Exemple #1
0
def mean_theta(prof, lower=-1, upper=-1):
    '''
    Calculates the mean theta from a profile object within the
    specified layer.

    Inputs
    ------
        prof        (profile object)    Profile Object
        lower       (float)             Bottom level (hPa) [-1=SFC]
        upper       (float)             Top level (hPa) [-1=SFC-100hPa]

    Returns
    -------
        Mean Theta   (float)
    '''
    if lower == -1: lower = prof.gSndg[prof.sfc][prof.pind]
    if upper == -1: upper = prof.gSndg[prof.sfc][prof.pind] - 100.

    if not QC(interp.temp(upper, prof)): mmw = RMISSD
    if not QC(interp.temp(lower, prof)): prof.gSndg[prof.sfc][prof.pind]

    # Find lowest observations in the layer
    i = 0
    while prof.gSndg[i][prof.pind] > lower:
        i += 1
    while not QC(prof.gSndg[i][prof.tind]):
        i += 1
    lptr = i
    if prof.gSndg[i][prof.pind] == lower: lptr += 1

    # Find highest observations in the layer
    i = prof.gNumLevels - 1
    while prof.gSndg[i][prof.pind] < upper:
        i -= 1
    uptr = i
    if prof.gSndg[i][prof.pind] == upper: uptr -= 1

    tott = 0

    # Start with interpolated bottom layer
    t1 = thermo.theta(lower, interp.temp(lower, prof), 1000.)
    num = 1

    # Calculate every level that reports a dew point
    for i in range(lptr, uptr + 1):
        if QC(prof.gSndg[i][prof.tind]):
            t2 = thermo.theta(prof.gSndg[i][prof.pind],
                              prof.gSndg[i][prof.tind], 1000.)
            tbar = (t1 + t2) / 2.
            tott += tbar
            t1 = t2
            num += 1

    # Finish with top layer
    t2 = thermo.theta(upper, interp.temp(upper, prof), 1000.)
    tbar = (t1 + t2) / 2.
    tott += tbar
    return tott / num
Exemple #2
0
def mean_theta(prof, lower=-1, upper=-1):
    '''
    Calculates the mean theta from a profile object within the
    specified layer.

    Inputs
    ------
        prof        (profile object)    Profile Object
        lower       (float)             Bottom level (hPa) [-1=SFC]
        upper       (float)             Top level (hPa) [-1=SFC-100hPa]

    Returns
    -------
        Mean Theta   (float)
    '''
    if lower == -1: lower = prof.gSndg[prof.sfc][prof.pind]
    if upper == -1: upper = prof.gSndg[prof.sfc][prof.pind] - 100.

    if not QC(interp.temp(upper, prof)): mmw = RMISSD
    if not QC(interp.temp(lower, prof)): prof.gSndg[prof.sfc][prof.pind]

    # Find lowest observations in the layer
    i = 0
    while prof.gSndg[i][prof.pind] > lower: i+=1
    while not QC(prof.gSndg[i][prof.tind]): i+=1
    lptr = i
    if prof.gSndg[i][prof.pind] == lower: lptr+=1

    # Find highest observations in the layer
    i = prof.gNumLevels - 1
    while prof.gSndg[i][prof.pind] < upper: i-=1
    uptr = i
    if prof.gSndg[i][prof.pind] == upper: uptr-=1

    tott = 0

    # Start with interpolated bottom layer
    t1 = thermo.theta(lower, interp.temp(lower, prof), 1000.)
    num = 1

    # Calculate every level that reports a dew point
    for i in range(lptr, uptr+1):
        if QC(prof.gSndg[i][prof.tind]):
            t2 = thermo.theta(prof.gSndg[i][prof.pind],
                prof.gSndg[i][prof.tind], 1000.)
            tbar = (t1 + t2) / 2.
            tott += tbar
            t1 = t2
            num += 1

    # Finish with top layer
    t2 = thermo.theta(upper, interp.temp(upper, prof), 1000.)
    tbar = (t1 + t2) / 2.
    tott += tbar
    return tott / num
Exemple #3
0
def test_theta():
    # single
    input_p = 940
    input_t = 5
    input_p2 = 1000.
    correct_theta = 9.961049492262532
    returned_theta = thermo.theta(input_p, input_t, input_p2)
    npt.assert_almost_equal(returned_theta, correct_theta)

    # array
    input_p = np.asarray([940, 850])
    input_t = np.asarray([5, 10])
    input_p2 = np.asarray([1000., 1000.])
    correct_theta = [9.961049492262532, 23.457812111895066]
    returned_theta = thermo.theta(input_p, input_t, input_p2)
    npt.assert_almost_equal(returned_theta, correct_theta)
def test_theta():
    # single
    input_p = 940
    input_t = 5
    input_p2 = 1000.
    correct_theta = 9.961049492262532
    returned_theta = thermo.theta(input_p, input_t, input_p2)
    npt.assert_almost_equal(returned_theta, correct_theta)

    # array
    input_p = np.asarray([940, 850])
    input_t = np.asarray([5, 10])
    input_p2 = np.asarray([1000., 1000.])
    correct_theta = [9.961049492262532, 23.457812111895066]
    returned_theta = thermo.theta(input_p, input_t, input_p2)
    npt.assert_almost_equal(returned_theta, correct_theta)
Exemple #5
0
    def get_parcels(self):
        '''
        Function to generate various parcels and parcel
        traces.
        Returns nothing, but sets the following
        variables:

        self.mupcl : Most Unstable Parcel
        self.sfcpcl : Surface Based Parcel
        self.mlpcl : Mixed Layer Parcel
        self.fcstpcl : Forecast Surface Parcel
        self.ebottom : The bottom pressure level of
            the effective inflow layer
        self.etop : the top pressure level of
            the effective inflow layer
        self.ebotm : The bottom, meters (agl), of the
            effective inflow layer
        self.etopm : The top, meters (agl), of the
            effective inflow layer
    
        Parameters
        ----------
        None

        Returns
        -------
        None
        '''

        self.mupcl = params.parcelx( self, flag=3 )
        if self.mupcl.lplvals.pres == self.pres[self.sfc]:
            self.sfcpcl = self.mupcl
        else:
            self.sfcpcl = params.parcelx( self, flag=1 )
        self.fcstpcl = params.parcelx( self, flag=2 )
        self.mlpcl = params.parcelx( self, flag=4 )
        self.usrpcl = params.Parcel()

        ## get the effective inflow layer data
        self.ebottom, self.etop = params.effective_inflow_layer( self, mupcl=self.mupcl )

        ## if there was no effective inflow layer, set the values to masked
        if self.etop is ma.masked or self.ebottom is ma.masked:
            self.ebotm = ma.masked; self.etopm = ma.masked
            self.effpcl = self.sfcpcl # Default to surface parcel, as in params.DefineProfile().

        ## otherwise, interpolate the heights given to above ground level
        else:
            self.ebotm = interp.to_agl(self, interp.hght(self, self.ebottom))
            self.etopm = interp.to_agl(self, interp.hght(self, self.etop))
            # The below code was adapted from params.DefineProfile()
            # Lifting one additional parcel probably won't slow the program too much.
            # It's just one more lift compared to all the lifts in the params.effective_inflow_layer() call.
            mtha = params.mean_theta(self, self.ebottom, self.etop)
            mmr = params.mean_mixratio(self, self.ebottom, self.etop)
            effpres = (self.ebottom+self.etop)/2.
            efftmpc = thermo.theta(1000., mtha, effpres)
            effdwpc = thermo.temp_at_mixrat(mmr, effpres)
            self.effpcl = params.parcelx(self, flag=5, pres=effpres, tmpc=efftmpc, dwpc=effdwpc) #This is the effective parcel.
Exemple #6
0
    def get_parcels(self):
        '''
        Function to generate various parcels and parcel
        traces.
        Returns nothing, but sets the following
        variables:

        self.mupcl : Most Unstable Parcel
        self.sfcpcl : Surface Based Parcel
        self.mlpcl : Mixed Layer Parcel
        self.fcstpcl : Forecast Surface Parcel
        self.ebottom : The bottom pressure level of
            the effective inflow layer
        self.etop : the top pressure level of
            the effective inflow layer
        self.ebotm : The bottom, meters (agl), of the
            effective inflow layer
        self.etopm : The top, meters (agl), of the
            effective inflow layer
    
        Parameters
        ----------
        None

        Returns
        -------
        None
        '''

        self.mupcl = params.parcelx( self, flag=3 )
        if self.mupcl.lplvals.pres == self.pres[self.sfc]:
            self.sfcpcl = self.mupcl
        else:
            self.sfcpcl = params.parcelx( self, flag=1 )
        self.fcstpcl = params.parcelx( self, flag=2 )
        self.mlpcl = params.parcelx( self, flag=4 )
        self.usrpcl = params.Parcel()

        ## get the effective inflow layer data
        self.ebottom, self.etop = params.effective_inflow_layer( self, mupcl=self.mupcl )

        ## if there was no effective inflow layer, set the values to masked
        if self.etop is ma.masked or self.ebottom is ma.masked:
            self.ebotm = ma.masked; self.etopm = ma.masked
            self.effpcl = self.sfcpcl # Default to surface parcel, as in params.DefineProfile().

        ## otherwise, interpolate the heights given to above ground level
        else:
            self.ebotm = interp.to_agl(self, interp.hght(self, self.ebottom))
            self.etopm = interp.to_agl(self, interp.hght(self, self.etop))
            # The below code was adapted from params.DefineProfile()
            # Lifting one additional parcel probably won't slow the program too much.
            # It's just one more lift compared to all the lifts in the params.effective_inflow_layer() call.
            mtha = params.mean_theta(self, self.ebottom, self.etop)
            mmr = params.mean_mixratio(self, self.ebottom, self.etop)
            effpres = (self.ebottom+self.etop)/2.
            efftmpc = thermo.theta(1000., mtha, effpres)
            effdwpc = thermo.temp_at_mixrat(mmr, effpres)
            self.effpcl = params.parcelx(self, flag=5, pres=effpres, tmpc=efftmpc, dwpc=effdwpc) #This is the effective parcel.
Exemple #7
0
 def __ml(self, prof, **kwargs):
     ''' Create the mixed-layer parcel; mixing over defined pressure '''
     self.desc = '%.2f hPa Mixed Layer Parcel' % self.presval
     self.pres = prof.gSndg[prof.sfc][prof.pind]
     diff = prof.gSndg[prof.sfc][prof.pind] - self.presval
     mtha = mean_theta(prof, -1, diff)
     mmr = mean_mixratio(prof, -1, diff)
     self.temp = thermo.theta(1000., mtha, self.pres)
     self.dwpt = thermo.temp_at_mixrat(mmr, self.pres)
     return
Exemple #8
0
 def __ml(self, prof, **kwargs):
     ''' Create the mixed-layer parcel; mixing over defined pressure '''
     self.desc = '%.2f hPa Mixed Layer Parcel' % self.presval
     self.pres = prof.gSndg[prof.sfc][prof.pind]
     diff = prof.gSndg[prof.sfc][prof.pind] - self.presval
     mtha = mean_theta(prof, -1, diff)
     mmr = mean_mixratio(prof, -1, diff)
     self.temp = thermo.theta(1000., mtha, self.pres)
     self.dwpt = thermo.temp_at_mixrat(mmr, self.pres)
     return
Exemple #9
0
 def get_theta_profile(self):
     '''
         Function to calculate the theta profile.
         
         Parameters
         ----------
         None
         
         Returns
         -------
         Array of theta profile
         '''
     theta = ma.empty(self.pres.shape[0])
     for i in range(len(self.v)):
         theta[i] = thermo.theta(self.pres[i], self.tmpc[i])
     theta[theta == self.missing] = ma.masked
     theta.set_fill_value(self.missing)
     theta = thermo.ctok(theta)
     return theta
Exemple #10
0
 def get_theta_profile(self):
     '''
         Function to calculate the theta profile.
         
         Parameters
         ----------
         None
         
         Returns
         -------
         Array of theta profile
         '''
     theta = ma.empty(self.pres.shape[0])
     for i in range(len(self.v)):
         theta[i] = thermo.theta(self.pres[i], self.tmpc[i])
     theta[theta == self.missing] = ma.masked
     theta.set_fill_value(self.missing)
     theta = thermo.ctok(theta)
     return theta
Exemple #11
0
 def __effective(self, prof):
     ''' Create the mean-effective layer parcel '''
     pbot, ptop = effective_inflow_layer(100, -250, prof)
     if pbot > 0:
         self.desc = '%.2f hPa Mean Effective Layer Centered at %.2f' % (
             pbot - ptop, (pbot + ptop) / 2.)
         mtha = mean_theta(prof, pbot, ptop)
         mmr = mean_mixratio(prof, pbot, ptop)
         self.pres = (ptop + pbot) / 2.
         self.temp = thermo.theta(1000., mtha, self.pres)
         self.dwpt = thermo.temp_at_mixrat(mmr, self.pres)
     else:
         self.desc = 'Defaulting to Surface Layer'
         self.pres = prof.gSndg[prof.sfc][prof.pind]
         self.temp = prof.gSndg[prof.sfc][prof.tind]
         self.dwpt = prof.gSndg[prof.sfc][prof.tdind]
     if QC(pbot): self.pbot = pbot
     else: self.pbot = RMISSD
     if QC(ptop): self.ptop = ptop
     else: self.ptop = RMISSD
     return
Exemple #12
0
 def __effective(self, prof):
     ''' Create the mean-effective layer parcel '''
     pbot, ptop = effective_inflow_layer(100, -250, prof)
     if pbot > 0:
         self.desc = '%.2f hPa Mean Effective Layer Centered at %.2f' % (
             pbot-ptop, (pbot+ptop)/2.)
         mtha = mean_theta(prof, pbot, ptop)
         mmr = mean_mixratio(prof, pbot, ptop)
         self.pres = (ptop + pbot) / 2.
         self.temp = thermo.theta(1000., mtha, self.pres)
         self.dwpt = thermo.temp_at_mixrat(mmr, self.pres)
     else:
         self.desc = 'Defaulting to Surface Layer'
         self.pres = prof.gSndg[prof.sfc][prof.pind]
         self.temp = prof.gSndg[prof.sfc][prof.tind]
         self.dwpt = prof.gSndg[prof.sfc][prof.tdind]
     if QC(pbot): self.pbot = pbot
     else: self.pbot = RMISSD
     if QC(ptop): self.ptop = ptop
     else: self.ptop = RMISSD
     return
Exemple #13
0
''' Create the Sounding (Profile) Object '''
Exemple #14
0
def parcelx(lower, upper, pres, temp, dwpt, prof, **kwargs):
    '''
    Lifts the specified parcel, calculated various levels and parameters from
    the profile object. B+/B- are calculated based on the specified layer.

    !! All calculations use the virtual temperature correction unless noted. !!

    Inputs
    ------
        lower       (float)                 Lower-bound lifting level (hPa)
        upper       (float)                 Upper-bound lifting level
        pres        (float)                 Pressure of parcel to lift (hPa)
        temp        (float)                 Temperature of parcel to lift (C)
        dwpt        (float)                 Dew Point of parcel to lift (C)
        prof        (profile object)        Profile Object

    Returns
    -------
        pcl         (parcel object)         Parcel Object
    '''
    pcl = Parcel(-1, -1, pres, temp, dwpt)
    if 'lplvals' in kwargs: pcl.lplvals = kwargs.get('lplvals')
    else:
        lplvals = DefineParcel(prof, 5, pres=pres, temp=temp, dwpt=dwpt)
        pcl.lplvals = lplvals

    if prof.gNumLevels < 1: return pcl

    lyre = -1
    cap_strength = RMISSD
    cap_strengthpres = RMISSD
    li_max = RMISSD
    li_maxpres = RMISSD
    totp = 0.
    totn = 0.
    tote = 0.
    cinh_old = 0.

    # See if default layer is specified
    if lower == -1:
        lower = prof.gSndg[prof.sfc][prof.pind]
        pcl.blayer = lower
    if upper == -1:
        upper = prof.gSndg[prof.gNumLevels - 1][prof.pind]
        pcl.tlayer = upper

    # Make sure that this is a valid layer
    if lower > pres:
        lower = pres
        pcl.blayer = lower
    if not QC(interp.vtmp(lower, prof)) or \
       not QC(interp.vtmp(upper, prof)):
        return RMISSD

    # Begin with the Mixing Layer
    te1 = interp.vtmp(pres, prof)
    pe1 = lower
    h1 = interp.hght(pe1, prof)
    tp1 = thermo.virtemp(pres, temp, dwpt)
    # te1 = tp1

    # Lift parcel and return LCL pres (hPa) and LCL temp (c)
    pe2, tp2 = thermo.drylift(pres, temp, dwpt)
    blupper = pe2  # Define top of layer as LCL pres
    h2 = interp.hght(pe2, prof)
    te2 = interp.vtmp(pe2, prof)
    pcl.lclpres = pe2
    pcl.lclhght = interp.agl(h2, prof)

    # Calculate lifted parcel theta for use in iterative CINH loop below
    # RECALL: lifted parcel theta is CONSTANT from LPL to LCL
    theta_parcel = thermo.theta(pe2, tp2, 1000.)

    # Environmental theta and mixing ratio at LPL
    bltheta = thermo.theta(pres, interp.temp(pres, prof), 1000.)
    blmr = thermo.mixratio(pres, dwpt)

    # ACCUMULATED CINH IN MIXING LAYER BELOW THE LCL
    # This will be done in 10mb increments, and will use the virtual
    # temperature correction where possible
    pinc = -10
    a = int(lower)
    b = int(blupper)
    for pp in range(a, b, int(pinc)):
        pp1 = pp
        pp2 = pp + pinc
        if pp2 < blupper: pp2 = blupper
        dz = interp.hght(pp2, prof) - interp.hght(pp1, prof)

        # Calculate difference between Tv_parcel and Tv_environment at top
        # and bottom of 10mb layers. Make use of constant lifted parcel
        # theta and mixing ratio from LPL to LCL
        tv_env_bot = thermo.virtemp(
            pp1, thermo.theta(pp1, interp.temp(pp1, prof), 1000.),
            interp.dwpt(pp1, prof))
        tdef1 = (thermo.virtemp(pp1, theta_parcel,
            thermo.temp_at_mixrat(blmr, pp1)) - tv_env_bot) / \
            (thermo.ctok(tv_env_bot))

        tv_env_top = thermo.virtemp(
            pp2, thermo.theta(pp2, interp.temp(pp2, prof), 1000.),
            interp.dwpt(pp2, prof))
        tdef2 = (thermo.virtemp(pp2, theta_parcel,
            thermo.temp_at_mixrat(blmr, pp2)) - tv_env_top) / \
            (thermo.ctok(tv_env_bot))

        lyre = G * (tdef1 + tdef2) / 2. * dz
        if lyre < 0: totn += lyre

    # Move the bottom layer to the top of the boundary layer
    if lower > pe2:
        lower = pe2
        pcl.blayer = lower

    # Calculate height of various temperature levels
    p0c = temp_lvl(0., prof)
    pm10c = temp_lvl(-10., prof)
    pm20c = temp_lvl(-20., prof)
    pm30c = temp_lvl(-30., prof)
    hgt0c = interp.hght(p0c, prof)
    hgtm10c = interp.hght(pm10c, prof)
    hgtm20c = interp.hght(pm20c, prof)
    hgtm30c = interp.hght(pm30c, prof)
    pcl.p0c = p0c
    pcl.pm10c = pm10c
    pcl.pm20c = pm20c
    pcl.pm30c = pm30c
    pcl.hght0c = hgt0c
    pcl.hghtm10c = hgtm10c
    pcl.hghtm20c = hgtm20c
    pcl.hghtm30c = hgtm30c

    # Find lowest observation in layer
    i = 0
    while prof.gSndg[i][prof.pind] > lower:
        if i == prof.gNumLevels - 1: break
        i += 1
    while not QC(prof.gSndg[i][prof.tdind]):
        if i == prof.gNumLevels - 1: break
        i += 1
    lptr = i
    if prof.gSndg[i][prof.pind] == lower:
        if i != prof.gNumLevels - 1: lptr += 1

    # Find highest observation in layer
    i = prof.gNumLevels - 1
    while prof.gSndg[i][prof.pind] < upper:
        if i < lptr: break
        i -= 1
    uptr = i
    if prof.gSndg[i][prof.pind] == upper:
        if i > lptr: uptr -= 1

    # START WITH INTERPOLATED BOTTOM LAYER
    # Begin moist ascent from lifted parcel LCL (pe2, tp2)
    pe1 = lower
    h1 = interp.hght(pe1, prof)
    te1 = interp.vtmp(pe1, prof)
    tp1 = thermo.wetlift(pe2, tp2, pe1)
    lyre = 0
    lyrlast = 0
    for i in range(lptr, prof.gNumLevels):
        if not QC(prof.gSndg[i][prof.tind]): continue
        pe2 = prof.gSndg[i][prof.pind]
        h2 = prof.gSndg[i][prof.zind]
        te2 = interp.vtmp(pe2, prof)
        tp2 = thermo.wetlift(pe1, tp1, pe2)
        tdef1 = (thermo.virtemp(pe1, tp1, tp1) - te1) / thermo.ctok(te1)
        tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2)
        lyrlast = lyre
        lyre = G * (tdef1 + tdef2) / 2. * (h2 - h1)

        # Add layer energy to total positive if lyre > 0
        if lyre > 0:
            totp += lyre
            # Add layer energy to total negative if lyre < 0, only up to EL
        else:
            if pe2 > 500.: totn += lyre

        # Check for Max LI
        mli = thermo.virtemp(pe2, tp2, tp2) - te2
        if mli > li_max:
            li_max = mli
            li_maxpres = pe2

        # Check for Max Cap Strength
        mcap = te2 - mli
        if mcap > cap_strength:
            cap_strength = mcap
            cap_strengthpres = pe2

        tote += lyre
        pelast = pe1
        pe1 = pe2
        h1 = h2
        te1 = te2
        tp1 = tp2

        # Is this the top of the specified layer
        if i >= uptr and not QC(pcl.bplus):
            pe3 = pe1
            h3 = h1
            te3 = te1
            tp3 = tp1
            lyrf = lyre
            if lyrf > 0:
                pcl.bplus = totp - lyrf
                pcl.bminus = totn
            else:
                pcl.bplus = totp
                if pe2 > 500.: pcl.bminus = totn + lyrf
                else: pcl.bminus = totn
            pe2 = upper
            h2 = interp.hght(pe2, prof)
            te2 = interp.vtmp(pe2, prof)
            tp2 = thermo.wetlift(pe3, tp3, pe2)
            tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / thermo.ctok(te3)
            tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2)
            lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
            if lyrf > 0: pcl.bplus += lyrf
            else:
                if pe2 > 500.: pcl.bminus += lyrf
            if pcl.bplus == 0: pcl.bminus = 0.

        # Is this the freezing level
        if te2 < 0. and not QC(pcl.bfzl):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.bfzl = totp - lyrf
            else: pcl.bfzl = totp
            if not QC(p0c) or p0c > pe3:
                pcl.bfzl = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgt0c - h3)
                if lyrf > 0: pcl.bfzl += lyrf

        # Is this the -10C level
        if te2 < -10. and not QC(pcl.wm10c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm10c = totp - lyrf
            else: pcl.wm10c = totp
            if not QC(pm10c) or pm10c > pcl.lclpres:
                pcl.wm10c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm10c - h3)
                if lyrf > 0: pcl.wm10c += lyrf

        # Is this the -20C level
        if te2 < -20. and not QC(pcl.wm20c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm20c = totp - lyrf
            else: pcl.wm20c = totp
            if not QC(pm20c) or pm20c > pcl.lclpres:
                pcl.wm20c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm20c - h3)
                if lyrf > 0: pcl.wm20c += lyrf

        # Is this the -30C level
        if te2 < -30. and not QC(pcl.wm30c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm30c = totp - lyrf
            else: pcl.wm30c = totp
            if not QC(pm30c) or pm30c > pcl.lclpres:
                pcl.wm30c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm30c - h3)
                if lyrf > 0: pcl.wm30c += lyrf

        # Is this the 3km level
        if pcl.lclhght < 3000.:
            h = interp.agl(interp.hght(pe2, prof), prof)
            if h >= 3000. and not QC(pcl.b3km):
                pe3 = pelast
                h3 = interp.hght(pe3, prof)
                te3 = interp.vtmp(pe3, prof)
                tp3 = thermo.wetlift(pe1, tp1, pe3)
                lyrf = lyre
                if lyrf > 0: pcl.b3km = totp - lyrf
                else: pcl.b3km = totp
                h2 = interp.msl(3000., prof)
                pe2 = interp.pres(h2, prof)
                if QC(pe2):
                    te2 = interp.vtmp(pe2, prof)
                    tp2 = thermo.wetlift(pe3, tp3, pe2)
                    tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                        thermo.ctok(te3)
                    tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                        thermo.ctok(te2)
                    lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                    if lyrf > 0: pcl.b3km += lyrf
        else: pcl.b3km = 0.

        # Is this the 6km level
        if pcl.lclhght < 6000.:
            h = interp.agl(interp.hght(pe2, prof), prof)
            if h >= 6000. and not QC(pcl.b6km):
                pe3 = pelast
                h3 = interp.hght(pe3, prof)
                te3 = interp.vtmp(pe3, prof)
                tp3 = thermo.wetlift(pe1, tp1, pe3)
                lyrf = lyre
                if lyrf > 0: pcl.b6km = totp - lyrf
                else: pcl.b6km = totp
                h2 = interp.msl(6000., prof)
                pe2 = interp.pres(h2, prof)
                if QC(pe2):
                    te2 = interp.vtmp(pe2, prof)
                    tp2 = thermo.wetlift(pe3, tp3, pe2)
                    tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                        thermo.ctok(te3)
                    tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                        thermo.ctok(te2)
                    lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                    if lyrf > 0: pcl.b6km += lyrf
        else: pcl.b6km = 0.

        # LFC Possibility
        if lyre >= 0. and lyrlast <= 0.:
            tp3 = tp1
            te3 = te1
            pe2 = pe1
            pe3 = pelast
            while interp.vtmp(pe3, prof) > thermo.virtemp(
                    pe3, thermo.wetlift(pe2, tp3, pe3),
                    thermo.wetlift(pe2, tp3, pe3)):
                pe3 -= 5
            pcl.lfcpres = pe3
            pcl.lfchght = interp.agl(interp.hght(pe3, prof), prof)
            cinh_old = totn
            tote = 0.
            pcl.elpres = RMISSD
            li_max = RMISSD

            if cap_strength < 0.: cap_strength = 0.
            pcl.cap = cap_strength
            pcl.cappres = cap_strengthpres
            # Hack to force LFC to be at least at the LCL
            if pcl.lfcpres > pcl.lclpres:
                pcl.lfcpres = pcl.lclpres
                pcl.lfchght = pcl.lclhght

        # EL Possibility
        if lyre <= 0. and lyrlast >= 0.:
            tp3 = tp1
            te3 = te1
            pe2 = pe1
            pe3 = pelast
            while interp.vtmp(pe3, prof) < thermo.virtemp(
                    pe3, thermo.wetlift(pe2, tp3, pe3),
                    thermo.wetlift(pe2, tp3, pe3)):
                pe3 -= 5
            pcl.elpres = pe3
            pcl.elhght = interp.agl(interp.hght(pe3, prof), prof)
            pcl.mplpres = RMISSD
            pcl.limax = -li_max
            pcl.limaxpress = li_maxpres

        # MPL Possibility
        if tote < 0. and not QC(pcl.mplpres) and QC(pcl.elpres):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            totx = tote - lyre
            pe2 = pelast
            while totx > 0:
                pe2 -= 1
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                h2 = interp.hght(pe2, prof)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                totx += lyrf
                tp3 = tp2
                te3 = te2
                pe3 = pe2
            pcl.mplpres = pe2
            pcl.mplhght = interp.agl(interp.hght(pe2, prof), prof)

        # 500 hPa Lifted Index
        if prof.gSndg[i][prof.pind] <= 500. and pcl.li5 == RMISSD:
            a = interp.vtmp(500., prof)
            b = thermo.wetlift(pe1, tp1, 500.)
            pcl.li5 = a - thermo.virtemp(500, b, b)

        # 300 hPa Lifted Index
        if prof.gSndg[i][prof.pind] <= 300. and pcl.li3 == RMISSD:
            a = interp.vtmp(300., prof)
            b = thermo.wetlift(pe1, tp1, 300.)
            pcl.li3 = a - thermo.virtemp(300, b, b)

    # Calculate BRN if available
    pcl = bulk_rich(pcl, prof)

    pcl.bminus = cinh_old
    if pcl.bplus == 0: pcl.bminus = 0.
    return pcl
Exemple #15
0
def parcelx(lower, upper, pres, temp, dwpt, prof, **kwargs):
    '''
    Lifts the specified parcel, calculated various levels and parameters from
    the profile object. B+/B- are calculated based on the specified layer.

    !! All calculations use the virtual temperature correction unless noted. !!

    Inputs
    ------
        lower       (float)                 Lower-bound lifting level (hPa)
        upper       (float)                 Upper-bound lifting level
        pres        (float)                 Pressure of parcel to lift (hPa)
        temp        (float)                 Temperature of parcel to lift (C)
        dwpt        (float)                 Dew Point of parcel to lift (C)
        prof        (profile object)        Profile Object

    Returns
    -------
        pcl         (parcel object)         Parcel Object
    '''
    pcl = Parcel(-1, -1, pres, temp, dwpt)
    if 'lplvals' in kwargs: pcl.lplvals = kwargs.get('lplvals')
    else:
        lplvals = DefineParcel(prof, 5, pres=pres, temp=temp, dwpt=dwpt)
        pcl.lplvals = lplvals

    if prof.gNumLevels < 1: return pcl

    lyre = -1
    cap_strength = RMISSD
    cap_strengthpres = RMISSD
    li_max = RMISSD
    li_maxpres = RMISSD
    totp = 0.
    totn = 0.
    tote = 0.
    cinh_old = 0.

    # See if default layer is specified
    if lower == -1:
        lower = prof.gSndg[prof.sfc][prof.pind]
        pcl.blayer = lower
    if upper == -1:
        upper = prof.gSndg[prof.gNumLevels-1][prof.pind]
        pcl.tlayer = upper

    # Make sure that this is a valid layer
    if lower > pres:
        lower = pres
        pcl.blayer = lower
    if not QC(interp.vtmp(lower, prof)) or \
       not QC(interp.vtmp(upper, prof)):
        return RMISSD

    # Begin with the Mixing Layer
    te1 = interp.vtmp(pres, prof)
    pe1 = lower
    h1 = interp.hght(pe1, prof)
    tp1 = thermo.virtemp(pres, temp, dwpt)
    # te1 = tp1

    # Lift parcel and return LCL pres (hPa) and LCL temp (c)
    pe2, tp2 = thermo.drylift(pres, temp, dwpt)
    blupper = pe2       # Define top of layer as LCL pres
    h2 = interp.hght(pe2, prof)
    te2 = interp.vtmp(pe2, prof)
    pcl.lclpres = pe2
    pcl.lclhght = interp.agl(h2, prof)

    # Calculate lifted parcel theta for use in iterative CINH loop below
    # RECALL: lifted parcel theta is CONSTANT from LPL to LCL
    theta_parcel = thermo.theta(pe2, tp2, 1000.)

    # Environmental theta and mixing ratio at LPL
    bltheta = thermo.theta(pres, interp.temp(pres, prof), 1000.)
    blmr = thermo.mixratio(pres, dwpt)

    # ACCUMULATED CINH IN MIXING LAYER BELOW THE LCL
    # This will be done in 10mb increments, and will use the virtual
    # temperature correction where possible
    pinc = -10
    a = int(lower)
    b = int(blupper)
    for pp in range(a, b, int(pinc)):
        pp1 = pp
        pp2 = pp + pinc
        if pp2 < blupper: pp2 = blupper
        dz = interp.hght(pp2, prof) - interp.hght(pp1, prof)

        # Calculate difference between Tv_parcel and Tv_environment at top
        # and bottom of 10mb layers. Make use of constant lifted parcel
        # theta and mixing ratio from LPL to LCL
        tv_env_bot = thermo.virtemp(pp1, thermo.theta(pp1,
            interp.temp(pp1, prof), 1000.), interp.dwpt(pp1, prof))
        tdef1 = (thermo.virtemp(pp1, theta_parcel,
            thermo.temp_at_mixrat(blmr, pp1)) - tv_env_bot) / \
            (thermo.ctok(tv_env_bot))

        tv_env_top = thermo.virtemp(pp2, thermo.theta(pp2,
            interp.temp(pp2, prof), 1000.), interp.dwpt(pp2, prof))
        tdef2 = (thermo.virtemp(pp2, theta_parcel,
            thermo.temp_at_mixrat(blmr, pp2)) - tv_env_top) / \
            (thermo.ctok(tv_env_bot))

        lyre = G * (tdef1 + tdef2) / 2. * dz
        if lyre < 0: totn += lyre

    # Move the bottom layer to the top of the boundary layer
    if lower > pe2:
        lower = pe2
        pcl.blayer = lower

    # Calculate height of various temperature levels
    p0c = temp_lvl(0., prof)
    pm10c = temp_lvl(-10., prof)
    pm20c = temp_lvl(-20., prof)
    pm30c = temp_lvl(-30., prof)
    hgt0c = interp.hght(p0c, prof)
    hgtm10c = interp.hght(pm10c, prof)
    hgtm20c = interp.hght(pm20c, prof)
    hgtm30c = interp.hght(pm30c, prof)
    pcl.p0c = p0c
    pcl.pm10c = pm10c
    pcl.pm20c = pm20c
    pcl.pm30c = pm30c
    pcl.hght0c = hgt0c
    pcl.hghtm10c = hgtm10c
    pcl.hghtm20c = hgtm20c
    pcl.hghtm30c = hgtm30c

    # Find lowest observation in layer
    i = 0
    while prof.gSndg[i][prof.pind] > lower:
        if i == prof.gNumLevels-1: break
        i += 1
    while not QC(prof.gSndg[i][prof.tdind]):
        if i == prof.gNumLevels-1: break
        i += 1
    lptr = i
    if prof.gSndg[i][prof.pind] == lower:
        if i != prof.gNumLevels-1: lptr += 1

    # Find highest observation in layer
    i = prof.gNumLevels-1
    while prof.gSndg[i][prof.pind] < upper:
        if i < lptr: break
        i -= 1
    uptr = i
    if prof.gSndg[i][prof.pind] == upper:
        if i > lptr: uptr -= 1

    # START WITH INTERPOLATED BOTTOM LAYER
    # Begin moist ascent from lifted parcel LCL (pe2, tp2)
    pe1 = lower
    h1 = interp.hght(pe1, prof)
    te1 = interp.vtmp(pe1, prof)
    tp1 = thermo.wetlift(pe2, tp2, pe1)
    lyre = 0
    lyrlast = 0
    for i in range(lptr, prof.gNumLevels):
        if not QC(prof.gSndg[i][prof.tind]): continue
        pe2 = prof.gSndg[i][prof.pind]
        h2 = prof.gSndg[i][prof.zind]
        te2 = interp.vtmp(pe2, prof)
        tp2 = thermo.wetlift(pe1, tp1, pe2)
        tdef1 = (thermo.virtemp(pe1, tp1, tp1) - te1) / thermo.ctok(te1)
        tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2)
        lyrlast = lyre
        lyre = G * (tdef1 + tdef2) / 2. * (h2 - h1)

        # Add layer energy to total positive if lyre > 0
        if lyre > 0: totp += lyre
        # Add layer energy to total negative if lyre < 0, only up to EL
        else:
            if pe2 > 500.: totn += lyre

        # Check for Max LI
        mli = thermo.virtemp(pe2, tp2, tp2) - te2
        if  mli > li_max:
            li_max = mli
            li_maxpres = pe2

        # Check for Max Cap Strength
        mcap = te2 - mli
        if mcap > cap_strength:
            cap_strength = mcap
            cap_strengthpres = pe2

        tote += lyre
        pelast = pe1
        pe1 = pe2
        h1 = h2
        te1 = te2
        tp1 = tp2

        # Is this the top of the specified layer
        if i >= uptr and not QC(pcl.bplus):
            pe3 = pe1
            h3 = h1
            te3 = te1
            tp3 = tp1
            lyrf = lyre
            if lyrf > 0:
                pcl.bplus = totp - lyrf
                pcl.bminus = totn
            else:
                pcl.bplus = totp
                if pe2 > 500.: pcl.bminus = totn + lyrf
                else: pcl.bminus = totn
            pe2 = upper
            h2 = interp.hght(pe2, prof)
            te2 = interp.vtmp(pe2, prof)
            tp2 = thermo.wetlift(pe3, tp3, pe2)
            tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / thermo.ctok(te3)
            tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2)
            lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
            if lyrf > 0: pcl.bplus += lyrf
            else:
                if pe2 > 500.: pcl.bminus += lyrf
            if pcl.bplus == 0: pcl.bminus = 0.

        # Is this the freezing level
        if te2 < 0. and not QC(pcl.bfzl):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.bfzl = totp - lyrf
            else: pcl.bfzl = totp
            if not QC(p0c) or p0c > pe3:
                pcl.bfzl = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgt0c - h3)
                if lyrf > 0: pcl.bfzl += lyrf

        # Is this the -10C level
        if te2 < -10. and not QC(pcl.wm10c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm10c = totp - lyrf
            else: pcl.wm10c = totp
            if not QC(pm10c) or pm10c > pcl.lclpres:
                pcl.wm10c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm10c - h3)
                if lyrf > 0: pcl.wm10c += lyrf

        # Is this the -20C level
        if te2 < -20. and not QC(pcl.wm20c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm20c = totp - lyrf
            else: pcl.wm20c = totp
            if not QC(pm20c) or pm20c > pcl.lclpres:
                pcl.wm20c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm20c - h3)
                if lyrf > 0: pcl.wm20c += lyrf

        # Is this the -30C level
        if te2 < -30. and not QC(pcl.wm30c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm30c = totp - lyrf
            else: pcl.wm30c = totp
            if not QC(pm30c) or pm30c > pcl.lclpres:
                pcl.wm30c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm30c - h3)
                if lyrf > 0: pcl.wm30c += lyrf

        # Is this the 3km level
        if pcl.lclhght < 3000.:
            h = interp.agl(interp.hght(pe2, prof), prof)
            if h >= 3000. and not QC(pcl.b3km):
                pe3 = pelast
                h3 = interp.hght(pe3, prof)
                te3 = interp.vtmp(pe3, prof)
                tp3 = thermo.wetlift(pe1, tp1, pe3)
                lyrf = lyre
                if lyrf > 0: pcl.b3km = totp - lyrf
                else: pcl.b3km = totp
                h2 = interp.msl(3000., prof)
                pe2 = interp.pres(h2, prof)
                if QC(pe2):
                    te2 = interp.vtmp(pe2, prof)
                    tp2 = thermo.wetlift(pe3, tp3, pe2)
                    tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                        thermo.ctok(te3)
                    tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                        thermo.ctok(te2)
                    lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                    if lyrf > 0: pcl.b3km += lyrf
        else: pcl.b3km = 0.

        # Is this the 6km level
        if pcl.lclhght < 6000.:
            h = interp.agl(interp.hght(pe2, prof), prof)
            if h >= 6000. and not QC(pcl.b6km):
                pe3 = pelast
                h3 = interp.hght(pe3, prof)
                te3 = interp.vtmp(pe3, prof)
                tp3 = thermo.wetlift(pe1, tp1, pe3)
                lyrf = lyre
                if lyrf > 0: pcl.b6km = totp - lyrf
                else: pcl.b6km = totp
                h2 = interp.msl(6000., prof)
                pe2 = interp.pres(h2, prof)
                if QC(pe2):
                    te2 = interp.vtmp(pe2, prof)
                    tp2 = thermo.wetlift(pe3, tp3, pe2)
                    tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                        thermo.ctok(te3)
                    tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                        thermo.ctok(te2)
                    lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                    if lyrf > 0: pcl.b6km += lyrf
        else: pcl.b6km = 0.

        # LFC Possibility
        if lyre >= 0. and lyrlast <= 0.:
            tp3 = tp1
            te3 = te1
            pe2 = pe1
            pe3 = pelast
            while interp.vtmp(pe3, prof) > thermo.virtemp(pe3,
                thermo.wetlift(pe2, tp3, pe3), thermo.wetlift(pe2, tp3, pe3)):
                    pe3 -= 5
            pcl.lfcpres = pe3
            pcl.lfchght = interp.agl(interp.hght(pe3, prof), prof)
            cinh_old = totn
            tote = 0.
            pcl.elpres = RMISSD
            li_max = RMISSD

            if cap_strength < 0.: cap_strength = 0.
            pcl.cap = cap_strength
            pcl.cappres = cap_strengthpres
            # Hack to force LFC to be at least at the LCL
            if pcl.lfcpres > pcl.lclpres:
                pcl.lfcpres = pcl.lclpres
                pcl.lfchght = pcl.lclhght

        # EL Possibility
        if lyre <= 0. and lyrlast >= 0.:
            tp3 = tp1
            te3 = te1
            pe2 = pe1
            pe3 = pelast
            while interp.vtmp(pe3, prof) < thermo.virtemp(pe3,
                thermo.wetlift(pe2, tp3, pe3), thermo.wetlift(pe2, tp3, pe3)):
                    pe3 -= 5
            pcl.elpres = pe3
            pcl.elhght = interp.agl(interp.hght(pe3, prof), prof)
            pcl.mplpres = RMISSD
            pcl.limax = -li_max
            pcl.limaxpress = li_maxpres

        # MPL Possibility
        if tote < 0. and not QC(pcl.mplpres) and QC(pcl.elpres):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            totx = tote - lyre
            pe2 = pelast
            while totx > 0:
                pe2 -= 1
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                h2 = interp.hght(pe2, prof)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                totx += lyrf
                tp3 = tp2
                te3 = te2
                pe3 = pe2
            pcl.mplpres = pe2
            pcl.mplhght = interp.agl(interp.hght(pe2, prof), prof)

        # 500 hPa Lifted Index
        if prof.gSndg[i][prof.pind] <= 500. and pcl.li5 == RMISSD:
            a = interp.vtmp(500., prof)
            b = thermo.wetlift(pe1, tp1, 500.)
            pcl.li5 = a - thermo.virtemp(500, b, b)

        # 300 hPa Lifted Index
        if prof.gSndg[i][prof.pind] <= 300. and pcl.li3 == RMISSD:
            a = interp.vtmp(300., prof)
            b = thermo.wetlift(pe1, tp1, 300.)
            pcl.li3 = a - thermo.virtemp(300, b, b)

    # Calculate BRN if available
    pcl = bulk_rich(pcl, prof)

    pcl.bminus = cinh_old
    if pcl.bplus == 0: pcl.bminus = 0.
    return pcl
Exemple #16
0
    def _parse(self):
        """
        Parse the netCDF file according to the variable naming and
        dimmensional conventions of the WRF-ARW.
        """
        ## open the file and also store the lat/lon of the selected point
        file_data = self._downloadFile()
        gridx = self._file_name[1]
        gridy = self._file_name[2]

        ## calculate the nearest grid point to the map point
        idx = self._find_nearest_point(file_data, gridx, gridy)

        ## check to see if this is a 4D netCDF4 that includes all available times.
        ## If it does, open and compute the variables as 4D variables
        if len(file_data.variables["T"][:].shape) == 4:
            ## read in the data from the WRF file and conduct necessary processing
            theta = file_data.variables["T"][:, :, idx[0], idx[1]] + 300.0
            qvapr = file_data.variables["QVAPOR"][:, :, idx[0],
                                                  idx[1]] * 10**3  #g/kg
            mpres = (file_data.variables["P"][:, :, idx[0], idx[1]] +
                     file_data.variables["PB"][:, :, idx[0], idx[1]]) * .01
            mhght = file_data.variables[
                "PH"][:, :, idx[0],
                      idx[1]] + file_data.variables["PHB"][:, :, idx[0],
                                                           idx[1]] / G
            ## unstagger the height grid
            mhght = (mhght[:, :-1, :, :] + mhght[:, 1:, :, :]) / 2.

            muwin = file_data.variables["U"][:, :, idx[0], idx[1]]
            mvwin = file_data.variables["V"][:, :, idx[0], idx[1]]

            ## convert the potential temperature to air temperature
            mtmpc = thermo.theta(1000.0, theta - 273.15, p2=mpres)
            ## convert the mixing ratio to dewpoint
            mdwpc = thermo.temp_at_mixrat(qvapr, mpres)
            ## convert the grid relative wind to earth relative
            U = muwin * file_data.variables['COSALPHA'][
                0, idx[0], idx[1]] - mvwin * file_data.variables['SINALPHA'][
                    0, idx[0], idx[1]]
            V = mvwin * file_data.variables['COSALPHA'][
                0, idx[0], idx[1]] + muwin * file_data.variables['SINALPHA'][
                    0, idx[0], idx[1]]
            ## convert from m/s to kts
            muwin = utils.MS2KTS(U)
            mvwin = utils.MS2KTS(V)

        ## if the data is not 4D, then it must be assumed that this is a file containing only a single time
        else:
            ## read in the data from the WRF file and conduct necessary processing
            theta = file_data.variables["T"][:, idx[0], idx[1]] + 300.0
            qvapr = file_data.variables["QVAPOR"][:, idx[0],
                                                  idx[1]] * 10**3  #g/kg
            mpres = (file_data.variables["P"][:, idx[0], idx[1]] +
                     file_data.variables["PB"][:, idx[0], idx[1]]) * .01
            mhght = file_data.variables["PH"][:, idx[0],
                                              idx[1]] + file_data.variables[
                                                  "PHB"][:, idx[0], idx[1]] / G
            ## unstagger the height grid
            mhght = (mhght[:-1, :, :] + mhght[1:, :, :]) / 2.

            muwin = file_data.variables["U"][:, idx[0], idx[1]]
            mvwin = file_data.variables["V"][:, idx[0], idx[1]]

            ## convert the potential temperature to air temperature
            mtmpc = thermo.theta(1000.0, theta - 273.15, p2=mpres)
            ## convert the mixing ratio to dewpoint
            mdwpc = thermo.temp_at_mixrat(qvapr, mpres)
            ## convert the grid relative wind to earth relative
            U = muwin * file_data.variables['COSALPHA'][
                0, idx[0], idx[1]] - mvwin * file_data.variables['SINALPHA'][
                    0, idx[0], idx[1]]
            V = mvwin * file_data.variables['COSALPHA'][
                0, idx[0], idx[1]] + muwin * file_data.variables['SINALPHA'][
                    0, idx[0], idx[1]]
            ## convert from m/s to kts
            muwin = utils.MS2KTS(U)
            mvwin = utils.MS2KTS(V)

        ## get the model start time of the file
        inittime = dattim.datetime.strptime(str(file_data.START_DATE),
                                            '%Y-%m-%d_%H:%M:%S')

        profiles = []
        dates = []
        ## loop over the available times

        for i in range(file_data.variables["T"][:].shape[0]):
            ## make sure the arrays are 1D
            prof_pres = mpres[i].flatten()
            prof_hght = mhght[i].flatten()
            prof_tmpc = mtmpc[i].flatten()
            prof_dwpc = mdwpc[i].flatten()
            prof_uwin = muwin[i].flatten()
            prof_vwin = mvwin[i].flatten()
            ## compute the time of the profile
            try:
                delta = dattim.timedelta(
                    minutes=int(file_data.variables["XTIME"][i]))
                curtime = inittime + delta
            except KeyError:
                var = ''.join(
                    np.asarray(file_data.variables['Times'][i], dtype=str))
                curtime = dattim.datetime.strptime(var, '%Y-%m-%d_%H:%M:%S')
            date_obj = curtime

            ## construct the profile object
            prof = profile.create_profile(profile="raw",
                                          pres=prof_pres,
                                          hght=prof_hght,
                                          tmpc=prof_tmpc,
                                          dwpc=prof_dwpc,
                                          u=prof_uwin,
                                          v=prof_vwin,
                                          location=str(gridx) + "," +
                                          str(gridy),
                                          date=date_obj,
                                          missing=-999.0,
                                          latitude=gridy,
                                          strictQC=False)

            ## append the dates and profiles
            profiles.append(prof)
            dates.append(date_obj)

        ## create a profile collection - dictionary has no key since this
        ## is not an ensemble model
        prof_coll = prof_collection.ProfCollection({'': profiles}, dates)

        return prof_coll