예제 #1
0
 def fnIsotonicRegression(self, year, avgTemp, predictYear):
     feature_train, feature_test, target_train, target_test = train_test_split(
         year, avgTemp, test_size=0.1, random_state=42)
     isoReg = IsotonicRegression()
     isoReg.fit(feature_train, target_train)
     return (isoReg.score(feature_test,
                          target_test), isoReg.predict(predictYear))
#timePoly = stopPoly - startPoly
timeIso = stopIso - startIso
timeRid = stopRid - startRid
print('%.6f seconds' % time)
# #############################################################################
#print('Logistic regression score: %.3f' % logreg.score(X_test,y_test))
print("Linear regression score: %.3f\n Mean squared error: %.4f\n Time: %.6f" %
      (svr_lin.score(X_test, y_test), mean_squared_error(y_test,
                                                         y_lin), timeLin))
print(
    "Radial basis function score: %.3f\n Mean squared error: %.4f\n Time: %.6f"
    % (svr_rbf.score(X_test, y_test), mean_squared_error(y_test,
                                                         y_rbf), timeRbf))
#print('Polynomial score: %.3f\n Mean squared error: %.4f\n Time: %.6f' % (svr_poly.score(X_test,y_test), mean_squared_error(y_test, y_poly), timePoly))
print(
    'Isotonic score: %.3f\n Mean squared error: %.4f\n Time: %.6f' % (ir.score(
        X_test[:, 0], y_test), mean_squared_error(y_test, y_iso), timeIso))
print('Ridge score: %.3f\n Mean squared error: %.4f\n Time: %.6f' %
      (rid.score(X_test, y_test), mean_squared_error(y_test, y_rid), timeRid))

# Look at the results
lw = 2
plt.scatter(X_test[:, 0], y_test, color='darkorange', label='data')
plt.plot(X_test, y_rbf, color='navy', lw=lw, label='RBF model')
plt.plot(X_test, y_lin, color='c', lw=lw, label='Linear model')
plt.plot(X_test, y_iso, color='cornflowerblue', lw=lw, label='Isotonic model')
plt.plot(X_test, y_rid, color='yellow', lw=lw, label='Ridge model')
#plt.plot(X_test, y_poly, color='cornflowerblue', lw=lw, label='Polynomial model')
#plt.plot(X_test, y_log, color='red', lw=lw, label='Logistic regression')
plt.xlabel('data')
plt.ylabel('target')
plt.title('Support Vector Regression')
예제 #3
0
dsim_x = np.asarray(dsim['disp'])
dsim_y = np.asarray(dsim['mpg'])

#View scatter plot of x and mpg
plt.scatter(dsim['disp'], dsim['mpg'])
plt.xlabel('disp')
plt.ylabel('mpg')
plt.title('Scatterplot of x and y')
plt.show()

#Fit isotonic regression
iso_reg = IsotonicRegression()
print(iso_reg.get_params())
iso_fitted_values = iso_reg.fit_transform(dsim_x, dsim_y)
iso_predictions = iso_reg.predict(dsim_x)
print('R squared:', iso_reg.score(dsim_x, dsim_y))

#Plot the fitted line
order = dsim['disp'].sort_values().index.tolist()
plt.scatter(dsim['disp'], dsim['mpg'])
plt.plot(dsim['disp'][order], iso_fitted_values[order], color='brown')
plt.xlabel('disp')
plt.ylabel('mpg')
plt.title('Isotonic Regression')
plt.show()
'''
-------------------------------------------------------------------------------
--------------------------------Smoothing--------------------------------------
-------------------------------------------------------------------------------
'''
def palatability_identity_calculations(rec_dir, pal_ranks=None,
                                       unit_type=None, params=None,
                                       shell=False):
    dat = dataset.load_dataset(rec_dir)
    dim = dat.dig_in_mapping
    if pal_ranks is None:
        dim = get_palatability_ranks(dim, shell=shell)
    elif 'palatability_rank' in dim.columns:
        pass
    else:
        dim['palatability_rank'] = dim['name'].map(pal_ranks)

    dim = dim.dropna(subset=['palatability_rank'])
    dim = dim.reset_index(drop=True)
    num_tastes = len(dim)
    taste_names = dim.name.to_list()

    trial_list = dat.dig_in_trials.copy()
    trial_list = trial_list[[True if x in taste_names else False
                             for x in trial_list.name]]
    num_trials = trial_list.groupby('channel').count()['name'].unique()
    if len(num_trials) > 1:
        raise ValueError('Unequal number of trials for tastes to used')
    else:
        num_trials = num_trials[0]

    dim['num_trials'] = num_trials

    # Get which units to use
    unit_table = h5io.get_unit_table(rec_dir)
    unit_types = ['Single', 'Multi', 'All', 'Custom']
    if unit_type is None:
        q = userIO.ask_user('Which units do you want to use for taste '
                            'discrimination and  palatability analysis?',
                            choices=unit_types,
                            shell=shell)
        unit_type = unit_types[q]

    if unit_type == 'Single':
        chosen_units = unit_table.loc[unit_table['single_unit'],
                                      'unit_num'].to_list()
    elif unit_type == 'Multi':
        chosen_units = unit_table.loc[unit_table['single_unit'] == False,
                                      'unit_num'].to_list()
    elif unit_type == 'All':
        chosen_units = unit_table['unit_num'].to_list()
    else:
        selection = userIO.select_from_list('Select units to use:',
                                            unit_table['unit_num'],
                                            'Select Units',
                                            multi_select=True)
        chosen_units = list(map(int, selection))

    num_units = len(chosen_units)
    unit_table = unit_table.loc[chosen_units]

    # Enter Parameters
    if params is None or params.keys() != default_pal_id_params.keys():
        params = {'window_size': 250, 'window_step': 25,
                  'num_comparison_bins': 5, 'comparison_bin_size': 250,
                  'discrim_p': 0.01, 'pal_deduce_start_time': 700,
                  'pal_deduce_end_time': 1200}
        params = userIO.confirm_parameter_dict(params,
                                               ('Palatability/Identity '
                                                'Calculation Parameters'
                                                '\nTimes in ms'), shell=shell)

    win_size = params['window_size']
    win_step = params['window_step']
    print('Running palatability/identity calculations with parameters:\n%s' %
          dp.print_dict(params))

    with tables.open_file(dat.h5_file, 'r+') as hf5:
        trains_dig_in = hf5.list_nodes('/spike_trains')
        time = trains_dig_in[0].array_time[:]
        bin_times = np.arange(time[0], time[-1] - win_size + win_step,
                             win_step)
        num_bins = len(bin_times)

        palatability = np.empty((num_bins, num_units, num_tastes*num_trials),
                                dtype=int)
        identity = np.empty((num_bins, num_units, num_tastes*num_trials),
                            dtype=int)
        unscaled_response = np.empty((num_bins, num_units, num_tastes*num_trials),
                                     dtype=np.dtype('float64'))
        response  = np.empty((num_bins, num_units, num_tastes*num_trials),
                             dtype=np.dtype('float64'))
        laser = np.empty((num_bins, num_units, num_tastes*num_trials, 2),
                         dtype=float)

        # Fill arrays with data
        print('Filling data arrays...')
        onesies = np.ones((num_bins, num_units, num_trials))
        for i, row in dim.iterrows():
            idx = range(num_trials*i, num_trials*(i+1))
            palatability[:, :, idx] = row.palatability_rank * onesies
            identity[:, :, idx] = row.dig_in * onesies
            for j, u in enumerate(chosen_units):
                for k,t in enumerate(bin_times):
                    t_idx = np.where((time >= t) & (time <= t+win_size))[0]
                    unscaled_response[k, j, idx] = \
                            np.mean(trains_dig_in[i].spike_array[:, u, t_idx],
                                    axis=1)
                    try:
                        lasers[k, j, idx] = \
                            np.vstack((trains_dig_in[i].laser_durations[:],
                                       trains_dig_in[i].laser_onset_lag[:]))
                    except:
                        laser[k, j, idx] = np.zeros((num_trials, 2))

        # Scaling was not done, so:
        response = unscaled_response.copy()

        # Make ancillary_analysis node and put in arrays
        if '/ancillary_analysis' in hf5:
            hf5.remove_node('/ancillary_analysis', recursive=True)

        hf5.create_group('/', 'ancillary_analysis')
        hf5.create_array('/ancillary_analysis', 'palatability', palatability)
        hf5.create_array('/ancillary_analysis', 'identity', identity)
        hf5.create_array('/ancillary_analysis', 'laser', laser)
        hf5.create_array('/ancillary_analysis', 'scaled_neural_response',
                         response)
        hf5.create_array('/ancillary_analysis', 'window_params',
                         np.array([win_size, win_step]))
        hf5.create_array('/ancillary_analysis', 'bin_times', bin_times)
        hf5.create_array('/ancillary_analysis', 'unscaled_neural_response',
                         unscaled_response)

        # for backwards compatibility
        hf5.create_array('/ancillary_analysis', 'params',
                        np.array([win_size, win_step]))
        hf5.create_array('/ancillary_analysis', 'pre_stim', np.array(time[0]))
        hf5.flush()

        # Get unique laser (duration, lag) combinations
        print('Organizing trial data...')
        unique_lasers = np.vstack(list({tuple(row) for row in laser[0, 0, :, :]}))
        unique_lasers = unique_lasers[unique_lasers[:, 1].argsort(), :]
        num_conditions = unique_lasers.shape[0]
        trials = []
        for row in unique_lasers:
            tmp_trials = [j for j in range(num_trials * num_tastes)
                          if np.array_equal(laser[0, 0, j, :], row)]
            trials.append(tmp_trials)

        trials_per_condition = [len(x) for x in trials]
        if not all(x == trials_per_condition[0] for x in trials_per_condition):
            raise ValueError('Different number of trials for each laser condition')

        trials_per_condition = int(trials_per_condition[0] / num_tastes)  #assumes same number of trials per taste per condition
        print('Detected:\n    %i tastes\n    %i laser conditions\n'
              '    %i trials per condition per taste' %
              (num_tastes, num_conditions, trials_per_condition))
        trials = np.array(trials)

        # Store laser conditions and indices of trials per condition in trial x
        # taste space
        hf5.create_array('/ancillary_analysis', 'trials', trials)
        hf5.create_array('/ancillary_analysis', 'laser_combination_d_l',
                         unique_lasers)
        hf5.flush()

        # Taste Similarity Calculation
        neural_response_laser = np.empty((num_conditions, num_bins,
                                          num_tastes, num_units,
                                          trials_per_condition),
                                         dtype=np.dtype('float64'))
        taste_cosine_similarity = np.empty((num_conditions, num_bins,
                                            num_tastes, num_tastes),
                                           dtype=np.dtype('float64'))
        taste_euclidean_distance = np.empty((num_conditions, num_bins,
                                             num_tastes, num_tastes),
                                            dtype=np.dtype('float64'))

        # Re-format neural responses from bin x unit x (trial*taste) to
        # laser_condition x bin x taste x unit x trial
        print('Reformatting data arrays...')
        for i, trial in enumerate(trials):
            for j, _ in enumerate(bin_times):
                for k, _ in dim.iterrows():
                    idx = np.where((trial >= num_trials*k) &
                                   (trial < num_trials*(k+1)))[0]
                    neural_response_laser[i, j, k, :, :] = \
                            response[j, :, trial[idx]].T

        # Compute taste cosine similarity and euclidean distances
        print('Computing taste cosine similarity and euclidean distances...')
        for i, _ in enumerate(trials):
            for j, _ in enumerate(bin_times):
                for k, _ in dim.iterrows():
                    for l, _ in dim.iterrows():
                        taste_cosine_similarity[i, j, k, l] = \
                                np.mean(cosine_similarity(
                                    neural_response_laser[i, j, k, :, :].T,
                                    neural_response_laser[i, j, l, :, :].T))
                        taste_euclidean_distance[i, j, k, l] = \
                                np.mean(cdist(
                                    neural_response_laser[i, j, k, :, :].T,
                                    neural_response_laser[i, j, l, :, :].T,
                                    metric='euclidean'))

        hf5.create_array('/ancillary_analysis', 'taste_cosine_similarity',
                         taste_cosine_similarity)
        hf5.create_array('/ancillary_analysis', 'taste_euclidean_distance',
                         taste_euclidean_distance)
        hf5.flush()

        # Taste Responsiveness calculations
        bin_params = [params['num_comparison_bins'],
                      params['comparison_bin_size']]
        discrim_p = params['discrim_p']

        responsive_neurons = []
        discriminating_neurons = []
        taste_responsiveness = np.zeros((bin_params[0], num_units, 2))
        new_bin_times = np.arange(0, np.prod(bin_params), bin_params[1])
        baseline = np.where(bin_times < 0)[0]
        print('Computing taste responsiveness and taste discrimination...')
        for i, t in enumerate(new_bin_times):
            places = np.where((bin_times >= t) &
                              (bin_times <= t+bin_params[1]))[0]
            for j, u in enumerate(chosen_units):
                # Check taste responsiveness
                f, p = f_oneway(np.mean(response[places, j, :], axis=0),
                                np.mean(response[baseline, j, :], axis=0))
                if np.isnan(f):
                    f = 0.0
                    p = 1.0

                if p <= discrim_p and u not in responsive_neurons:
                    responsive_neurons.append(u)
                    taste_responsiveness[i, j, 0] = 1

                # Check taste discrimination
                taste_idx = [np.arange(num_trials*k, num_trials*(k+1))
                             for k in range(num_tastes)]
                taste_responses = [np.mean(response[places, j, :][:, k], axis=0)
                                   for k in taste_idx]
                f, p = f_oneway(*taste_responses)
                if np.isnan(f):
                    f = 0.0
                    p = 1.0

                if p <= discrim_p and u not in discriminating_neurons:
                    discriminating_neurons.append(u)

        responsive_neurons = np.sort(responsive_neurons)
        discriminating_neurons = np.sort(discriminating_neurons)

        # Write taste responsive and taste discriminating units to text file
        save_file = os.path.join(rec_dir, 'discriminative_responsive_neurons.txt')
        with open(save_file, 'w') as f:
            print('Taste discriminative neurons', file=f)
            for u in discriminating_neurons:
                print(u, file=f)

            print('Taste responsive neurons', file=f)
            for u in responsive_neurons:
                print(u, file=f)

        hf5.create_array('/ancillary_analysis', 'taste_disciminating_neurons',
                         discriminating_neurons)
        hf5.create_array('/ancillary_analysis', 'taste_responsive_neurons',
                         responsive_neurons)
        hf5.create_array('/ancillary_analysis', 'taste_responsiveness',
                         taste_responsiveness)
        hf5.flush()

        # Get time course of taste discrimibility
        print('Getting taste discrimination time course...')
        p_discrim = np.empty((num_conditions, num_bins, num_tastes, num_tastes,
                              num_units), dtype=np.dtype('float64'))
        for i in range(num_conditions):
            for j, t in enumerate(bin_times):
                for k in range(num_tastes):
                    for l in range(num_tastes):
                        for m in range(num_units):
                            _, p = ttest_ind(neural_response_laser[i, j, k, m, :],
                                             neural_response_laser[i, j, l, m, :],
                                             equal_var = False)
                            if np.isnan(p):
                                p = 1.0

                            p_discrim[i, j, k, l, m] = p

        hf5.create_array('/ancillary_analysis', 'p_discriminability',
                          p_discrim)
        hf5.flush()

        # Palatability Rank Order calculation (if > 2 tastes)
        t_start = params['pal_deduce_start_time']
        t_end = params['pal_deduce_end_time']
        if num_tastes > 2:
            print('Deducing palatability rank order...')
            palatability_rank_order_deduction(rec_dir, neural_response_laser,
                                              unique_lasers,
                                              bin_times, [t_start, t_end])

        # Palatability calculation
        r_spearman = np.zeros((num_conditions, num_bins, num_units))
        p_spearman = np.ones((num_conditions, num_bins, num_units))
        r_pearson = np.zeros((num_conditions, num_bins, num_units))
        p_pearson = np.ones((num_conditions, num_bins, num_units))
        f_identity = np.ones((num_conditions, num_bins, num_units))
        p_identity = np.ones((num_conditions, num_bins, num_units))
        lda_palatability = np.zeros((num_conditions, num_bins))
        lda_identity = np.zeros((num_conditions, num_bins))
        r_isotonic = np.zeros((num_conditions, num_bins, num_units))
        id_pal_regress = np.zeros((num_conditions, num_bins, num_units, 2))
        pairwise_identity = np.zeros((num_conditions, num_bins, num_tastes, num_tastes))
        print('Computing palatability metrics...')

        for i, t in enumerate(trials):
            for j in range(num_bins):
                for k in range(num_units):
                    ranks = rankdata(response[j, k, t])
                    r_spearman[i, j, k], p_spearman[i, j, k] = \
                            spearmanr(ranks, palatability[j, k, t])
                    r_pearson[i, j, k], p_pearson[i, j, k] = \
                            pearsonr(response[j, k, t], palatability[j, k, t])
                    if np.isnan(r_spearman[i, j, k]):
                        r_spearman[i, j, k] = 0.0
                        p_spearman[i, j, k] = 1.0

                    if np.isnan(r_pearson[i, j, k]):
                        r_pearson[i, j, k] = 0.0
                        p_pearson[i, j, k] = 1.0

                    # Isotonic regression of firing against palatability
                    model = IsotonicRegression(increasing = 'auto')
                    model.fit(palatability[j, k, t], response[j, k, t])
                    r_isotonic[i, j, k] = model.score(palatability[j, k, t],
                                                      response[j, k, t])

                    # Multiple Regression of firing rate against palatability and identity
                    # Regress palatability on identity
                    tmp_id = identity[j, k, t].reshape(-1, 1)
                    tmp_pal = palatability[j, k, t].reshape(-1, 1)
                    tmp_resp = response[j, k, t].reshape(-1, 1)
                    model_pi = LinearRegression()
                    model_pi.fit(tmp_id, tmp_pal)
                    pi_residuals = tmp_pal - model_pi.predict(tmp_id)

                    # Regress identity on palatability
                    model_ip = LinearRegression()
                    model_ip.fit(tmp_pal, tmp_id)
                    ip_residuals = tmp_id - model_ip.predict(tmp_pal)

                    # Regress firing on identity
                    model_fi = LinearRegression()
                    model_fi.fit(tmp_id, tmp_resp)
                    fi_residuals = tmp_resp - model_fi.predict(tmp_id)

                    # Regress firing on palatability
                    model_fp = LinearRegression()
                    model_fp.fit(tmp_pal, tmp_resp)
                    fp_residuals = tmp_resp - model_fp.predict(tmp_pal)

                    # Get partial correlation coefficient of response with identity
                    idp_reg0, p = pearsonr(fp_residuals, ip_residuals)
                    if np.isnan(idp_reg0):
                        idp_reg0 = 0.0

                    idp_reg1, p = pearsonr(fi_residuals, pi_residuals)
                    if np.isnan(idp_reg1):
                        idp_reg1 = 0.0

                    id_pal_regress[i, j, k, 0] = idp_reg0
                    id_pal_regress[i, j, k, 1] = idp_reg1

                    # Identity Calculation
                    samples = []
                    for _, row in dim.iterrows():
                        taste = row.dig_in
                        samples.append([trial for trial in t
                                        if identity[j, k, trial] == taste])

                    tmp_resp = [response[j, k, sample] for sample in samples]
                    f_identity[i, j, k], p_identity[i, j, k] = f_oneway(*tmp_resp)
                    if np.isnan(f_identity[i, j, k]):
                        f_identity[i, j, k] = 0.0
                        p_identity[i, j, k] = 1.0


                # Linear Discriminant analysis for palatability
                X = response[j, :, t]
                Y = palatability[j, 0, t]
                test_results = []
                c_validator = LeavePOut(1)
                for train, test in c_validator.split(X, Y):
                    model = LDA()
                    model.fit(X[train, :], Y[train])
                    tmp = np.mean(model.predict(X[test]) == Y[test])
                    test_results.append(tmp)

                lda_palatability[i, j] = np.mean(test_results)

                # Linear Discriminant analysis for identity
                Y = identity[j, 0, t]
                test_results = []
                c_validator = LeavePOut(1)
                for train, test in c_validator.split(X, Y):
                    model = LDA()
                    model.fit(X[train, :], Y[train])
                    tmp = np.mean(model.predict(X[test]) == Y[test])
                    test_results.append(tmp)

                lda_identity[i, j] = np.mean(test_results)

                # Pairwise Identity Calculation
                for _, r1 in dim.iterrows():
                    for _, r2 in dim.iterrows():
                        t1 = r1.dig_in
                        t2 = r2.dig_in
                        tmp_trials = np.where((identity[j, 0, :] == t1) |
                                              (identity[j, 0, :] == t2))[0]
                        idx = [trial for trial in t if trial in tmp_trials]
                        X = response[j, :, idx]
                        Y = identity[j, 0, idx]
                        test_results = []
                        c_validator = StratifiedShuffleSplit(n_splits=10,
                                                             test_size=0.25,
                                                             random_state=0)
                        for train, test in c_validator.split(X, Y):
                            model = GaussianNB()
                            model.fit(X[train, :], Y[train])
                            tmp_score = model.score(X[test, :], Y[test])
                            test_results.append(tmp_score)

                        pairwise_identity[i, j, t1, t2] = np.mean(test_results)

        hf5.create_array('/ancillary_analysis', 'r_pearson', r_pearson)
        hf5.create_array('/ancillary_analysis', 'r_spearman', r_spearman)
        hf5.create_array('/ancillary_analysis', 'p_pearson', p_pearson)
        hf5.create_array('/ancillary_analysis', 'p_spearman', p_spearman)
        hf5.create_array('/ancillary_analysis', 'lda_palatability', lda_palatability)
        hf5.create_array('/ancillary_analysis', 'lda_identity', lda_identity)
        hf5.create_array('/ancillary_analysis', 'r_isotonic', r_isotonic)
        hf5.create_array('/ancillary_analysis', 'id_pal_regress', id_pal_regress)
        hf5.create_array('/ancillary_analysis', 'f_identity', f_identity)
        hf5.create_array('/ancillary_analysis', 'p_identity', p_identity)
        hf5.create_array('/ancillary_analysis', 'pairwise_NB_identity', pairwise_identity)
        hf5.flush()
예제 #5
0
#error

from sklearn.cross_validation import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
from sklearn.svm import SVC
import numpy as np
import pandas as pd
from sklearn.isotonic import IsotonicRegression


df=pd.read_csv('newtest.csv')
df1=pd.read_csv('newtest1.csv')
x=df.drop(['tag'],axis=1)
y=df.drop(['kx','ky','kz','wa','wb','wc','wd','we','wf'],axis=1)
X=df1.drop(['tag'],axis=1)
Y=df1.drop(['kx','ky','kz','wa','wb','wc','wd','we','wf'],axis=1)
X_train , X_test , Y_train , Y_test = train_test_split(x,y , random_state=5)

ir=IsotonicRegression()
ir.fit(X_train,Y_train)


print ir.score(X_test,Y_test)
예제 #6
0
from sklearn.utils import check_random_state

main = pd.read_csv('/Users/Theo/Google Drive/College/Senior Thesis/Materials Science/data/isotonic/lasam.csv', sep=',',names = ['Time','G'])
mainx_data = main.Time[1:60]
mainx_target = main.G[1:60]

###############################################################################
# Fit Isotonic Regression model
###############################################################################

ir = IsotonicRegression()
lr = LinearRegression()

y_ = ir.fit_transform(mainx_data, mainx_target)
predictions = ir.predict([10])
print predictions
print ir.score(mainx_data, mainx_target)
#print("RSS: %.2f"
#      % np.mean((ir.predict(mainx_target) - mainy_target) ** 2))

###############################################################################
# Plot result
###############################################################################

fig = plt.figure()
plt.plot(mainx_data, mainx_target, 'r.', markersize=12)
plt.plot(mainx_data, y_, 'g.-', markersize=12)
plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right')
plt.title('Isotonic regression')
plt.show()
n = 12
x = np.arange(n)
rs = check_random_state(0)
y = np.append([],java)

###############################################################################
# Fit IsotonicRegression and LinearRegression models

ir = IsotonicRegression()

y_ = ir.fit_transform(x, y)

lr = LinearRegression()
lr.fit(x[:, np.newaxis], y)  # x needs to be 2d for LinearRegression
print ir.score(x,y)
###############################################################################
# plot result

segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)]
lc = LineCollection(segments, zorder=0)
lc.set_array(np.ones(len(y)))
lc.set_linewidths(0.5 * np.ones(n))

fig = plt.figure()
plt.plot(x, y, 'r.', markersize=12)
plt.plot(x, y_, 'g.-', markersize=12)
plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-')
plt.gca().add_collection(lc)
plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right')
plt.title('Isotonic regression')
n = 12
x = np.arange(n)
rs = check_random_state(0)
y = np.append([], java)

###############################################################################
# Fit IsotonicRegression and LinearRegression models

ir = IsotonicRegression()

y_ = ir.fit_transform(x, y)

lr = LinearRegression()
lr.fit(x[:, np.newaxis], y)  # x needs to be 2d for LinearRegression
print ir.score(x, y)
###############################################################################
# plot result

segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)]
lc = LineCollection(segments, zorder=0)
lc.set_array(np.ones(len(y)))
lc.set_linewidths(0.5 * np.ones(n))

fig = plt.figure()
plt.plot(x, y, 'r.', markersize=12)
plt.plot(x, y_, 'g.-', markersize=12)
plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-')
plt.gca().add_collection(lc)
plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right')
plt.title('Isotonic regression')