def run_i_periodogram(data_sets):
    '''
    run the periodogram using a cubic spline
    '''
    sampling_rate = 30
    ds_none = list(data_sets.items())[0][1]
    ds_none_name = list(data_sets.items())[0][0]
    for i in range(1, len(data_sets)):
        ds_vibration = list(data_sets.items())[i][1]
        ds_vibration_name = list(data_sets.items())[i][0]
        fig = plt.figure("Cubic Periodogram " + ds_none_name + " (left), " +ds_vibration_name + " (right)")

        gs = fig.add_gridspec(len(ds_none), 2, hspace=1)
        axs = gs.subplots()
        for i in range(len(ds_none)):
            cs = CubicSpline(ds_none[i]["t"], ds_none[i]["ds"])
            times = numpy.arange(ds_none[i]["t"][0],ds_none[i]["t"][-1],1000/sampling_rate)
            values = cs(times)
            p = spectrum.Periodogram(values, sampling=sampling_rate)
            p.run()
            x, y = p.frequencies(), 10 * spectrum.tools.log10(p.psd)
            axs[i][0].plot(x[2:], y[2:])
        for i in range(len(ds_none)):
            cs = CubicSpline(ds_vibration[i]["t"], ds_vibration[i]["ds"])
            times = numpy.arange(ds_vibration[i]["t"][0],ds_vibration[i]["t"][-1],1000/sampling_rate)
            values = cs(times)
            p = spectrum.Periodogram(values, sampling=sampling_rate)
            p.run()
            x, y = p.frequencies(), 10 * spectrum.tools.log10(p.psd)
            axs[i][1].plot(x[2:], y[2:])
        plt.show()
def run_periodogram(data_sets):
    '''
    Run a periodogram on the data sets
    '''
    ds_none = list(data_sets.items())[0][1]
    ds_none_name = list(data_sets.items())[0][0]
    for i in range(1, len(data_sets)):
        ds_vibration = list(data_sets.items())[i][1]
        ds_vibration_name = list(data_sets.items())[i][0]
        fig = plt.figure("Uniform Periodogram " + ds_none_name + " (left), " +ds_vibration_name + " (right)")
        gs = fig.add_gridspec(len(ds_none), 2, hspace=1)
        axs = gs.subplots()
        for i in range(len(ds_none)):
            data = ds_none[i]["ds"]
            p = spectrum.Periodogram(data, sampling=(len(data)/30))
            p.run()
            x, y = p.frequencies(), 10 * spectrum.tools.log10(p.psd)
            axs[i][0].plot(x[2:], y[2:])
        for i in range(len(ds_none)):
            data = ds_vibration[i]["ds"]
            p = spectrum.Periodogram(data, sampling=(len(data)/30))
            p.run()
            x, y = p.frequencies(), 10 * spectrum.tools.log10(p.psd)
            axs[i][1].plot(x[2:], y[2:])
        plt.show()
def updateSpectrum(data):
    '''Power spectrum density'''
    if not update_data.update_data.rx_stop:
        p = spectrum.Periodogram(P.data,
                                 sampling=P.Params['sample_freq'],
                                 window='hann')
        p.run()

        if sum(p.psd) == 0:
            P.PSD = np.zeros(np.size(p.psd))
            P.line_spec.set_ydata(P.PSD[P.Params['start']:P.Params['end']])
        else:
            P.PSD = np.fft.fftshift(10 * np.log10(p.psd))
            P.line_spec.set_ydata(P.PSD[P.Params['start']:P.Params['end']])
            P.line_spec.set_xdata(P.Params['spec_idx'])

            y = np.array(P.PSD[:])
            ymax = max(y)
            idx = np.where(y > ymax * 0.9)
            ave = np.mean(y[idx[0][0]:idx[0][-1]])
            threshold = ave / np.sqrt(2)
            x = np.where(y > threshold)

            bw = (x[0][-1] - x[0][0] +
                  1) * P.Params['sample_freq'] / 1e3 / P.Params[
                      'input_sample_len']  #unit: KHz
            bandwidth = 'Bandwidth: {:.2f}KHz'.format(bw)
            P.bwLabel['text'] = bandwidth

        updateCursor()

    return P.line_spec,
Exemple #4
0
 def timerEvent(self, e):  # FFT
     global fftbuffersize
     if self.datastream == None: return
     if self.freeze == 1: return
     if SELECTEDCH == BOTH12:
         channel = 12
         X, Y = self.datastream.read(channel, fftbuffersize, verbose)
         if X is None or not len(X): return
         data_CH1 = X[:fftbuffersize]
         data_CH2 = Y[:fftbuffersize]
     elif SELECTEDCH == CH1:
         channel = 1
         X = self.datastream.read(channel, fftbuffersize, verbose)
         if X is None or not len(X): return
         data_CH1 = X[:fftbuffersize]
         data_CH2 = np.ones((fftbuffersize, ))
     elif SELECTEDCH == CH2:
         channel = 2
         X = self.datastream.read(channel, fftbuffersize, verbose)
         if X is None or not len(X): return
         data_CH2 = X[:fftbuffersize]
         data_CH1 = np.ones((fftbuffersize, ))
     self.df = 1.0 / (fftbuffersize * self.dt)
     self.setAxisTitle(Qwt.QwtPlot.xBottom,
                       'Frequency [Hz] - Bin width %g Hz' % (self.df, ))
     self.f = np.arange(0.0, samplerate, self.df)
     if not SPECTRUM_MODULE:
         lenX = fftbuffersize
         window = np.blackman(lenX)
         sumw = np.sum(window * window)
         A = FFT.fft(data_CH1 * window)  #lenX
         B = (A * np.conjugate(A)).real
         A = FFT.fft(data_CH2 * window)  #lenX
         B2 = (A * np.conjugate(A)).real
         sumw *= 2.0  # sym about Nyquist (*4); use rms (/2)
         sumw /= self.dt  # sample rate
         B /= sumw
         B2 /= sumw
     else:
         print "FFT buffer size: %d points" % (fftbuffersize, )
         B = spectrum.Periodogram(np.array(data_CH1, dtype=float64),
                                  samplerate)
         B.sides = 'onesided'
         B.run()
         B = B.get_converted_psd('onesided')
         B2 = spectrum.Periodogram(np.array(data_CH2, dtype=float64),
                                   samplerate)
         B2.sides = 'onesided'
         B2.run()
         B2 = B2.get_converted_psd('onesided')
     if self.logy:
         P1 = np.log10(B) * 10.0
         P2 = np.log10(B2) * 10.0
         P1 -= P1.max()
         P2 -= P2.max()
     else:
         P1 = B
         P2 = B2
     if not self.average:
         self.a1 = P1
         self.a2 = P2
         self.avcount = 0
     else:
         self.avcount += 1
         if self.avcount == 1:
             self.sumP1 = P1
             self.sumP2 = P2
         elif self.sumP1.shape != P1.shape or self.sumP1.shape != P1.shape:
             self.avcount = 1
             self.sumP1 = P1
             self.sumP2 = P2
         else:
             self.sumP1 += P1
             self.sumP2 += P2
         self.a1 = self.sumP1 / self.avcount
         self.a2 = self.sumP2 / self.avcount
     self.setDisplay()
Exemple #5
0
def create_all_psd():

    f = pylab.linspace(0, 1, 4096)

    pylab.figure(figsize=(12, 8))

    # MA model
    p = spectrum.pma(xx, 64, 128)
    p()
    p.plot()
    """
    #ARMA 15 order
    a, b, rho = spectrum.arma_estimate(data, 15,15, 30)
    psd = spectrum.arma2psd(A=a,B=b, rho=rho)
    newpsd = tools.cshift(psd, len(psd)//2) # switch positive and negative freq
    pylab.plot(f, 10 * pylab.log10(newpsd/max(newpsd)), label='ARMA 15,15')
    """
    # YULE WALKER
    p = spectrum.pyule(xx, 7, NFFT=4096, scale_by_freq=False)
    p.plot()
    # equivalent to
    # plot([x for x in p.frequencies()] , 10*log10(p.psd)); grid(True)

    #burg method
    p = spectrum.pburg(xx, 7, scale_by_freq=False)
    p.plot()

    #pcovar
    p = spectrum.pcovar(xx, 7, scale_by_freq=False)
    p.plot()

    #pmodcovar
    p = spectrum.pmodcovar(xx, 7, scale_by_freq=False)
    p.plot()

    # correlogram
    p = spectrum.pcorrelogram(xx, lag=60, NFFT=512, scale_by_freq=False)
    p.plot()

    # minvar
    p = spectrum.pminvar(xx, 7, NFFT=256, scale_by_freq=False)
    p.plot()

    # pmusic
    p = spectrum.pmusic(xx, 10, 4, scale_by_freq=False)
    p.plot()

    # pmusic
    p = spectrum.pev(xx, 10, 4, scale_by_freq=False)
    p.plot()

    # periodogram
    p = spectrum.Periodogram(xx, scale_by_freq=False)
    p.plot()

    #
    legend([
        "MA 32", "pyule 7", "pburg 7", "pcovar", "pmodcovar", "correlogram",
        "minvar", "pmusic", "pev", "periodgram"
    ])

    pylab.ylim([-80, 80])
Exemple #6
0
N = 1000   # cantidad de muestras
df = fs/N # resolución espectral
eps = np.finfo(float).tiny

# grilla de sampleo temporal
tt = np.linspace(0, (N-1)/fs, N).flatten()

dd = 0.5

# prestar atención que las tuplas dentro de los diccionarios también pueden direccionarse mediante "ii"
#data = np.sin( 2*np.pi*(N/4+dd)*df*tt) + np.sqrt(0.1)*np.random.randn(N)
data = np.sin( 2*np.pi*(N/4+dd)*df*tt) + np.sin( 2*np.pi*(N/4+10+dd)*df*tt) + np.sqrt(0.1)*np.random.randn(N)


# No paramétricos
pP = sp.Periodogram(data, sampling=fs, NFFT = N )
_, pW = sg.welch(data, fs=fs, nfft=N, window='hanning', nperseg=int(np.round(N/3)) )
pBT = sp.pcorrelogram(data, sampling=fs, NFFT = N, lag=int(np.round(N/5)), window='hamming')
pMT = sp.MultiTapering(data, sampling=fs, NFFT = N, NW=2 )

# Paramétricos

pEig = sp.pev(data, 30, NFFT=N )

pCov = sp.pmodcovar(data, 30, NFFT = N )

pARMA = sp.parma(data, 8, 8, 30, NFFT=N)


sp.pma
Exemple #7
0
hamming = Window(len(x), name='hamming')
f, pxx = sci.periodogram(x,
                         window=hamming.data,
                         fs=Fs,
                         nfft=len(x),
                         scaling='spectrum')
pwrest = pxx.max()
idx = pxx.argmax()

plt.subplot(312)
plt.plot(f, pxx)
plt.title('Periodograma')
plt.xlabel('Frequência')
plt.ylabel('Potência (W)')
plt.grid()
plt.axis([0, 2 * fc, 0, A**2])

print('A potência máxima ocorre em ', f[idx], ' Hz')
print('A potência estimada é', pwrest)

plt.subplot(313)
#construindo todo o procedimento com as funções da spectrum
import spectrum as spec
data = spec.data_cosine(N=len(x), A=10, sampling=Fs, freq=fc)
p = spec.Periodogram(x, sampling=Fs, window='hamming')
p.run()  #Recomputa a psd caso 'x' tenha sido alterado
p.plot()
plt.title("Periodograma (dB) da Spectrum")

plt.tight_layout()
plt.show()