from spectrogram import bpm_to_data from get_heartrates import get_interesting_heartrates from convertToWav import VIDEO_ROOT from keras.models import Sequential from keras.layers.core import Dense, Activation, Dropout, Flatten from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils, generic_utils import random import numpy as np import code #dumy_data_subject1 = [(i*5 + 1, random.randint(lowest_bpm, highest_bpm)) for i in range(1,200)] #dumy_data = {35 : dumy_data_subject1} (X_train, y_train), (X_test, y_test) = bpm_to_data(get_interesting_heartrates("C:\\Uni\\HeartAV")) lowest_bpm = min(min(y_train) , min(y_test)) highest_bpm = max(max(y_train) , max(y_test)) scale = 1 nb_classes = (highest_bpm - lowest_bpm + 1*scale) // scale #code.interact(local=locals()) print(highest_bpm, lowest_bpm, nb_classes) #code.interact(local=locals()) #y_train = list(map(lambda x : (x - lowest_bpm)//scale, y_train)) #y_test = list(map(lambda x : (x - lowest_bpm) //scale, y_test)) # convert class vectors to binary class matrices # converts a number to unary so 4 is 0001 #Y_train = np_utils.to_categorical(y_train, nb_classes)
import random import numpy as np lowest_bpm = 40 highest_bpm = 50 nb_classes = highest_bpm - lowest_bpm + 1 nb_filters = 32 nb_conv = 3 nb_pool = 2 dumy_data_subject1 = [(i*5 + 1, random.randint(lowest_bpm, highest_bpm)) for i in range(1,200)] dumy_data = {35 : dumy_data_subject1} (X_train, y_train), (X_test, y_test) = bpm_to_data(dumy_data) y_train = list(map(lambda x : x - lowest_bpm, y_train)) y_test = list(map(lambda x : x - lowest_bpm, y_test)) # convert class vectors to binary class matrices # converts a number to unary so 4 is 0001 Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) print(X_train[0].shape) model = Sequential() model.add(Convolution2D(nb_filters, 3,3, input_shape=(X_train[0].shape))) model.add(Activation('sigmoid')) model.add(Convolution2D(nb_filters, 3,3)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
from spectrogram import bpm_to_data from get_heartrates import get_interesting_heartrates from convertToWav import VIDEO_ROOT from keras.models import Sequential from keras.layers.core import Dense, Activation, Dropout, Flatten from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils, generic_utils import random import numpy as np import code #dumy_data_subject1 = [(i*5 + 1, random.randint(lowest_bpm, highest_bpm)) for i in range(1,200)] #dumy_data = {35 : dumy_data_subject1} (X_train, y_train), (X_test, y_test) = bpm_to_data( get_interesting_heartrates("C:\\Uni\\HeartAV")) lowest_bpm = min(min(y_train), min(y_test)) highest_bpm = max(max(y_train), max(y_test)) scale = 1 nb_classes = (highest_bpm - lowest_bpm + 1 * scale) // scale #code.interact(local=locals()) print(highest_bpm, lowest_bpm, nb_classes) #code.interact(local=locals()) #y_train = list(map(lambda x : (x - lowest_bpm)//scale, y_train)) #y_test = list(map(lambda x : (x - lowest_bpm) //scale, y_test)) # convert class vectors to binary class matrices # converts a number to unary so 4 is 0001 #Y_train = np_utils.to_categorical(y_train, nb_classes)
import random import numpy as np lowest_bpm = 40 highest_bpm = 50 nb_classes = highest_bpm - lowest_bpm + 1 nb_filters = 32 nb_conv = 3 nb_pool = 2 dumy_data_subject1 = [(i * 5 + 1, random.randint(lowest_bpm, highest_bpm)) for i in range(1, 200)] dumy_data = {35: dumy_data_subject1} (X_train, y_train), (X_test, y_test) = bpm_to_data(dumy_data) y_train = list(map(lambda x: x - lowest_bpm, y_train)) y_test = list(map(lambda x: x - lowest_bpm, y_test)) # convert class vectors to binary class matrices # converts a number to unary so 4 is 0001 Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) print(X_train[0].shape) model = Sequential() model.add(Convolution2D(nb_filters, 3, 3, input_shape=(X_train[0].shape))) model.add(Activation("sigmoid")) model.add(Convolution2D(nb_filters, 3, 3)) model.add(Activation("relu")) model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))