def fnIsotonicRegression(self, year, avgTemp, predictYear): feature_train, feature_test, target_train, target_test = train_test_split( year, avgTemp, test_size=0.1, random_state=42) isoReg = IsotonicRegression() isoReg.fit(feature_train, target_train) return (isoReg.score(feature_test, target_test), isoReg.predict(predictYear))
#timePoly = stopPoly - startPoly timeIso = stopIso - startIso timeRid = stopRid - startRid print('%.6f seconds' % time) # ############################################################################# #print('Logistic regression score: %.3f' % logreg.score(X_test,y_test)) print("Linear regression score: %.3f\n Mean squared error: %.4f\n Time: %.6f" % (svr_lin.score(X_test, y_test), mean_squared_error(y_test, y_lin), timeLin)) print( "Radial basis function score: %.3f\n Mean squared error: %.4f\n Time: %.6f" % (svr_rbf.score(X_test, y_test), mean_squared_error(y_test, y_rbf), timeRbf)) #print('Polynomial score: %.3f\n Mean squared error: %.4f\n Time: %.6f' % (svr_poly.score(X_test,y_test), mean_squared_error(y_test, y_poly), timePoly)) print( 'Isotonic score: %.3f\n Mean squared error: %.4f\n Time: %.6f' % (ir.score( X_test[:, 0], y_test), mean_squared_error(y_test, y_iso), timeIso)) print('Ridge score: %.3f\n Mean squared error: %.4f\n Time: %.6f' % (rid.score(X_test, y_test), mean_squared_error(y_test, y_rid), timeRid)) # Look at the results lw = 2 plt.scatter(X_test[:, 0], y_test, color='darkorange', label='data') plt.plot(X_test, y_rbf, color='navy', lw=lw, label='RBF model') plt.plot(X_test, y_lin, color='c', lw=lw, label='Linear model') plt.plot(X_test, y_iso, color='cornflowerblue', lw=lw, label='Isotonic model') plt.plot(X_test, y_rid, color='yellow', lw=lw, label='Ridge model') #plt.plot(X_test, y_poly, color='cornflowerblue', lw=lw, label='Polynomial model') #plt.plot(X_test, y_log, color='red', lw=lw, label='Logistic regression') plt.xlabel('data') plt.ylabel('target') plt.title('Support Vector Regression')
dsim_x = np.asarray(dsim['disp']) dsim_y = np.asarray(dsim['mpg']) #View scatter plot of x and mpg plt.scatter(dsim['disp'], dsim['mpg']) plt.xlabel('disp') plt.ylabel('mpg') plt.title('Scatterplot of x and y') plt.show() #Fit isotonic regression iso_reg = IsotonicRegression() print(iso_reg.get_params()) iso_fitted_values = iso_reg.fit_transform(dsim_x, dsim_y) iso_predictions = iso_reg.predict(dsim_x) print('R squared:', iso_reg.score(dsim_x, dsim_y)) #Plot the fitted line order = dsim['disp'].sort_values().index.tolist() plt.scatter(dsim['disp'], dsim['mpg']) plt.plot(dsim['disp'][order], iso_fitted_values[order], color='brown') plt.xlabel('disp') plt.ylabel('mpg') plt.title('Isotonic Regression') plt.show() ''' ------------------------------------------------------------------------------- --------------------------------Smoothing-------------------------------------- ------------------------------------------------------------------------------- '''
def palatability_identity_calculations(rec_dir, pal_ranks=None, unit_type=None, params=None, shell=False): dat = dataset.load_dataset(rec_dir) dim = dat.dig_in_mapping if pal_ranks is None: dim = get_palatability_ranks(dim, shell=shell) elif 'palatability_rank' in dim.columns: pass else: dim['palatability_rank'] = dim['name'].map(pal_ranks) dim = dim.dropna(subset=['palatability_rank']) dim = dim.reset_index(drop=True) num_tastes = len(dim) taste_names = dim.name.to_list() trial_list = dat.dig_in_trials.copy() trial_list = trial_list[[True if x in taste_names else False for x in trial_list.name]] num_trials = trial_list.groupby('channel').count()['name'].unique() if len(num_trials) > 1: raise ValueError('Unequal number of trials for tastes to used') else: num_trials = num_trials[0] dim['num_trials'] = num_trials # Get which units to use unit_table = h5io.get_unit_table(rec_dir) unit_types = ['Single', 'Multi', 'All', 'Custom'] if unit_type is None: q = userIO.ask_user('Which units do you want to use for taste ' 'discrimination and palatability analysis?', choices=unit_types, shell=shell) unit_type = unit_types[q] if unit_type == 'Single': chosen_units = unit_table.loc[unit_table['single_unit'], 'unit_num'].to_list() elif unit_type == 'Multi': chosen_units = unit_table.loc[unit_table['single_unit'] == False, 'unit_num'].to_list() elif unit_type == 'All': chosen_units = unit_table['unit_num'].to_list() else: selection = userIO.select_from_list('Select units to use:', unit_table['unit_num'], 'Select Units', multi_select=True) chosen_units = list(map(int, selection)) num_units = len(chosen_units) unit_table = unit_table.loc[chosen_units] # Enter Parameters if params is None or params.keys() != default_pal_id_params.keys(): params = {'window_size': 250, 'window_step': 25, 'num_comparison_bins': 5, 'comparison_bin_size': 250, 'discrim_p': 0.01, 'pal_deduce_start_time': 700, 'pal_deduce_end_time': 1200} params = userIO.confirm_parameter_dict(params, ('Palatability/Identity ' 'Calculation Parameters' '\nTimes in ms'), shell=shell) win_size = params['window_size'] win_step = params['window_step'] print('Running palatability/identity calculations with parameters:\n%s' % dp.print_dict(params)) with tables.open_file(dat.h5_file, 'r+') as hf5: trains_dig_in = hf5.list_nodes('/spike_trains') time = trains_dig_in[0].array_time[:] bin_times = np.arange(time[0], time[-1] - win_size + win_step, win_step) num_bins = len(bin_times) palatability = np.empty((num_bins, num_units, num_tastes*num_trials), dtype=int) identity = np.empty((num_bins, num_units, num_tastes*num_trials), dtype=int) unscaled_response = np.empty((num_bins, num_units, num_tastes*num_trials), dtype=np.dtype('float64')) response = np.empty((num_bins, num_units, num_tastes*num_trials), dtype=np.dtype('float64')) laser = np.empty((num_bins, num_units, num_tastes*num_trials, 2), dtype=float) # Fill arrays with data print('Filling data arrays...') onesies = np.ones((num_bins, num_units, num_trials)) for i, row in dim.iterrows(): idx = range(num_trials*i, num_trials*(i+1)) palatability[:, :, idx] = row.palatability_rank * onesies identity[:, :, idx] = row.dig_in * onesies for j, u in enumerate(chosen_units): for k,t in enumerate(bin_times): t_idx = np.where((time >= t) & (time <= t+win_size))[0] unscaled_response[k, j, idx] = \ np.mean(trains_dig_in[i].spike_array[:, u, t_idx], axis=1) try: lasers[k, j, idx] = \ np.vstack((trains_dig_in[i].laser_durations[:], trains_dig_in[i].laser_onset_lag[:])) except: laser[k, j, idx] = np.zeros((num_trials, 2)) # Scaling was not done, so: response = unscaled_response.copy() # Make ancillary_analysis node and put in arrays if '/ancillary_analysis' in hf5: hf5.remove_node('/ancillary_analysis', recursive=True) hf5.create_group('/', 'ancillary_analysis') hf5.create_array('/ancillary_analysis', 'palatability', palatability) hf5.create_array('/ancillary_analysis', 'identity', identity) hf5.create_array('/ancillary_analysis', 'laser', laser) hf5.create_array('/ancillary_analysis', 'scaled_neural_response', response) hf5.create_array('/ancillary_analysis', 'window_params', np.array([win_size, win_step])) hf5.create_array('/ancillary_analysis', 'bin_times', bin_times) hf5.create_array('/ancillary_analysis', 'unscaled_neural_response', unscaled_response) # for backwards compatibility hf5.create_array('/ancillary_analysis', 'params', np.array([win_size, win_step])) hf5.create_array('/ancillary_analysis', 'pre_stim', np.array(time[0])) hf5.flush() # Get unique laser (duration, lag) combinations print('Organizing trial data...') unique_lasers = np.vstack(list({tuple(row) for row in laser[0, 0, :, :]})) unique_lasers = unique_lasers[unique_lasers[:, 1].argsort(), :] num_conditions = unique_lasers.shape[0] trials = [] for row in unique_lasers: tmp_trials = [j for j in range(num_trials * num_tastes) if np.array_equal(laser[0, 0, j, :], row)] trials.append(tmp_trials) trials_per_condition = [len(x) for x in trials] if not all(x == trials_per_condition[0] for x in trials_per_condition): raise ValueError('Different number of trials for each laser condition') trials_per_condition = int(trials_per_condition[0] / num_tastes) #assumes same number of trials per taste per condition print('Detected:\n %i tastes\n %i laser conditions\n' ' %i trials per condition per taste' % (num_tastes, num_conditions, trials_per_condition)) trials = np.array(trials) # Store laser conditions and indices of trials per condition in trial x # taste space hf5.create_array('/ancillary_analysis', 'trials', trials) hf5.create_array('/ancillary_analysis', 'laser_combination_d_l', unique_lasers) hf5.flush() # Taste Similarity Calculation neural_response_laser = np.empty((num_conditions, num_bins, num_tastes, num_units, trials_per_condition), dtype=np.dtype('float64')) taste_cosine_similarity = np.empty((num_conditions, num_bins, num_tastes, num_tastes), dtype=np.dtype('float64')) taste_euclidean_distance = np.empty((num_conditions, num_bins, num_tastes, num_tastes), dtype=np.dtype('float64')) # Re-format neural responses from bin x unit x (trial*taste) to # laser_condition x bin x taste x unit x trial print('Reformatting data arrays...') for i, trial in enumerate(trials): for j, _ in enumerate(bin_times): for k, _ in dim.iterrows(): idx = np.where((trial >= num_trials*k) & (trial < num_trials*(k+1)))[0] neural_response_laser[i, j, k, :, :] = \ response[j, :, trial[idx]].T # Compute taste cosine similarity and euclidean distances print('Computing taste cosine similarity and euclidean distances...') for i, _ in enumerate(trials): for j, _ in enumerate(bin_times): for k, _ in dim.iterrows(): for l, _ in dim.iterrows(): taste_cosine_similarity[i, j, k, l] = \ np.mean(cosine_similarity( neural_response_laser[i, j, k, :, :].T, neural_response_laser[i, j, l, :, :].T)) taste_euclidean_distance[i, j, k, l] = \ np.mean(cdist( neural_response_laser[i, j, k, :, :].T, neural_response_laser[i, j, l, :, :].T, metric='euclidean')) hf5.create_array('/ancillary_analysis', 'taste_cosine_similarity', taste_cosine_similarity) hf5.create_array('/ancillary_analysis', 'taste_euclidean_distance', taste_euclidean_distance) hf5.flush() # Taste Responsiveness calculations bin_params = [params['num_comparison_bins'], params['comparison_bin_size']] discrim_p = params['discrim_p'] responsive_neurons = [] discriminating_neurons = [] taste_responsiveness = np.zeros((bin_params[0], num_units, 2)) new_bin_times = np.arange(0, np.prod(bin_params), bin_params[1]) baseline = np.where(bin_times < 0)[0] print('Computing taste responsiveness and taste discrimination...') for i, t in enumerate(new_bin_times): places = np.where((bin_times >= t) & (bin_times <= t+bin_params[1]))[0] for j, u in enumerate(chosen_units): # Check taste responsiveness f, p = f_oneway(np.mean(response[places, j, :], axis=0), np.mean(response[baseline, j, :], axis=0)) if np.isnan(f): f = 0.0 p = 1.0 if p <= discrim_p and u not in responsive_neurons: responsive_neurons.append(u) taste_responsiveness[i, j, 0] = 1 # Check taste discrimination taste_idx = [np.arange(num_trials*k, num_trials*(k+1)) for k in range(num_tastes)] taste_responses = [np.mean(response[places, j, :][:, k], axis=0) for k in taste_idx] f, p = f_oneway(*taste_responses) if np.isnan(f): f = 0.0 p = 1.0 if p <= discrim_p and u not in discriminating_neurons: discriminating_neurons.append(u) responsive_neurons = np.sort(responsive_neurons) discriminating_neurons = np.sort(discriminating_neurons) # Write taste responsive and taste discriminating units to text file save_file = os.path.join(rec_dir, 'discriminative_responsive_neurons.txt') with open(save_file, 'w') as f: print('Taste discriminative neurons', file=f) for u in discriminating_neurons: print(u, file=f) print('Taste responsive neurons', file=f) for u in responsive_neurons: print(u, file=f) hf5.create_array('/ancillary_analysis', 'taste_disciminating_neurons', discriminating_neurons) hf5.create_array('/ancillary_analysis', 'taste_responsive_neurons', responsive_neurons) hf5.create_array('/ancillary_analysis', 'taste_responsiveness', taste_responsiveness) hf5.flush() # Get time course of taste discrimibility print('Getting taste discrimination time course...') p_discrim = np.empty((num_conditions, num_bins, num_tastes, num_tastes, num_units), dtype=np.dtype('float64')) for i in range(num_conditions): for j, t in enumerate(bin_times): for k in range(num_tastes): for l in range(num_tastes): for m in range(num_units): _, p = ttest_ind(neural_response_laser[i, j, k, m, :], neural_response_laser[i, j, l, m, :], equal_var = False) if np.isnan(p): p = 1.0 p_discrim[i, j, k, l, m] = p hf5.create_array('/ancillary_analysis', 'p_discriminability', p_discrim) hf5.flush() # Palatability Rank Order calculation (if > 2 tastes) t_start = params['pal_deduce_start_time'] t_end = params['pal_deduce_end_time'] if num_tastes > 2: print('Deducing palatability rank order...') palatability_rank_order_deduction(rec_dir, neural_response_laser, unique_lasers, bin_times, [t_start, t_end]) # Palatability calculation r_spearman = np.zeros((num_conditions, num_bins, num_units)) p_spearman = np.ones((num_conditions, num_bins, num_units)) r_pearson = np.zeros((num_conditions, num_bins, num_units)) p_pearson = np.ones((num_conditions, num_bins, num_units)) f_identity = np.ones((num_conditions, num_bins, num_units)) p_identity = np.ones((num_conditions, num_bins, num_units)) lda_palatability = np.zeros((num_conditions, num_bins)) lda_identity = np.zeros((num_conditions, num_bins)) r_isotonic = np.zeros((num_conditions, num_bins, num_units)) id_pal_regress = np.zeros((num_conditions, num_bins, num_units, 2)) pairwise_identity = np.zeros((num_conditions, num_bins, num_tastes, num_tastes)) print('Computing palatability metrics...') for i, t in enumerate(trials): for j in range(num_bins): for k in range(num_units): ranks = rankdata(response[j, k, t]) r_spearman[i, j, k], p_spearman[i, j, k] = \ spearmanr(ranks, palatability[j, k, t]) r_pearson[i, j, k], p_pearson[i, j, k] = \ pearsonr(response[j, k, t], palatability[j, k, t]) if np.isnan(r_spearman[i, j, k]): r_spearman[i, j, k] = 0.0 p_spearman[i, j, k] = 1.0 if np.isnan(r_pearson[i, j, k]): r_pearson[i, j, k] = 0.0 p_pearson[i, j, k] = 1.0 # Isotonic regression of firing against palatability model = IsotonicRegression(increasing = 'auto') model.fit(palatability[j, k, t], response[j, k, t]) r_isotonic[i, j, k] = model.score(palatability[j, k, t], response[j, k, t]) # Multiple Regression of firing rate against palatability and identity # Regress palatability on identity tmp_id = identity[j, k, t].reshape(-1, 1) tmp_pal = palatability[j, k, t].reshape(-1, 1) tmp_resp = response[j, k, t].reshape(-1, 1) model_pi = LinearRegression() model_pi.fit(tmp_id, tmp_pal) pi_residuals = tmp_pal - model_pi.predict(tmp_id) # Regress identity on palatability model_ip = LinearRegression() model_ip.fit(tmp_pal, tmp_id) ip_residuals = tmp_id - model_ip.predict(tmp_pal) # Regress firing on identity model_fi = LinearRegression() model_fi.fit(tmp_id, tmp_resp) fi_residuals = tmp_resp - model_fi.predict(tmp_id) # Regress firing on palatability model_fp = LinearRegression() model_fp.fit(tmp_pal, tmp_resp) fp_residuals = tmp_resp - model_fp.predict(tmp_pal) # Get partial correlation coefficient of response with identity idp_reg0, p = pearsonr(fp_residuals, ip_residuals) if np.isnan(idp_reg0): idp_reg0 = 0.0 idp_reg1, p = pearsonr(fi_residuals, pi_residuals) if np.isnan(idp_reg1): idp_reg1 = 0.0 id_pal_regress[i, j, k, 0] = idp_reg0 id_pal_regress[i, j, k, 1] = idp_reg1 # Identity Calculation samples = [] for _, row in dim.iterrows(): taste = row.dig_in samples.append([trial for trial in t if identity[j, k, trial] == taste]) tmp_resp = [response[j, k, sample] for sample in samples] f_identity[i, j, k], p_identity[i, j, k] = f_oneway(*tmp_resp) if np.isnan(f_identity[i, j, k]): f_identity[i, j, k] = 0.0 p_identity[i, j, k] = 1.0 # Linear Discriminant analysis for palatability X = response[j, :, t] Y = palatability[j, 0, t] test_results = [] c_validator = LeavePOut(1) for train, test in c_validator.split(X, Y): model = LDA() model.fit(X[train, :], Y[train]) tmp = np.mean(model.predict(X[test]) == Y[test]) test_results.append(tmp) lda_palatability[i, j] = np.mean(test_results) # Linear Discriminant analysis for identity Y = identity[j, 0, t] test_results = [] c_validator = LeavePOut(1) for train, test in c_validator.split(X, Y): model = LDA() model.fit(X[train, :], Y[train]) tmp = np.mean(model.predict(X[test]) == Y[test]) test_results.append(tmp) lda_identity[i, j] = np.mean(test_results) # Pairwise Identity Calculation for _, r1 in dim.iterrows(): for _, r2 in dim.iterrows(): t1 = r1.dig_in t2 = r2.dig_in tmp_trials = np.where((identity[j, 0, :] == t1) | (identity[j, 0, :] == t2))[0] idx = [trial for trial in t if trial in tmp_trials] X = response[j, :, idx] Y = identity[j, 0, idx] test_results = [] c_validator = StratifiedShuffleSplit(n_splits=10, test_size=0.25, random_state=0) for train, test in c_validator.split(X, Y): model = GaussianNB() model.fit(X[train, :], Y[train]) tmp_score = model.score(X[test, :], Y[test]) test_results.append(tmp_score) pairwise_identity[i, j, t1, t2] = np.mean(test_results) hf5.create_array('/ancillary_analysis', 'r_pearson', r_pearson) hf5.create_array('/ancillary_analysis', 'r_spearman', r_spearman) hf5.create_array('/ancillary_analysis', 'p_pearson', p_pearson) hf5.create_array('/ancillary_analysis', 'p_spearman', p_spearman) hf5.create_array('/ancillary_analysis', 'lda_palatability', lda_palatability) hf5.create_array('/ancillary_analysis', 'lda_identity', lda_identity) hf5.create_array('/ancillary_analysis', 'r_isotonic', r_isotonic) hf5.create_array('/ancillary_analysis', 'id_pal_regress', id_pal_regress) hf5.create_array('/ancillary_analysis', 'f_identity', f_identity) hf5.create_array('/ancillary_analysis', 'p_identity', p_identity) hf5.create_array('/ancillary_analysis', 'pairwise_NB_identity', pairwise_identity) hf5.flush()
#error from sklearn.cross_validation import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics from sklearn.svm import SVC import numpy as np import pandas as pd from sklearn.isotonic import IsotonicRegression df=pd.read_csv('newtest.csv') df1=pd.read_csv('newtest1.csv') x=df.drop(['tag'],axis=1) y=df.drop(['kx','ky','kz','wa','wb','wc','wd','we','wf'],axis=1) X=df1.drop(['tag'],axis=1) Y=df1.drop(['kx','ky','kz','wa','wb','wc','wd','we','wf'],axis=1) X_train , X_test , Y_train , Y_test = train_test_split(x,y , random_state=5) ir=IsotonicRegression() ir.fit(X_train,Y_train) print ir.score(X_test,Y_test)
from sklearn.utils import check_random_state main = pd.read_csv('/Users/Theo/Google Drive/College/Senior Thesis/Materials Science/data/isotonic/lasam.csv', sep=',',names = ['Time','G']) mainx_data = main.Time[1:60] mainx_target = main.G[1:60] ############################################################################### # Fit Isotonic Regression model ############################################################################### ir = IsotonicRegression() lr = LinearRegression() y_ = ir.fit_transform(mainx_data, mainx_target) predictions = ir.predict([10]) print predictions print ir.score(mainx_data, mainx_target) #print("RSS: %.2f" # % np.mean((ir.predict(mainx_target) - mainy_target) ** 2)) ############################################################################### # Plot result ############################################################################### fig = plt.figure() plt.plot(mainx_data, mainx_target, 'r.', markersize=12) plt.plot(mainx_data, y_, 'g.-', markersize=12) plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right') plt.title('Isotonic regression') plt.show()
n = 12 x = np.arange(n) rs = check_random_state(0) y = np.append([],java) ############################################################################### # Fit IsotonicRegression and LinearRegression models ir = IsotonicRegression() y_ = ir.fit_transform(x, y) lr = LinearRegression() lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression print ir.score(x,y) ############################################################################### # plot result segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] lc = LineCollection(segments, zorder=0) lc.set_array(np.ones(len(y))) lc.set_linewidths(0.5 * np.ones(n)) fig = plt.figure() plt.plot(x, y, 'r.', markersize=12) plt.plot(x, y_, 'g.-', markersize=12) plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-') plt.gca().add_collection(lc) plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right') plt.title('Isotonic regression')
n = 12 x = np.arange(n) rs = check_random_state(0) y = np.append([], java) ############################################################################### # Fit IsotonicRegression and LinearRegression models ir = IsotonicRegression() y_ = ir.fit_transform(x, y) lr = LinearRegression() lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression print ir.score(x, y) ############################################################################### # plot result segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] lc = LineCollection(segments, zorder=0) lc.set_array(np.ones(len(y))) lc.set_linewidths(0.5 * np.ones(n)) fig = plt.figure() plt.plot(x, y, 'r.', markersize=12) plt.plot(x, y_, 'g.-', markersize=12) plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-') plt.gca().add_collection(lc) plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right') plt.title('Isotonic regression')