', type=float, action='store', dest='load', default=-1000.0, help=helps['load']) parser.add_option('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) parser.add_option('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) parser.add_option('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) options, args = parser.parse_args() assert_((0.0 < options.poisson < 0.5), "Poisson's ratio must be in ]0, 0.5[!") assert_((0 < options.order), 'displacement approximation order must be at least 1!') output('using values:') output(" Young's modulus:", options.young) output(" Poisson's ratio:", options.poisson) output(' vertical load:', options.load) output('uniform mesh refinement level:', options.refine) # Build the problem definition. mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.001', 'facet') bottom = domain.create_region('Bottom', 'vertices in y < 0.001', 'facet') top = domain.create_region('Top', 'vertex 2', 'vertex') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=options.order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') D = stiffness_from_youngpoisson(2, options.young, options.poisson) asphalt = Material('Asphalt', D=D) load = Material('Load', values={'.val' : [0.0, options.load]}) integral = Integral('i', order=2*options.order) integral0 = Integral('i', order=0) t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)', integral, omega, Asphalt=asphalt, v=v, u=u) t2 = Term.new('dw_point_load(Load.val, v)', integral0, top, Load=load, v=v) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) xsym = EssentialBC('XSym', bottom, {'u.1' : 0.0}) ysym = EssentialBC('YSym', left, {'u.0' : 0.0}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls) pb.time_update(ebcs=Conditions([xsym, ysym])) # Solve the problem. state = pb.solve() output(nls_status) # Postprocess the solution. out = state.create_output_dict() out = stress_strain(out, pb, state, extend=True) pb.save_state('its2D_interactive.vtk', out=out) gdata = geometry_data['2_3'] nc = len(gdata.coors) integral_vn = Integral('ivn', coors=gdata.coors, weights=[gdata.volume / nc] * nc) nodal_stress(out, pb, state, integrals=Integrals([integral_vn])) if options.probe: # Probe the solution. probes, labels = gen_lines(pb) sfield = Field.from_args('sym_tensor', nm.float64, 3, omega, approx_order=options.order - 1) stress = FieldVariable('stress', 'parameter', sfield, primary_var_name='(set-to-None)') strain = FieldVariable('strain', 'parameter', sfield, primary_var_name='(set-to-None)') cfield = Field.from_args('component', nm.float64, 1, omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') ev = pb.evaluate order = 2 * (options.order - 1) strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp') stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order, mode='qp', copy_materials=False) project_by_component(strain, strain_qp, component, order) project_by_component(stress, stress_qp, component, order) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(u, strain, stress, probe, labels[ii]) fig.savefig('its2D_interactive_probe_%d.png' % ii) all_results.append(results) for ii, results in enumerate(all_results): output('probe %d:' % ii) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2 if options.show: # Show the solution. If the approximation order is greater than 1, the # extra DOFs are simply thrown away. from sfepy.postprocess.viewer import Viewer view = Viewer('its2D_interactive.vtk') view(vector_mode='warp_norm', rel_scaling=1, is_scalar_bar=True, is_wireframe=True)
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=help['show']) options, args = parser.parse_args() mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh') domain = Domain('domain', mesh) min_x, max_x = domain.get_mesh_bounding_box()[:,0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'nodes in x < %.10f' % (min_x + eps)) gamma2 = domain.create_region('Gamma2', 'nodes in x > %.10f' % (max_x - eps)) field = Field('fu', nm.float64, 'vector', omega, space='H1', poly_space_base='lagrange', approx_order=2) u = FieldVariable('u', 'unknown', field, mesh.dim) v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u') m = Material('m', lam=1.0, mu=1.0) f = Material('f', val=[[0.02], [0.01]]) integral = Integral('i', order=3) t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0}) bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01}) shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls) pb.save_regions_as_groups('regions') pb.time_update(ebcs=Conditions([fix_u, shift_u])) vec = pb.solve() print nls_status pb.save_state('linear_elasticity.vtk', vec) if options.show: view = Viewer('linear_elasticity.vtk') view(vector_mode='warp_norm', rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
def create_local_problem(omega_gi, order): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) field_i = Field.from_args('fu', nm.float64, 1, omega_i, approx_order=order) output('number of local field DOFs:', field_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field_i) v_i = FieldVariable('v_i', 'test', field_i, primary_var_name='u_i') integral = Integral('i', order=2 * order) mat = Material('m', lam=10, mu=5) t1 = Term.new('dw_laplace(m.lam, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) def _get_load(coors): val = nm.ones_like(coors[:, 0]) for coor in coors.T: val *= nm.sin(4 * nm.pi * coor) return val def get_load(ts, coors, mode=None, **kwargs): if mode == 'qp': return {'val': _get_load(coors).reshape(coors.shape[0], 1, 1)} load = Material('load', function=Function('get_load', get_load)) t2 = Term.new('dw_volume_lvf(load.val, v_i)', integral, omega_i, load=load, v_i=v_i) eq = Equation('balance', t1 - 100 * t2) eqs = Equations([eq]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all': 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.all': 0.1}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2])) pb.update_materials() return pb
def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('-o', '--output-dir', default='.', help=helps['output_dir']) parser.add_argument('--R1', metavar='R1', action='store', dest='R1', default='0.5', help=helps['R1']) parser.add_argument('--R2', metavar='R2', action='store', dest='R2', default='1.0', help=helps['R2']) parser.add_argument('--C1', metavar='C1', action='store', dest='C1', default='0.0,0.0', help=helps['C1']) parser.add_argument('--C2', metavar='C2', action='store', dest='C2', default='0.0,0.0', help=helps['C2']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_argument('-v', '--viewpatch', action='store_true', dest='viewpatch', default=False, help=helps['viewpatch']) options = parser.parse_args() # Creation of the NURBS-patch with igakit R1 = eval(options.R1) R2 = eval(options.R2) C1 = list(eval(options.C1)) C2 = list(eval(options.C2)) order = options.order viewpatch = options.viewpatch create_patch(R1, R2, C1, C2, order=order, viewpatch=viewpatch) # Setting a Domain instance filename_domain = data_dir + '/meshes/iga/concentric_circles.iga' domain = IGDomain.from_file(filename_domain) # Sub-domains omega = domain.create_region('Omega', 'all') Gamma_out = domain.create_region('Gamma_out', 'vertices of set xi01', kind='facet') Gamma_in = domain.create_region('Gamma_in', 'vertices of set xi00', kind='facet') # Field (featuring order elevation) order_increase = order - domain.nurbs.degrees[0] order_increase *= int(order_increase > 0) field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order='iga', space='H1', poly_space_base='iga') # Variables u = FieldVariable('u', 'unknown', field) # unknown function v = FieldVariable('v', 'test', field, primary_var_name='u') # test function # Integral integral = Integral('i', order=2 * field.approx_order) # Term t = Term.new('dw_laplace( v, u )', integral, omega, v=v, u=u) # Equation eq = Equation('laplace', t) eqs = Equations([eq]) # Boundary Conditions u_in = EssentialBC('u_in', Gamma_in, {'u.all': 7.0}) u_out = EssentialBC('u_out', Gamma_out, {'u.all': 3.0}) # solvers ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) # problem instance pb = Problem('potential', equations=eqs, active_only=True) # Set boundary conditions pb.set_bcs(ebcs=Conditions([u_in, u_out])) # solving pb.set_solver(nls) status = IndexedStruct() state = pb.solve(status=status, save_results=True, verbose=True) # Saving the results to a classic VTK file filename = os.path.join(options.output_dir, 'concentric_circles.vtk') ensure_path(filename) pb.save_state(filename, state)
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_option('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_option('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_option('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_option('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options, args = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in xrange(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2 * options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0': 2.0}) ebc2 = EssentialBC('T2', right, {'T.0': -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun = Function('ic_fun', get_ic) ic = InitialCondition('ic', omega, {'T.0': ic_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'is_linear': True}, lin_solver=ls, status=nls_status) pb = Problem('heat', equations=eqs, nls=nls, ls=ls) pb.set_bcs(ebcs=Conditions([ebc1, ebc2])) pb.set_ics(Conditions([ic])) tss = SimpleTimeSteppingSolver({ 't0': 0.0, 't1': 100.0, 'n_step': 11 }, problem=pb) tss.init_time() if options.probe: # Prepare probe data. probes, labels = gen_lines(pb) ev = pb.evaluate order = 2 * (options.order - 1) gfield = Field.from_args('gu', nm.float64, 'vector', omega, approx_order=options.order - 1) dvel = FieldVariable('dvel', 'parameter', gfield, primary_var_name='(set-to-None)') cfield = Field.from_args('gu', nm.float64, 'scalar', omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') nls_options = {'eps_a': 1e-16, 'i_max': 1} if options.show: plt.ion() # Solve the problem using the time stepping solver. suffix = tss.ts.suffix for step, time, state in tss(): if options.probe: # Probe the solution. dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' % order, copy_materials=False, mode='qp') project_by_component(dvel, dvel_qp, component, order, nls_options=nls_options) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(ii, T, dvel, probe, labels[ii]) all_results.append(results) plt.tight_layout() fig.savefig('time_poisson_interactive_probe_%s.png' % (suffix % step), bbox_inches='tight') if options.show: plt.draw() for ii, results in enumerate(all_results): output('probe %d (%s):' % (ii, probes[ii].name)) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2
def create_local_problem(omega_gi, order): """ Local problem definition using a domain corresponding to the global region `omega_gi`. """ mesh = omega_gi.domain.mesh # All tasks have the whole mesh. bbox = mesh.get_bounding_box() min_x, max_x = bbox[:, 0] eps_x = 1e-8 * (max_x - min_x) mesh_i = Mesh.from_region(omega_gi, mesh, localize=True) domain_i = FEDomain('domain_i', mesh_i) omega_i = domain_i.create_region('Omega', 'all') gamma1_i = domain_i.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps_x), 'facet', allow_empty=True) gamma2_i = domain_i.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps_x), 'facet', allow_empty=True) field_i = Field.from_args('fu', nm.float64, 1, omega_i, approx_order=order) output('number of local field DOFs:', field_i.n_nod) u_i = FieldVariable('u_i', 'unknown', field_i) v_i = FieldVariable('v_i', 'test', field_i, primary_var_name='u_i') integral = Integral('i', order=2*order) mat = Material('m', lam=10, mu=5) t1 = Term.new('dw_laplace(m.lam, v_i, u_i)', integral, omega_i, m=mat, v_i=v_i, u_i=u_i) def _get_load(coors): val = nm.ones_like(coors[:, 0]) for coor in coors.T: val *= nm.sin(4 * nm.pi * coor) return val def get_load(ts, coors, mode=None, **kwargs): if mode == 'qp': return {'val' : _get_load(coors).reshape(coors.shape[0], 1, 1)} load = Material('load', function=Function('get_load', get_load)) t2 = Term.new('dw_volume_lvf(load.val, v_i)', integral, omega_i, load=load, v_i=v_i) eq = Equation('balance', t1 - 100 * t2) eqs = Equations([eq]) ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0}) ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.all' : 0.1}) pb = Problem('problem_i', equations=eqs, active_only=False) pb.time_update(ebcs=Conditions([ebc1, ebc2])) pb.update_materials() return pb
def main(): from sfepy import data_dir parser = ArgumentParser() parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options = parser.parse_args() mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh') domain = FEDomain('domain', mesh) min_x, max_x = domain.get_mesh_bounding_box()[:,0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'vertices in x < %.10f' % (min_x + eps), 'facet') gamma2 = domain.create_region('Gamma2', 'vertices in x > %.10f' % (max_x - eps), 'facet') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', D=stiffness_from_lame(dim=2, lam=1.0, mu=1.0)) f = Material('f', val=[[0.02], [0.01]]) integral = Integral('i', order=3) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all' : 0.0}) bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift' : 0.01}) shift_u = EssentialBC('shift_u', gamma2, {'u.0' : bc_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs) pb.save_regions_as_groups('regions') pb.set_bcs(ebcs=Conditions([fix_u, shift_u])) pb.set_solver(nls) status = IndexedStruct() state = pb.solve(status=status) print('Nonlinear solver status:\n', nls_status) print('Stationary solver status:\n', status) pb.save_state('linear_elasticity.vtk', state) if options.show: view = Viewer('linear_elasticity.vtk') view(vector_mode='warp_norm', rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
def main(): parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-d', '--dims', metavar='dims', action='store', dest='dims', default='[1.0, 1.0]', help=helps['dims']) parser.add_argument('-c', '--centre', metavar='centre', action='store', dest='centre', default='[0.0, 0.0]', help=helps['centre']) parser.add_argument('-s', '--shape', metavar='shape', action='store', dest='shape', default='[11, 11]', help=helps['shape']) parser.add_argument('-b', '--bc-kind', metavar='kind', action='store', dest='bc_kind', choices=['free', 'cantilever', 'fixed'], default='free', help=helps['bc_kind']) parser.add_argument('-a', '--axis', metavar='0, ..., dim, or -1', type=int, action='store', dest='axis', default=-1, help=helps['axis']) parser.add_argument('--young', metavar='float', type=float, action='store', dest='young', default=6.80e+10, help=helps['young']) parser.add_argument('--poisson', metavar='float', type=float, action='store', dest='poisson', default=0.36, help=helps['poisson']) parser.add_argument('--density', metavar='float', type=float, action='store', dest='density', default=2700.0, help=helps['density']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) parser.add_argument('-n', '--n-eigs', metavar='int', type=int, action='store', dest='n_eigs', default=6, help=helps['n_eigs']) parser.add_argument('-i', '--ignore', metavar='int', type=int, action='store', dest='ignore', default=None, help=helps['ignore']) parser.add_argument('--solver', metavar='solver', action='store', dest='solver', default= \ "eig.scipy,method:'eigh',tol:1e-5,maxiter:1000", help=helps['solver']) parser.add_argument('--show', action="store_true", dest='show', default=False, help=helps['show']) parser.add_argument('filename', nargs='?', default=None) options = parser.parse_args() aux = options.solver.split(',') kwargs = {} for option in aux[1:]: key, val = option.split(':') kwargs[key.strip()] = eval(val) eig_conf = Struct(name='evp', kind=aux[0], **kwargs) output('using values:') output(" Young's modulus:", options.young) output(" Poisson's ratio:", options.poisson) output(' density:', options.density) output('displacement field approximation order:', options.order) output('requested %d eigenvalues' % options.n_eigs) output('using eigenvalue problem solver:', eig_conf.kind) output.level += 1 for key, val in six.iteritems(kwargs): output('%s: %r' % (key, val)) output.level -= 1 assert_((0.0 < options.poisson < 0.5), "Poisson's ratio must be in ]0, 0.5[!") assert_((0 < options.order), 'displacement approximation order must be at least 1!') filename = options.filename if filename is not None: mesh = Mesh.from_file(filename) dim = mesh.dim dims = nm.diff(mesh.get_bounding_box(), axis=0) else: dims = nm.array(eval(options.dims), dtype=nm.float64) dim = len(dims) centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] output('dimensions:', dims) output('centre: ', centre) output('shape: ', shape) mesh = gen_block_mesh(dims, shape, centre, name='mesh') output('axis: ', options.axis) assert_((-dim <= options.axis < dim), 'invalid axis value!') eig_solver = Solver.any_from_conf(eig_conf) # Build the problem definition. domain = FEDomain('domain', mesh) bbox = domain.get_mesh_bounding_box() min_coor, max_coor = bbox[:, options.axis] eps = 1e-8 * (max_coor - min_coor) ax = 'xyz'[:dim][options.axis] omega = domain.create_region('Omega', 'all') bottom = domain.create_region('Bottom', 'vertices in (%s < %.10f)' % (ax, min_coor + eps), 'facet') bottom_top = domain.create_region('BottomTop', 'r.Bottom +v vertices in (%s > %.10f)' % (ax, max_coor - eps), 'facet') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=options.order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') mtx_d = stiffness_from_youngpoisson(dim, options.young, options.poisson) m = Material('m', D=mtx_d, rho=options.density) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('stiffness', t1) eq2 = Equation('mass', t2) lhs_eqs = Equations([eq1, eq2]) pb = Problem('modal', equations=lhs_eqs) if options.bc_kind == 'free': pb.time_update() n_rbm = dim * (dim + 1) / 2 elif options.bc_kind == 'cantilever': fixed = EssentialBC('Fixed', bottom, {'u.all' : 0.0}) pb.time_update(ebcs=Conditions([fixed])) n_rbm = 0 elif options.bc_kind == 'fixed': fixed = EssentialBC('Fixed', bottom_top, {'u.all' : 0.0}) pb.time_update(ebcs=Conditions([fixed])) n_rbm = 0 else: raise ValueError('unsupported BC kind! (%s)' % options.bc_kind) if options.ignore is not None: n_rbm = options.ignore pb.update_materials() # Assemble stiffness and mass matrices. mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a) mtx_m = mtx_k.copy() mtx_m.data[:] = 0.0 mtx_m = eq2.evaluate(mode='weak', dw_mode='matrix', asm_obj=mtx_m) try: eigs, svecs = eig_solver(mtx_k, mtx_m, options.n_eigs + n_rbm, eigenvectors=True) except sla.ArpackNoConvergence as ee: eigs = ee.eigenvalues svecs = ee.eigenvectors output('only %d eigenvalues converged!' % len(eigs)) output('%d eigenvalues converged (%d ignored as rigid body modes)' % (len(eigs), n_rbm)) eigs = eigs[n_rbm:] svecs = svecs[:, n_rbm:] omegas = nm.sqrt(eigs) freqs = omegas / (2 * nm.pi) output('number | eigenvalue | angular frequency ' '| frequency') for ii, eig in enumerate(eigs): output('%6d | %17.12e | %17.12e | %17.12e' % (ii + 1, eig, omegas[ii], freqs[ii])) # Make full eigenvectors (add DOFs fixed by boundary conditions). variables = pb.get_variables() vecs = nm.empty((variables.di.ptr[-1], svecs.shape[1]), dtype=nm.float64) for ii in range(svecs.shape[1]): vecs[:, ii] = variables.make_full_vec(svecs[:, ii]) # Save the eigenvectors. out = {} state = pb.create_state() for ii in range(eigs.shape[0]): state.set_full(vecs[:, ii]) aux = state.create_output_dict() strain = pb.evaluate('ev_cauchy_strain.i.Omega(u)', integrals=Integrals([integral]), mode='el_avg', verbose=False) out['u%03d' % ii] = aux.popitem()[1] out['strain%03d' % ii] = Struct(mode='cell', data=strain) pb.save_state('eigenshapes.vtk', out=out) pb.save_regions_as_groups('regions') if len(eigs) and options.show: # Show the solution. If the approximation order is greater than 1, the # extra DOFs are simply thrown away. from sfepy.postprocess.viewer import Viewer from sfepy.postprocess.domain_specific import DomainSpecificPlot scaling = 0.05 * dims.max() / nm.abs(vecs).max() ds = {} for ii in range(eigs.shape[0]): pd = DomainSpecificPlot('plot_displacements', ['rel_scaling=%s' % scaling, 'color_kind="tensors"', 'color_name="strain%03d"' % ii]) ds['u%03d' % ii] = pd view = Viewer('eigenshapes.vtk') view(domain_specific=ds, only_names=sorted(ds.keys()), is_scalar_bar=False, is_wireframe=True)
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=help['show']) options, args = parser.parse_args() mesh = Mesh.from_file(data_dir + '/meshes/2d/rectangle_tri.mesh') domain = Domain('domain', mesh) min_x, max_x = domain.get_mesh_bounding_box()[:, 0] eps = 1e-8 * (max_x - min_x) omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'nodes in x < %.10f' % (min_x + eps)) gamma2 = domain.create_region('Gamma2', 'nodes in x > %.10f' % (max_x - eps)) field = H1NodalVolumeField('fu', nm.float64, 'vector', omega, approx_order=2) u = FieldVariable('u', 'unknown', field, mesh.dim) v = FieldVariable('v', 'test', field, mesh.dim, primary_var_name='u') m = Material('m', lam=1.0, mu=1.0) f = Material('f', val=[[0.02], [0.01]]) integral = Integral('i', order=3) t1 = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_lvf(f.val, v)', integral, omega, f=f, v=v) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) fix_u = EssentialBC('fix_u', gamma1, {'u.all': 0.0}) bc_fun = Function('shift_u_fun', shift_u_fun, extra_args={'shift': 0.01}) shift_u = EssentialBC('shift_u', gamma2, {'u.0': bc_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = ProblemDefinition('elasticity', equations=eqs, nls=nls, ls=ls) pb.save_regions_as_groups('regions') pb.time_update(ebcs=Conditions([fix_u, shift_u])) vec = pb.solve() print nls_status pb.save_state('linear_elasticity.vtk', vec) if options.show: view = Viewer('linear_elasticity.vtk') view(vector_mode='warp_norm', rel_scaling=2, is_scalar_bar=True, is_wireframe=True)
def main(): parser = ArgumentParser(description=__doc__.rstrip(), formatter_class=RawDescriptionHelpFormatter) parser.add_argument('output_dir', help=helps['output_dir']) parser.add_argument('--dims', metavar='dims', action='store', dest='dims', default='1.0,1.0,1.0', help=helps['dims']) parser.add_argument('--shape', metavar='shape', action='store', dest='shape', default='7,7,7', help=helps['shape']) parser.add_argument('--centre', metavar='centre', action='store', dest='centre', default='0.0,0.0,0.0', help=helps['centre']) parser.add_argument('-3', '--3d', action='store_true', dest='is_3d', default=False, help=helps['3d']) parser.add_argument('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) options = parser.parse_args() dim = 3 if options.is_3d else 2 dims = nm.array(eval(options.dims), dtype=nm.float64)[:dim] shape = nm.array(eval(options.shape), dtype=nm.int32)[:dim] centre = nm.array(eval(options.centre), dtype=nm.float64)[:dim] output('dimensions:', dims) output('shape: ', shape) output('centre: ', centre) mesh0 = gen_block_mesh(dims, shape, centre, name='block-fem', verbose=True) domain0 = FEDomain('d', mesh0) bbox = domain0.get_mesh_bounding_box() min_x, max_x = bbox[:, 0] eps = 1e-8 * (max_x - min_x) cnt = (shape[0] - 1) // 2 g0 = 0.5 * dims[0] grading = nm.array([g0 / 2**ii for ii in range(cnt)]) + eps + centre[0] - g0 domain, subs = refine_towards_facet(domain0, grading, 'x <') omega = domain.create_region('Omega', 'all') gamma1 = domain.create_region('Gamma1', 'vertices in (x < %.10f)' % (min_x + eps), 'facet') gamma2 = domain.create_region('Gamma2', 'vertices in (x > %.10f)' % (max_x - eps), 'facet') field = Field.from_args('fu', nm.float64, 1, omega, approx_order=options.order) if subs is not None: field.substitute_dofs(subs) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') integral = Integral('i', order=2*options.order) t1 = Term.new('dw_laplace(v, u)', integral, omega, v=v, u=u) eq = Equation('eq', t1) eqs = Equations([eq]) def u_fun(ts, coors, bc=None, problem=None): """ Define a displacement depending on the y coordinate. """ if coors.shape[1] == 2: min_y, max_y = bbox[:, 1] y = (coors[:, 1] - min_y) / (max_y - min_y) val = (max_y - min_y) * nm.cos(3 * nm.pi * y) else: min_y, max_y = bbox[:, 1] min_z, max_z = bbox[:, 2] y = (coors[:, 1] - min_y) / (max_y - min_y) z = (coors[:, 2] - min_z) / (max_z - min_z) val = ((max_y - min_y) * (max_z - min_z) * nm.cos(3 * nm.pi * y) * (1.0 + 3.0 * (z - 0.5)**2)) return val bc_fun = Function('u_fun', u_fun) fix1 = EssentialBC('shift_u', gamma1, {'u.0' : bc_fun}) fix2 = EssentialBC('fix2', gamma2, {'u.all' : 0.0}) ls = ScipyDirect({}) nls = Newton({}, lin_solver=ls) pb = Problem('heat', equations=eqs, nls=nls, ls=ls) pb.time_update(ebcs=Conditions([fix1, fix2])) state = pb.solve() if subs is not None: field.restore_dofs() filename = os.path.join(options.output_dir, 'hanging.vtk') ensure_path(filename) pb.save_state(filename, state) if options.order > 1: pb.save_state(filename, state, linearization=Struct(kind='adaptive', min_level=0, max_level=8, eps=1e-3))
'facet') top = domain.create_region('Top', 'vertices in y > 0.999', 'facet') domain.save_regions_as_groups('regions.vtk') field_t = Field.from_args('temperature', np.float64, 'scalar', omega, 2) t = FieldVariable('t', 'unknown', field_t, 1) s = FieldVariable('s', 'test', field_t, 1, primary_var_name='t') integral = Integral('i', order=2) term = Term.new('dw_laplace(s, t)', integral, omega, s=s, t=t) eq = Equation('temperature', term) eqs = Equations([eq]) t_left = EssentialBC('t_left', left, {'t.0' : 10.0}) t_right = EssentialBC('t_right', right, {'t.0' : 30.0}) ls = ScipyDirect({}) nls = Newton({}, lin_solver=ls) pb = ProblemDefinition('temperature', equations=eqs, nls=nls, ls=ls) pb.time_update(ebcs=Conditions([t_left, t_right]))
Ddmu = numpy.array([[2.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 1.0]]) Ddlambda = numpy.array([[1.0, 1.0, 0.0], [1.0, 1.0, 0.0], [0.0, 0.0, 0.0]]) Ks = [] Ms = [] for D in [Ddmu, Ddlambda]:#, D2, D3] m = Material('m', D = D, rho = 2700.0) integral = Integral('i', order=2) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) t2 = Term.new('dw_volume_dot(m.rho, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('stiffness', t1) eq2 = Equation('mass', t2) lhs_eqs = Equations([eq1, eq2]) pb = Problem('modal', equations = lhs_eqs) pb.time_update() n_rbm = dim * (dim + 1) / 2 pb.update_materials() # Assemble stiffness and mass matrices. mtx_k = eq1.evaluate(mode='weak', dw_mode='matrix', asm_obj=pb.mtx_a) mtx_m = mtx_k.copy()
def FarField(eltype, points, boundary, lcar, epsilon, meshfile, thickness=None, verbose=False): """ This function determines a geometric factor F within a single element. The element type can be triangular, quadrilateral, tetrahedral or hexahedral. For these types eltype is set to "CTRIA3", "CQUAD4" "CTETRA" and "CHEXA8" respectively. The vertices of the element are provided in the input parameter points. The input parameter boundary is of boolean type and has the same size as points. Those points which are part of the conductive interface CI are flagged True. Epsilon sets a tolerance to determine which mesh vertices are considered part of the FF boundary. The meshing of the element is stored in a location provided by meshfile. Parameters ---------- eltype: string 'CTRIA3' for triangular surface elements, 'CQUAD4' for quadrilateral surface elements, 'CTETRA' for tetrahedral volume elements. 'CHEXA8' for hexahedral volume elements. points: array like Array containing the coordinates of the element boundary: array like Array containing the entries of the boundary points lcar: float Characteristic length value provided to gmsh for mesh sizing. epsilon: float Numerical tolerance on criterion for far field boundary meshfile: string Filename and location for storing temporary mesh file verbose: boolean Indicate whether intermediate results should be displayed or not Returns ------- : array like Array with boolean entries stating True for those items on the boundary and False otherwise """ if verbose is True: output.set_output(quiet=False) else: output.set_output(quiet=True) if (eltype == "CTRIA3") or (eltype == "CQUAD4"): sdim = 2 else: sdim = 3 boundpnts = [] for i in range(len(points)): if boundary[i]: boundpnts.append(points[i]) mesh = sfedis.fem.Mesh.from_file(meshfile) domain = sfedis.fem.FEDomain('domain', mesh) c = sfedis.Material('c', val=1.0) omega = domain.create_region('Omega', 'all') if verbose is True: coors = mesh.coors fixed_vert = _is_on_bound(coors, bound=boundpnts, sdim=sdim, epsilon=epsilon) print "fixed vertices:" print fixed_vert is_on_bound = sfedis.Functions([ sfedis.Function('_is_on_bound', _is_on_bound, extra_args={ 'bound': boundpnts, 'sdim': sdim, 'epsilon': lcar / 100. }), ]) fixed = domain.create_region('fixed', 'vertices by _is_on_bound', 'facet', functions=is_on_bound, add_to_regions=True) field_t = sfedis.fem.Field.from_args('temperature', np.float64, 'scalar', omega, approx_order=2) t = sfedis.FieldVariable('t', 'unknown', field_t, 1) s = sfedis.FieldVariable('s', 'test', field_t, 1, primary_var_name='t') integral = sfedis.Integral('i', order=4) term1 = Term.new('dw_laplace(s, t)', integral, omega, s=s, t=t) term2 = Term.new('dw_volume_integrate(c.val, s)', integral, omega, c=c, s=s) # heat source term for 1st step of far field eq = sfedis.Equation('temperature', term1 - term2) eqs = sfedis.Equations([eq]) t_fixed = EssentialBC('t_fixed', fixed, {'t.0': 0.0}) ls = ScipyDirect({}) nls = Newton({'i_max': 1, 'eps_a': 1e-10}, lin_solver=ls) pb = sfedis.Problem('temperature', equations=eqs, nls=nls, ls=ls) pb.time_update(ebcs=Conditions([ t_fixed, ])) temperature = pb.solve() out = temperature.create_output_dict() if verbose is True: pb.save_state('result.vtk', out=out) view = Viewer('result.vtk') view(is_wireframe=True, rel_scaling=1, is_scalar_bar=True) print "Maximum temperature: %f" % np.max(out['t'].data) data = [i[0] for i in out['t'].data] FF = _get_far(eltype, points, data, mesh, sdim, epsilon) str1 = ''.join(str(v) + ', ' for v in FF)[:-2] try: far = domain.create_region('far', 'vertex %s' % str1, 'facet', add_to_regions=True) except Exception as e: print "Far field region creation failed!" print(e) t.reset() s.reset() return area_source = pb.evaluate('d_surface.3.far(t)') fluxval = 1.0 / (area_source) c2 = sfedis.Material( 'c2', val=fluxval ) # So that total heat at the far field is 1W equally distributed over all elements term1A = Term.new('dw_laplace(c.val, s, t)', integral, omega, c=c, s=s, t=t) term2A = Term.new('dw_surface_integrate(c2.val, s)', integral, far, c2=c2, s=s) eq2 = sfedis.Equation('temperature2', term1A - term2A) eqs2 = sfedis.Equations([eq2]) pb2 = sfedis.Problem('temperature2', equations=eqs2, nls=nls, ls=ls) pb2.time_update(ebcs=Conditions([ t_fixed, ])) temperature2 = pb2.solve() out2 = temperature2.create_output_dict() volume = pb2.evaluate('d_volume.3.Omega(t)') t_int = pb2.evaluate('ev_volume_integrate.3.Omega(t)') avg_t = t_int / volume F = 1.0 / avg_t if verbose is True: print "Average temperature: %f" % avg_t if thickness: 'Correction factor 1e-3 is due to geometry in mm instead of m' F = F * thickness * 1e-3 if verbose is True: pb.save_state('result.vtk', out=out2) view = Viewer('result.vtk') view(is_wireframe=True, rel_scaling=1, is_scalar_bar=True) t.reset() s.reset() return F
def get_hyperelastic_Y(pb, term, micro_state, im, region_name='Y'): from sfepy.terms import Term region = pb.domain.regions[region_name] el = region.get_cells().shape[0] nqp = tuple(term.integral.qps.values())[0].n_point npts = el * nqp mvars = pb.create_variables(['U', 'P'] + ['P%d' % ch for ch in pb.conf.chs]) state_u, state_p = mvars['U'], mvars['P'] termY = Term.new('ev_grad(U)', term.integral, region, U=mvars['U']) if state_u.data[0] is None: state_u.init_data() u_mic = micro_state['coors'][im] - pb.domain.get_mesh_coors(actual=False) state_u.set_data(u_mic) state_u.field.clear_mappings() family_data = pb.family_data(state_u, region, term.integral, term.integration) if len(state_u.field.mappings0) == 0: state_u.field.save_mappings() n_el, n_qp, dim, _, _ = state_u.get_data_shape(term.integral, term.integration, region_name) # relative displacement state_u.set_data(micro_state['coors'][im] - micro_state['coors_prev'][im]) # \bar u (du_prev) grad_du_qp = state_u.evaluate(mode='grad', integral=term.integral).reshape( (npts, dim, dim)) div_du_qp = nm.trace(grad_du_qp, axis1=1, axis2=2).reshape((npts, 1, 1)) press_qp = nm.zeros((n_el, n_qp, 1, 1), dtype=nm.float64) grad_press_qp = nm.zeros((n_el, n_qp, dim, 1), dtype=nm.float64) if micro_state['p'] is not None: p_mic = micro_state['p'][im] state_p.set_data(p_mic) cells = state_p.field.region.get_cells() press_qp[cells, ...] = state_p.evaluate(integral=term.integral) grad_press_qp[cells, ...] = state_p.evaluate(mode='grad', integral=term.integral) pch_mic = {} for ch in pb.conf.chs: state_pi = mvars['P%d' % ch] pch_mic[ch] = micro_state['p%d' % ch][im] state_pi.set_data(micro_state['p%d' % ch][im]) cells = mvars['P%d' % ch].field.region.get_cells() press_qp[cells, ...] = state_pi.evaluate(integral=term.integral) grad_press_qp[cells, ...] = state_pi.evaluate(mode='grad', integral=term.integral) press_qp = press_qp.reshape((npts, 1, 1)) grad_press_qp = grad_press_qp.reshape((npts, dim, 1)) else: p_mic = nm.zeros((state_p.n_dof, ), dtype=nm.float64) pch_mic = { ch: nm.zeros((mvars['P%d' % ch].n_dof, ), dtype=nm.float64) for ch in pb.conf.chs } press_qp = nm.zeros((npts, 1, 1), dtype=nm.float64) grad_press_qp = nm.zeros((npts, dim, 1), dtype=nm.float64) conf_mat = pb.conf.materials solid_key = [key for key in conf_mat.keys() if 'solid' in key][0] solid_mat = conf_mat[solid_key].values mat = {} for mat_key in ['mu', 'K']: if isinstance(solid_mat[mat_key], dict): mat_fun = ConstantFunctionByRegion({mat_key: solid_mat[mat_key]}) mat0 = mat_fun.function(ts=None, coors=nm.empty(npts), mode='qp', term=termY, problem=pb)[mat_key] mat[mat_key] = mat0.reshape((n_el, n_qp) + mat0.shape[-2:]) else: mat[mat_key] = nm.ones((n_el, n_qp, 1, 1)) * solid_mat[mat_key] shape = family_data.green_strain.shape[:2] assert (npts == nm.prod(shape)) sym = family_data.green_strain.shape[-2] dim2 = dim**2 fargs = [ family_data.get(name) for name in NeoHookeanULTerm.family_data_names ] stress_eff = nm.empty(shape + (sym, 1), dtype=nm.float64) tanmod_eff = nm.empty(shape + (sym, sym), dtype=nm.float64) NeoHookeanULTerm.stress_function(stress_eff, mat['mu'], *fargs) NeoHookeanULTerm.tan_mod_function(tanmod_eff, mat['mu'], *fargs) stress_eff_ns = nm.zeros(shape + (dim2, dim2), dtype=nm.float64) tanmod_eff_ns = nm.zeros(shape + (dim2, dim2), dtype=nm.float64) sym2nonsym(stress_eff_ns, stress_eff) sym2nonsym(tanmod_eff_ns, tanmod_eff) J = family_data.det_f.reshape((npts, 1, 1)) mtx_f = family_data.mtx_f.reshape((npts, dim, dim)) stress_p = -press_qp * J * sym_eye[dim] mat_A = (tanmod_eff_ns + stress_eff_ns).reshape((npts, dim2, dim2))\ + J * press_qp * nonsym_delta[dim] mtxI = nm.eye(dim) mat_BI = (mtxI * div_du_qp - grad_du_qp).transpose(0, 2, 1) + mtxI mat['K'] = mat['K'].reshape((npts, dim, dim)) mat_H = div_du_qp * mat['K']\ - la.dot_sequences(mat['K'], grad_du_qp, 'ABT')\ - la.dot_sequences(grad_du_qp, mat['K'], 'ABT') out = { 'E': 0.5 * (la.dot_sequences(mtx_f, mtx_f, 'ATB') - nm.eye(dim)), # Green strain 'S': (stress_eff.reshape( (npts, sym, 1)) + stress_p) / J, # Cauchy stress 'A': mat_A / J, # tangent elastic tensor, eq. (20) 'BI': mat_BI, 'KH': mat['K'] + mat_H, 'H': mat_H, 'dK': mat['K'] * 0, # constant permeability => dK = 0 'w': -grad_press_qp * mat['K'], # perfusion velocity } return out
def _test_single_term(self, term_cls, domain, rname): from sfepy.terms import Term from sfepy.terms.terms import get_arg_kinds ok = True term_call = term_cls.name + '(%s)' arg_shapes_list = term_cls.arg_shapes if not isinstance(arg_shapes_list, list): arg_shapes_list = [arg_shapes_list] prev_shapes = {} for _arg_shapes in arg_shapes_list: # Unset shapes are taken from the previous iteration. arg_shapes = copy(prev_shapes) arg_shapes.update(_arg_shapes) prev_shapes = arg_shapes self.report('arg_shapes:', arg_shapes) arg_types = term_cls.arg_types if not isinstance(arg_types[0], tuple): arg_types = (arg_types, ) for iat, ats in enumerate(arg_types): self.report('arg_types:', ats) arg_kinds = get_arg_kinds(ats) modes = getattr(term_cls, 'modes', None) mode = modes[iat] if modes is not None else None aux = make_term_args(arg_shapes, arg_kinds, ats, mode, domain) args, str_args, materials, variables = aux self.report('args:', str_args) name = term_call % (', '.join(str_args)) term = Term.new(name, self.integral, domain.regions[rname], **args) term.setup() call_mode = 'weak' if term.names.virtual else 'eval' self.report('call mode:', call_mode) out = term.evaluate(mode=call_mode, ret_status=True) if call_mode == 'eval': vals, status = out vals = nm.array(vals) else: vals, iels, status = out vals = vals[0] _ok = nm.isfinite(vals).all() ok = ok and _ok self.report('values shape: %s' % (vals.shape, )) if not _ok: self.report('values are not finite!') self.report(vals) _ok = status == 0 if not _ok: self.report('status is %d!' % status) ok = ok and _ok if term.names.virtual: # Test differentiation w.r.t. state variables in the weak # mode. svars = term.get_state_variables(unknown_only=True) for svar in svars: vals, iels, status = term.evaluate(mode=call_mode, diff_var=svar.name, ret_status=True) vals = vals[0] _ok = status == 0 ok = ok and _ok self.report('diff: %s' % svar.name) if not _ok: self.report('status is %d!' % status) _ok = nm.isfinite(vals).all() ok = ok and _ok self.report('values shape: %s' % (vals.shape, )) if not _ok: self.report('values are not finite!') self.report(vals) return ok
def main(): parser = ArgumentParser(description=__doc__) parser.add_argument('--version', action='version', version='%(prog)s') parser.add_argument('-b', '--basis', metavar='name', action='store', dest='basis', default='lagrange', help=help['basis']) parser.add_argument('-n', '--max-order', metavar='order', type=int, action='store', dest='max_order', default=10, help=help['max_order']) parser.add_argument('-m', '--matrix', metavar='type', action='store', dest='matrix_type', default='laplace', help=help['matrix_type']) parser.add_argument('-g', '--geometry', metavar='name', action='store', dest='geometry', default='2_4', help=help['geometry']) options = parser.parse_args() dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output('reference element geometry:') output(' dimension: %d, vertices: %d' % (dim, n_ep)) n_c = {'laplace': 1, 'elasticity': dim}[options.matrix_type] output('matrix type:', options.matrix_type) output('number of variable components:', n_c) output('polynomial space:', options.basis) output('max. order:', options.max_order) mesh = Mesh.from_file(data_dir + '/meshes/elements/%s_1.mesh' % options.geometry) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') orders = nm.arange(1, options.max_order + 1, dtype=nm.int) conds = [] order_fix = 0 if options.geometry in ['2_4', '3_8'] else 1 for order in orders: output('order:', order, '...') field = Field.from_args('fu', nm.float64, n_c, omega, approx_order=order, space='H1', poly_space_base=options.basis) to = field.approx_order quad_order = 2 * (max(to - order_fix, 0)) output('quadrature order:', quad_order) integral = Integral('i', order=quad_order) qp, _ = integral.get_qp(options.geometry) output('number of quadrature points:', qp.shape[0]) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', D=stiffness_from_lame(dim, 1.0, 1.0), mu=1.0) if options.matrix_type == 'laplace': term = Term.new('dw_laplace(m.mu, v, u)', integral, omega, m=m, v=v, u=u) n_zero = 1 else: assert_(options.matrix_type == 'elasticity') term = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) n_zero = (dim + 1) * dim / 2 term.setup() output('assembling...') tt = time.clock() mtx, iels = term.evaluate(mode='weak', diff_var='u') output('...done in %.2f s' % (time.clock() - tt)) mtx = mtx[0, 0] try: assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10) except: from sfepy.base.base import debug debug() output('matrix shape:', mtx.shape) eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False) eigs.sort() # Zero 'true' zeros. eigs[:n_zero] = 0.0 ii = nm.where(eigs < 0.0)[0] if len(ii): output('matrix is not positive semi-definite!') ii = nm.where(eigs[n_zero:] < 1e-12)[0] if len(ii): output('matrix has more than %d zero eigenvalues!' % n_zero) output('smallest eigs:\n', eigs[:10]) ii = nm.where(eigs > 0.0)[0] emin, emax = eigs[ii[[0, -1]]] output('min:', emin, 'max:', emax) cond = emax / emin conds.append(cond) output('condition number:', cond) output('...done') plt.figure(1) plt.semilogy(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.figure(2) plt.loglog(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.show()
def main(): parser = OptionParser(usage=usage, version='%prog') parser.add_option('-b', '--basis', metavar='name', action='store', dest='basis', default='lagrange', help=help['basis']) parser.add_option('-n', '--max-order', metavar='order', type=int, action='store', dest='max_order', default=10, help=help['max_order']) parser.add_option('-m', '--matrix', metavar='type', action='store', dest='matrix_type', default='laplace', help=help['matrix_type']) parser.add_option('-g', '--geometry', metavar='name', action='store', dest='geometry', default='2_4', help=help['geometry']) options, args = parser.parse_args() dim, n_ep = int(options.geometry[0]), int(options.geometry[2]) output('reference element geometry:') output(' dimension: %d, vertices: %d' % (dim, n_ep)) n_c = {'laplace' : 1, 'elasticity' : dim}[options.matrix_type] output('matrix type:', options.matrix_type) output('number of variable components:', n_c) output('polynomial space:', options.basis) output('max. order:', options.max_order) mesh = Mesh.from_file(data_dir + '/meshes/elements/%s_1.mesh' % options.geometry) domain = FEDomain('domain', mesh) omega = domain.create_region('Omega', 'all') orders = nm.arange(1, options.max_order + 1, dtype=nm.int) conds = [] order_fix = 0 if options.geometry in ['2_4', '3_8'] else 1 for order in orders: output('order:', order, '...') field = Field.from_args('fu', nm.float64, n_c, omega, approx_order=order, space='H1', poly_space_base=options.basis) to = field.approx_order quad_order = 2 * (max(to - order_fix, 0)) output('quadrature order:', quad_order) integral = Integral('i', order=quad_order) qp, _ = integral.get_qp(options.geometry) output('number of quadrature points:', qp.shape[0]) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', lam=1.0, mu=1.0) if options.matrix_type == 'laplace': term = Term.new('dw_laplace(m.mu, v, u)', integral, omega, m=m, v=v, u=u) n_zero = 1 else: assert_(options.matrix_type == 'elasticity') term = Term.new('dw_lin_elastic_iso(m.lam, m.mu, v, u)', integral, omega, m=m, v=v, u=u) n_zero = (dim + 1) * dim / 2 term.setup() output('assembling...') tt = time.clock() mtx, iels = term.evaluate(mode='weak', diff_var='u') output('...done in %.2f s' % (time.clock() - tt)) mtx = mtx[0][0, 0] try: assert_(nm.max(nm.abs(mtx - mtx.T)) < 1e-10) except: from sfepy.base.base import debug; debug() output('matrix shape:', mtx.shape) eigs = eig(mtx, method='eig.sgscipy', eigenvectors=False) eigs.sort() # Zero 'true' zeros. eigs[:n_zero] = 0.0 ii = nm.where(eigs < 0.0)[0] if len(ii): output('matrix is not positive semi-definite!') ii = nm.where(eigs[n_zero:] < 1e-12)[0] if len(ii): output('matrix has more than %d zero eigenvalues!' % n_zero) output('smallest eigs:\n', eigs[:10]) ii = nm.where(eigs > 0.0)[0] emin, emax = eigs[ii[[0, -1]]] output('min:', emin, 'max:', emax) cond = emax / emin conds.append(cond) output('condition number:', cond) output('...done') plt.figure(1) plt.semilogy(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.figure(2) plt.loglog(orders, conds) plt.xticks(orders, orders) plt.xlabel('polynomial order') plt.ylabel('condition number') plt.grid() plt.show()
'vertex') top = domain.create_region('Top', 'vertices in z > %.10f' % (max_z - eps), 'vertex') field = Field.from_args('fu', np.float64, 'vector', omega, approx_order=1) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') m = Material('m', D=stiffness_from_youngpoisson(dim=3, young=6.8e10, poisson=0.36), rho=2700.0) integral = Integral('i', order=1) t1 = Term.new('dw_lin_elastic(m.D, v, u)', integral, omega, m=m, v=v, u=u) eq1 = Equation('balance_of_forces', t1) eqs = Equations([eq1]) z_displacements = np.linspace(0, 0.05, 6) vm_stresses = np.zeros([len(z_displacements), 2]) for i, z_displacement in enumerate(z_displacements): fix_bot = EssentialBC('fix_bot', bot, {'u.all': 0.0}) fix_top = EssentialBC('fix_top', top, { 'u.[0,1]': 0.0, 'u.[2]': -z_displacement }) ls = ScipyDirect({})
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('--diffusivity', metavar='float', type=float, action='store', dest='diffusivity', default=1e-5, help=helps['diffusivity']) parser.add_option('--ic-max', metavar='float', type=float, action='store', dest='ic_max', default=2.0, help=helps['ic_max']) parser.add_option('--order', metavar='int', type=int, action='store', dest='order', default=2, help=helps['order']) parser.add_option('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_option('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) options, args = parser.parse_args() assert_((0 < options.order), 'temperature approximation order must be at least 1!') output('using values:') output(' diffusivity:', options.diffusivity) output(' max. IC value:', options.ic_max) output('uniform mesh refinement level:', options.refine) mesh = Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in range(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.00001', 'facet') right = domain.create_region('Right', 'vertices in x > 0.099999', 'facet') field = Field.from_args('fu', nm.float64, 'scalar', omega, approx_order=options.order) T = FieldVariable('T', 'unknown', field, history=1) s = FieldVariable('s', 'test', field, primary_var_name='T') m = Material('m', diffusivity=options.diffusivity * nm.eye(3)) integral = Integral('i', order=2*options.order) t1 = Term.new('dw_diffusion(m.diffusivity, s, T)', integral, omega, m=m, s=s, T=T) t2 = Term.new('dw_volume_dot(s, dT/dt)', integral, omega, s=s, T=T) eq = Equation('balance', t1 + t2) eqs = Equations([eq]) # Boundary conditions. ebc1 = EssentialBC('T1', left, {'T.0' : 2.0}) ebc2 = EssentialBC('T2', right, {'T.0' : -2.0}) # Initial conditions. def get_ic(coors, ic): x, y, z = coors.T return 2 - 40.0 * x + options.ic_max * nm.sin(4 * nm.pi * x / 0.1) ic_fun = Function('ic_fun', get_ic) ic = InitialCondition('ic', omega, {'T.0' : ic_fun}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({'is_linear' : True}, lin_solver=ls, status=nls_status) pb = Problem('heat', equations=eqs, nls=nls, ls=ls) pb.set_bcs(ebcs=Conditions([ebc1, ebc2])) pb.set_ics(Conditions([ic])) tss = SimpleTimeSteppingSolver({'t0' : 0.0, 't1' : 100.0, 'n_step' : 11}, problem=pb) tss.init_time() if options.probe: # Prepare probe data. probes, labels = gen_lines(pb) ev = pb.evaluate order = 2 * (options.order - 1) gfield = Field.from_args('gu', nm.float64, 'vector', omega, approx_order=options.order - 1) dvel = FieldVariable('dvel', 'parameter', gfield, primary_var_name='(set-to-None)') cfield = Field.from_args('gu', nm.float64, 'scalar', omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') nls_options = {'eps_a' : 1e-16, 'i_max' : 1} if options.show: plt.ion() # Solve the problem using the time stepping solver. suffix = tss.ts.suffix for step, time, state in tss(): if options.probe: # Probe the solution. dvel_qp = ev('ev_diffusion_velocity.%d.Omega(m.diffusivity, T)' % order, copy_materials=False, mode='qp') project_by_component(dvel, dvel_qp, component, order, nls_options=nls_options) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(ii, T, dvel, probe, labels[ii]) all_results.append(results) plt.tight_layout() fig.savefig('time_poisson_interactive_probe_%s.png' % (suffix % step), bbox_inches='tight') if options.show: plt.draw() for ii, results in enumerate(all_results): output('probe %d (%s):' % (ii, probes[ii].name)) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2
def main(): from sfepy import data_dir parser = OptionParser(usage=usage, version='%prog') parser.add_option('--young', metavar='float', type=float, action='store', dest='young', default=2000.0, help=helps['young']) parser.add_option('--poisson', metavar='float', type=float, action='store', dest='poisson', default=0.4, help=helps['poisson']) parser.add_option('--load', metavar='float', type=float, action='store', dest='load', default=-1000.0, help=helps['load']) parser.add_option('--order', metavar='int', type=int, action='store', dest='order', default=1, help=helps['order']) parser.add_option('-r', '--refine', metavar='int', type=int, action='store', dest='refine', default=0, help=helps['refine']) parser.add_option('-s', '--show', action="store_true", dest='show', default=False, help=helps['show']) parser.add_option('-p', '--probe', action="store_true", dest='probe', default=False, help=helps['probe']) options, args = parser.parse_args() assert_((0.0 < options.poisson < 0.5), "Poisson's ratio must be in ]0, 0.5[!") assert_((0 < options.order), 'displacement approximation order must be at least 1!') output('using values:') output(" Young's modulus:", options.young) output(" Poisson's ratio:", options.poisson) output(' vertical load:', options.load) output('uniform mesh refinement level:', options.refine) # Build the problem definition. mesh = Mesh.from_file(data_dir + '/meshes/2d/its2D.mesh') domain = FEDomain('domain', mesh) if options.refine > 0: for ii in xrange(options.refine): output('refine %d...' % ii) domain = domain.refine() output('... %d nodes %d elements' % (domain.shape.n_nod, domain.shape.n_el)) omega = domain.create_region('Omega', 'all') left = domain.create_region('Left', 'vertices in x < 0.001', 'facet') bottom = domain.create_region('Bottom', 'vertices in y < 0.001', 'facet') top = domain.create_region('Top', 'vertex 2', 'vertex') field = Field.from_args('fu', nm.float64, 'vector', omega, approx_order=options.order) u = FieldVariable('u', 'unknown', field) v = FieldVariable('v', 'test', field, primary_var_name='u') D = stiffness_from_youngpoisson(2, options.young, options.poisson) asphalt = Material('Asphalt', D=D) load = Material('Load', values={'.val': [0.0, options.load]}) integral = Integral('i', order=2 * options.order) integral0 = Integral('i', order=0) t1 = Term.new('dw_lin_elastic(Asphalt.D, v, u)', integral, omega, Asphalt=asphalt, v=v, u=u) t2 = Term.new('dw_point_load(Load.val, v)', integral0, top, Load=load, v=v) eq = Equation('balance', t1 - t2) eqs = Equations([eq]) xsym = EssentialBC('XSym', bottom, {'u.1': 0.0}) ysym = EssentialBC('YSym', left, {'u.0': 0.0}) ls = ScipyDirect({}) nls_status = IndexedStruct() nls = Newton({}, lin_solver=ls, status=nls_status) pb = Problem('elasticity', equations=eqs, nls=nls, ls=ls) pb.time_update(ebcs=Conditions([xsym, ysym])) # Solve the problem. state = pb.solve() output(nls_status) # Postprocess the solution. out = state.create_output_dict() out = stress_strain(out, pb, state, extend=True) pb.save_state('its2D_interactive.vtk', out=out) gdata = geometry_data['2_3'] nc = len(gdata.coors) integral_vn = Integral('ivn', coors=gdata.coors, weights=[gdata.volume / nc] * nc) nodal_stress(out, pb, state, integrals=Integrals([integral_vn])) if options.probe: # Probe the solution. probes, labels = gen_lines(pb) sfield = Field.from_args('sym_tensor', nm.float64, 3, omega, approx_order=options.order - 1) stress = FieldVariable('stress', 'parameter', sfield, primary_var_name='(set-to-None)') strain = FieldVariable('strain', 'parameter', sfield, primary_var_name='(set-to-None)') cfield = Field.from_args('component', nm.float64, 1, omega, approx_order=options.order - 1) component = FieldVariable('component', 'parameter', cfield, primary_var_name='(set-to-None)') ev = pb.evaluate order = 2 * (options.order - 1) strain_qp = ev('ev_cauchy_strain.%d.Omega(u)' % order, mode='qp') stress_qp = ev('ev_cauchy_stress.%d.Omega(Asphalt.D, u)' % order, mode='qp', copy_materials=False) project_by_component(strain, strain_qp, component, order) project_by_component(stress, stress_qp, component, order) all_results = [] for ii, probe in enumerate(probes): fig, results = probe_results(u, strain, stress, probe, labels[ii]) fig.savefig('its2D_interactive_probe_%d.png' % ii) all_results.append(results) for ii, results in enumerate(all_results): output('probe %d:' % ii) output.level += 2 for key, res in ordered_iteritems(results): output(key + ':') val = res[1] output(' min: %+.2e, mean: %+.2e, max: %+.2e' % (val.min(), val.mean(), val.max())) output.level -= 2 if options.show: # Show the solution. If the approximation order is greater than 1, the # extra DOFs are simply thrown away. from sfepy.postprocess.viewer import Viewer view = Viewer('its2D_interactive.vtk') view(vector_mode='warp_norm', rel_scaling=1, is_scalar_bar=True, is_wireframe=True)