def adf(ts, maxlag=1): """ Augmented Dickey-Fuller unit root test """ # make sure we are working with an array, convert if necessary ts = np.asarray(ts) # Get the dimension of the array nobs = ts.shape[0] # Calculate the discrete difference tsdiff = np.diff(ts) # Create a 2d array of lags, trim invalid observations on both sides tsdall = lagmat(tsdiff[:, None], maxlag, trim='both', original='in') # Get dimension of the array nobs = tsdall.shape[0] # replace 0 xdiff with level of x tsdall[:, 0] = ts[-nobs - 1:-1] tsdshort = tsdiff[-nobs:] # Calculate the linear regression using an ordinary least squares model results = OLS(tsdshort, add_trend(tsdall[:, :maxlag + 1], 'c')).fit() adfstat = results.tvalues[0] # Get approx p-value from a precomputed table (from stattools) pvalue = mackinnonp(adfstat, 'c', N=1) return pvalue
def aeg_pca(X0, X1, trend): __sqrteps = np.sqrt(np.finfo(np.double).eps) # Compute residual if trend == "nc": # pseudo PCA from origin rms0 = rms(X0) rms1 = rms(X1) residual = X0 / rms0 - X1 / rms1 collinearity = 1.0 - residual.std() / (X0 / rms1 + 1 / rms0).std() if trend == "c": X = np.array([X0, X1]).T pca = PCA(n_components=2).fit(X) residual = pca.transform(X)[:, 1] # PC1 collinearity = pca.explained_variance_ratio_[0] # Get ADF statistics if collinearity < 1.0 - __sqrteps: adf_stat = adfuller(residual, regression="nc")[0] else: adf_stat = -np.inf # Get pvalue pvalue = mackinnonp(adf_stat, regression=trend, N=1) # Get critical values if trend == "nc": crit = [np.nan, np.nan, np.nan] if trend == "c": crit = mackinnoncrit(N=1, regression=trend, nobs=X0.shape[0] - 1) return adf_stat, pvalue, crit
def ad_fuller(series, maxlag=None): """Get series and return the p-value and the t-stat of the coefficient""" if maxlag is None: n = int((len(series) - 1)**(1. / 3)) elif maxlag < 1: n = 1 else: n = maxlag # Putting the X values on a Tensor with Double as type X = series # Generating the lagged tensor to calculate the difference X_1 = narrow(X, 0, 1, X.shape[0] - 1) # Re-sizing the x values to get the difference X = narrow(X, 0, 0, X.shape[0] - 1) dX = X_1 - X # Generating the lagged difference tensors # and concatenating the lagged tensors into a single one for i in range(1, n + 1): lagged_n = narrow(dX, 0, n - i, (dX.shape[0] - n)) lagged_reshape = np.reshape(lagged_n, (lagged_n.shape[0], 1)) if i == 1: lagged_tensors = lagged_reshape else: lagged_tensors = np.concatenate((lagged_tensors, lagged_reshape), 1) # Reshaping the X and the difference tensor # to match the dimension of the lagged ones X = narrow(X, 0, 0, X.shape[0] - n) dX = narrow(dX, 0, n, dX.shape[0] - n) dX = np.reshape(dX, (dX.shape[0], 1)) # Concatenating the lagged tensors to the X one # and adding a column full of ones for the Linear Regression X = np.concatenate((np.reshape(X, (X.shape[0], 1)), lagged_tensors), 1) ones_columns = np.ones((X.shape[0], 1)) X_ = np.concatenate((X, np.ones_like(ones_columns, dtype=np.float64)), 1) nobs = X_.shape[0] # Xb = y -> Xt.X.b = Xt.y -> b = (Xt.X)^-1.Xt.y coeff = np.matmul(np.matmul(np.linalg.inv(np.matmul(X_.T, X_)), X_.T), dX) std_error = get_std_error(X_, dX, coeff) coeff_std_err = get_coeff_std_error(X_, std_error, coeff)[0] t_stat = (coeff[0] / coeff_std_err).item() p_value = mackinnonp(t_stat, regression="c", N=1) critvalues = mackinnoncrit(N=1, regression="c", nobs=nobs) critvalues = { "1%": critvalues[0], "5%": critvalues[1], "10%": critvalues[2] } return t_stat, p_value, n, nobs, critvalues
def check(self): _log_price_a = np.log(self._prices_a) _log_price_b = np.log(self._prices_b) _values = np.stack((_log_price_b, _log_price_a), axis=-1) rst = coint_johansen(_values, det_order=0, k_ar_diff=1) beta_b, beta_a = rst.evec[0] # self._spread = _log_price_b * beta_b + _log_price_a * beta_a # res_adf = adfuller(self._spread, maxlag=1, regression='c', autolag=None) # print(res_adf) self._beta_b = beta_b self._beta_a = beta_a self._beta = beta_a / beta_b self._spread = _log_price_b + _log_price_a * beta_a / beta_b res_adf = adfuller(self._spread, maxlag=1, regression='c', autolag=None) # ipdb.set_trace() self._p_value = mackinnonp(res_adf[0], regression='c', N=2) self._t_stats = res_adf[0]
def coint(y1, y2, regression="c"): """ This is a simple cointegration test. Uses unit-root test on residuals to test for cointegrated relationship See Hamilton (1994) 19.2 Parameters ---------- y1 : array_like, 1d first element in cointegrating vector y2 : array_like remaining elements in cointegrating vector c : str {'c'} Included in regression * 'c' : Constant Returns ------- coint_t : float t-statistic of unit-root test on residuals pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994) crit_value : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Notes ----- The Null hypothesis is that there is no cointegration, the alternative hypothesis is that there is cointegrating relationship. If the pvalue is small, below a critical size, then we can reject the hypothesis that there is no cointegrating relationship. P-values are obtained through regression surface approximation from MacKinnon 1994. References ---------- MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. """ regression = regression.lower() if regression not in ['c', 'nc', 'ct', 'ctt']: raise ValueError("regression option %s not understood" % regression) y1 = np.asarray(y1) y2 = np.asarray(y2) if regression == 'c': y2 = add_constant(y2, prepend=False) st1_resid = OLS(y1, y2).fit().resid # stage one residuals lgresid_cons = add_constant(st1_resid[0:-1], prepend=False) uroot_reg = OLS(st1_resid[1:], lgresid_cons).fit() coint_t = (uroot_reg.params[0] - 1) / uroot_reg.bse[0] pvalue = mackinnonp(coint_t, regression="c", N=2, lags=None) crit_value = mackinnoncrit(N=1, regression="c", nobs=len(y1)) return coint_t, pvalue, crit_value
def df_test(df): df_vect = df df_size = len(df_vect) autolag = 'AIC' max_lag = None regression = 'c' trend_size = len(regression) # размер тренда # Максимальное запаздывание, вычисляется как ТВГ соотвествующего выражения max_lag = int(np.ceil(12. * np.power(df_size / 100., 1 / 2))) max_lag = min(df_size // 2 - trend_size, max_lag) if max_lag < 0: raise ValueError('Dataset is too short') # массив с первыми разностями: элем_i = a[i+1] - a[i] df_diff = np.diff(df_vect) # массив с лагами, где max_lag - число "сдвигов" вниз df_diff_all = sm.tsa.lagmat(df_diff[:, None], max_lag, trim='both', original='in') df_size = df_diff_all.shape[0] # количество столбцов в массиве лагов # заменяем первый столбец df_diff_all на df_vect df_diff_all[:, 0] = df_vect[-df_size - 1:-1] df_diff_short = df_diff[-df_size:] # оставляем последние df_size элементов df_diff_full = df_diff_all start_lag = df_diff_full.shape[1] - \ df_diff_all.shape[1] + 1 # начальный лаг best_inf_crit, best_lag = get_lag(sm.OLS, df_diff_short, df_diff_full, start_lag, max_lag, autolag) best_lag -= start_lag # оптимальное значение лага # массив с лагами, но уже при оптимальном значении лага df_diff_all = sm.tsa.lagmat(df_diff[:, None], best_lag, trim='both', original='in') df_size = df_diff_all.shape[0] # заменяем первый столбец df_diff_all на df_vect df_diff_all[:, 0] = df_vect[-df_size - 1:-1] df_diff_short = df_diff[-df_size:] use_lag = best_lag # аппроксимация ряда методом наименьших квадратов resols = sm.OLS(df_diff_short, sm.tsa.add_trend(df_diff_all[:, :use_lag + 1], regression)).fit() adfstat = resols.tvalues[0] # получение необходимой статистики pvalue = mackinnonp(adfstat, regression=regression, N=1) critvalues = mackinnoncrit(N=1, regression=regression, nobs=df_size) if adfstat < critvalues[1]: print("Time series is stationary with crit value ", adfstat) return True else: print("Time series is not stationary with crit value ", adfstat) return False
def _outer_cointegration_loop(prices_df: pd.DataFrame, molecule: list) -> pd.DataFrame: """ This function calculates the Engle-Granger test for each pair in the molecule. Uses the Total Least Squares approach to take into consideration the variance of both price series. :param prices_df: (pd.DataFrame) Price Universe :param molecule: (list) Indices of pairs :return: (pd.DataFrame) Cointegration statistics """ cointegration_results = [] for pair in molecule: maxlag = None autolag = "aic" trend = "c" y0 = prices_df.loc[:, pair[0]] y1 = prices_df.loc[:, pair[1]] def f(B, x): return B[0] * x + B[1] linear = Model(f) mydata = RealData(y0, y1) myodr = ODR(mydata, linear, beta0=[1., 2.]) res_co = myodr.run() res_adf = adfuller(res_co.delta - res_co.eps, maxlag=maxlag, autolag=autolag, regression="nc") pval_asy = mackinnonp(res_adf[0], regression=trend) cointegration_results.append( (res_adf[0], pval_asy, res_co.beta[0], res_co.beta[1])) return pd.DataFrame( cointegration_results, index=molecule, columns=['coint_t', 'pvalue', 'hedge_ratio', 'constant'])
def coint(y0, y1, trend='c', method='aeg', maxlag=None, autolag='aic', return_results=None): """Test for no-cointegration of a univariate equation The null hypothesis is no cointegration. Variables in y0 and y1 are assumed to be integrated of order 1, I(1). This uses the augmented Engle-Granger two-step cointegration test. Constant or trend is included in 1st stage regression, i.e. in cointegrating equation. Parameters ---------- y1 : array_like, 1d first element in cointegrating vector y2 : array_like remaining elements in cointegrating vector trend : str {'c', 'ct'} trend term included in regression for cointegrating equation * 'c' : constant * 'ct' : constant and linear trend * also available quadratic trend 'ctt', and no constant 'nc' method : string currently only 'aeg' for augmented Engle-Granger test is available. default might change. maxlag : None or int keyword for `adfuller`, largest or given number of lags autolag : string keyword for `adfuller`, lag selection criterion. return_results : bool for future compatibility, currently only tuple available. If True, then a results instance is returned. Otherwise, a tuple with the test outcome is returned. Set `return_results=False` to avoid future changes in return. Returns ------- coint_t : float t-statistic of unit-root test on residuals pvalue : float MacKinnon's approximate, asymptotic p-value based on MacKinnon (1994) crit_value : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels based on regression curve. This depends on the number of observations. Notes ----- The Null hypothesis is that there is no cointegration, the alternative hypothesis is that there is cointegrating relationship. If the pvalue is small, below a critical size, then we can reject the hypothesis that there is no cointegrating relationship. P-values and critical values are obtained through regression surface approximation from MacKinnon 1994 and 2010. TODO: We could handle gaps in data by dropping rows with nans in the auxiliary regressions. Not implemented yet, currently assumes no nans and no gaps in time series. References ---------- MacKinnon, J.G. 1994 "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests." Journal of Business & Economics Statistics, 12.2, 167-76. MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen's University, Dept of Economics Working Papers 1227. http://ideas.repec.org/p/qed/wpaper/1227.html """ trend = trend.lower() if trend not in ['c', 'nc', 'ct', 'ctt']: raise ValueError("trend option %s not understood" % trend) y0 = np.asarray(y0) y1 = np.asarray(y1) if y1.ndim < 2: y1 = y1[:, None] nobs, k_vars = y1.shape k_vars += 1 # add 1 for y0 if trend == 'nc': xx = y1 else: xx = add_trend(y1, trend=trend, prepend=False) res_co = OLS(y0, xx).fit() if res_co.rsquared < 1 - np.sqrt(np.finfo(np.double).eps): res_adf = adfuller(res_co.resid, maxlag=maxlag, autolag=None, regression='nc') else: import warnings warnings.warn("y0 and y1 are perfectly colinear. Cointegration test " "is not reliable in this case.") # Edge case where series are too similar res_adf = (0,) # no constant or trend, see egranger in Stata and MacKinnon if trend == 'nc': crit = [np.nan] * 3 # 2010 critical values not available else: crit = mackinnoncrit(N=k_vars, regression=trend, nobs=nobs - 1) # nobs - 1, the -1 is to match egranger in Stata, I don't know why. # TODO: check nobs or df = nobs - k pval_asy = mackinnonp(res_adf[0], regression=trend, N=k_vars) return res_adf[0], pval_asy, crit
def adfuller(x, maxlag=None, regression="c", autolag='AIC', store=False, regresults=False): """ Augmented Dickey-Fuller unit root test The Augmented Dickey-Fuller test can be used to test for a unit root in a univariate process in the presence of serial correlation. Parameters ---------- x : array_like, 1d data series maxlag : int Maximum lag which is included in test, default 12*(nobs/100)^{1/4} regression : {'c','ct','ctt','nc'} Constant and trend order to include in regression * 'c' : constant only (default) * 'ct' : constant and trend * 'ctt' : constant, and linear and quadratic trend * 'nc' : no constant, no trend autolag : {'AIC', 'BIC', 't-stat', None} * if None, then maxlag lags are used * if 'AIC' (default) or 'BIC', then the number of lags is chosen to minimize the corresponding information criterion * 't-stat' based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test store : bool If True, then a result instance is returned additionally to the adf statistic. Default is False regresults : bool, optional If True, the full regression results are returned. Default is False Returns ------- adf : float Test statistic pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994, 2010) usedlag : int Number of lags used nobs : int Number of observations used for the ADF regression and calculation of the critical values critical values : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Based on MacKinnon (2010) icbest : float The maximized information criterion if autolag is not None. resstore : ResultStore, optional A dummy class with results attached as attributes Notes ----- The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then we cannot reject that there is a unit root. The p-values are obtained through regression surface approximation from MacKinnon 1994, but using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to reject the null. The autolag option and maxlag for it are described in Greene. Examples -------- See example notebook References ---------- .. [*] W. Green. "Econometric Analysis," 5th ed., Pearson, 2003. .. [*] Hamilton, J.D. "Time Series Analysis". Princeton, 1994. .. [*] MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. .. [*] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen's University, Dept of Economics, Working Papers. Available at http://ideas.repec.org/p/qed/wpaper/1227.html """ if regresults: store = True trenddict = {None: 'nc', 0: 'c', 1: 'ct', 2: 'ctt'} if regression is None or isinstance(regression, (int, long)): regression = trenddict[regression] regression = regression.lower() if regression not in ['c', 'nc', 'ct', 'ctt']: raise ValueError("regression option %s not understood") % regression x = np.asarray(x) nobs = x.shape[0] if maxlag is None: #from Greene referencing Schwert 1989 maxlag = int(np.ceil(12. * np.power(nobs / 100., 1 / 4.))) xdiff = np.diff(x) xdall = lagmat(xdiff[:, None], maxlag, trim='both', original='in') nobs = xdall.shape[0] # pylint: disable=E1103 xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] if store: resstore = ResultsStore() if autolag: if regression != 'nc': fullRHS = add_trend(xdall, regression, prepend=True) else: fullRHS = xdall startlag = fullRHS.shape[1] - xdall.shape[1] + 1 # 1 for level # pylint: disable=E1103 #search for lag length with smallest information criteria #Note: use the same number of observations to have comparable IC #aic and bic: smaller is better if not regresults: icbest, bestlag = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag) else: icbest, bestlag, alres = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag, regresults=regresults) resstore.autolag_results = alres bestlag -= startlag # convert to lag not column index #rerun ols with best autolag xdall = lagmat(xdiff[:, None], bestlag, trim='both', original='in') nobs = xdall.shape[0] # pylint: disable=E1103 xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] usedlag = bestlag else: usedlag = maxlag icbest = None if regression != 'nc': resols = OLS(xdshort, add_trend(xdall[:, :usedlag + 1], regression)).fit() else: resols = OLS(xdshort, xdall[:, :usedlag + 1]).fit() adfstat = resols.tvalues[0] # adfstat = (resols.params[0]-1.0)/resols.bse[0] # the "asymptotically correct" z statistic is obtained as # nobs/(1-np.sum(resols.params[1:-(trendorder+1)])) (resols.params[0] - 1) # I think this is the statistic that is used for series that are integrated # for orders higher than I(1), ie., not ADF but cointegration tests. # Get approx p-value and critical values pvalue = mackinnonp(adfstat, regression=regression, N=1) critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs) critvalues = {"1%" : critvalues[0], "5%" : critvalues[1], "10%" : critvalues[2]} if store: resstore.resols = resols resstore.maxlag = maxlag resstore.usedlag = usedlag resstore.adfstat = adfstat resstore.critvalues = critvalues resstore.nobs = nobs resstore.H0 = ("The coefficient on the lagged level equals 1 - " "unit root") resstore.HA = "The coefficient on the lagged level < 1 - stationary" resstore.icbest = icbest resstore._str = 'Augmented Dickey-Fuller Test Results' return adfstat, pvalue, critvalues, resstore else: if not autolag: return adfstat, pvalue, usedlag, nobs, critvalues else: return adfstat, pvalue, usedlag, nobs, critvalues, icbest
def coint(y0, y1, trend='c', method='aeg', maxlag=None, autolag='aic', return_results=None): """Test for no-cointegration of a univariate equation The null hypothesis is no cointegration. Variables in y0 and y1 are assumed to be integrated of order 1, I(1). This uses the augmented Engle-Granger two-step cointegration test. Constant or trend is included in 1st stage regression, i.e. in cointegrating equation. Parameters ---------- y1 : array_like, 1d first element in cointegrating vector y2 : array_like remaining elements in cointegrating vector trend : str {'c', 'ct'} trend term included in regression for cointegrating equation * 'c' : constant * 'ct' : constant and linear trend * also available quadratic trend 'ctt', and no constant 'nc' method : string currently only 'aeg' for augmented Engle-Granger test is available. default might change. maxlag : None or int keyword for `adfuller`, largest or given number of lags autolag : string keyword for `adfuller`, lag selection criterion. return_results : bool for future compatibility, currently only tuple available. If True, then a results instance is returned. Otherwise, a tuple with the test outcome is returned. Set `return_results=False` to avoid future changes in return. Returns ------- coint_t : float t-statistic of unit-root test on residuals pvalue : float MacKinnon's approximate, asymptotic p-value based on MacKinnon (1994) crit_value : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels based on regression curve. This depends on the number of observations. Notes ----- The Null hypothesis is that there is no cointegration, the alternative hypothesis is that there is cointegrating relationship. If the pvalue is small, below a critical size, then we can reject the hypothesis that there is no cointegrating relationship. P-values and critical values are obtained through regression surface approximation from MacKinnon 1994 and 2010. TODO: We could handle gaps in data by dropping rows with nans in the auxiliary regressions. Not implemented yet, currently assumes no nans and no gaps in time series. References ---------- MacKinnon, J.G. 1994 "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests." Journal of Business & Economics Statistics, 12.2, 167-76. MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen's University, Dept of Economics Working Papers 1227. http://ideas.repec.org/p/qed/wpaper/1227.html """ trend = trend.lower() if trend not in ['c', 'nc', 'ct', 'ctt']: raise ValueError("trend option %s not understood" % trend) y0 = np.asarray(y0) y1 = np.asarray(y1) if y1.ndim < 2: y1 = y1[:, None] nobs, k_vars = y1.shape k_vars += 1 # add 1 for y0 if trend == 'nc': xx = y1 else: xx = add_trend(y1, trend=trend, prepend=False) res_co = OLS(y0, xx).fit() res_adf = adfuller(res_co.resid, maxlag=maxlag, autolag=None, regression='nc') # no constant or trend, see egranger in Stata and MacKinnon if trend == 'nc': crit = [np.nan] * 3 # 2010 critical values not available else: crit = mackinnoncrit(N=k_vars, regression=trend, nobs=nobs - 1) # nobs - 1, the -1 is to match egranger in Stata, I don't know why. # TODO: check nobs or df = nobs - k pval_asy = mackinnonp(res_adf[0], regression=trend, N=k_vars) return res_adf[0], pval_asy, crit
def adfuller(x, maxlag=None, regression="c", autolag='AIC', store=False, regresults=False): """ Augmented Dickey-Fuller unit root test The Augmented Dickey-Fuller test can be used to test for a unit root in a univariate process in the presence of serial correlation. Parameters ---------- x : array_like, 1d data series maxlag : int Maximum lag which is included in test, default 12*(nobs/100)^{1/4} regression : {'c','ct','ctt','nc'} Constant and trend order to include in regression * 'c' : constant only (default) * 'ct' : constant and trend * 'ctt' : constant, and linear and quadratic trend * 'nc' : no constant, no trend autolag : {'AIC', 'BIC', 't-stat', None} * if None, then maxlag lags are used * if 'AIC' (default) or 'BIC', then the number of lags is chosen to minimize the corresponding information criterion * 't-stat' based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test store : bool If True, then a result instance is returned additionally to the adf statistic. Default is False regresults : bool, optional If True, the full regression results are returned. Default is False Returns ------- adf : float Test statistic pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994, 2010) usedlag : int Number of lags used nobs : int Number of observations used for the ADF regression and calculation of the critical values critical values : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Based on MacKinnon (2010) icbest : float The maximized information criterion if autolag is not None. resstore : ResultStore, optional A dummy class with results attached as attributes Notes ----- The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then we cannot reject that there is a unit root. The p-values are obtained through regression surface approximation from MacKinnon 1994, but using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to reject the null. The autolag option and maxlag for it are described in Greene. Examples -------- See example notebook References ---------- .. [1] W. Green. "Econometric Analysis," 5th ed., Pearson, 2003. .. [2] Hamilton, J.D. "Time Series Analysis". Princeton, 1994. .. [3] MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. .. [4] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen's University, Dept of Economics, Working Papers. Available at http://ideas.repec.org/p/qed/wpaper/1227.html """ if regresults: store = True trenddict = {None: 'nc', 0: 'c', 1: 'ct', 2: 'ctt'} if regression is None or isinstance(regression, (int, long)): regression = trenddict[regression] regression = regression.lower() if regression not in ['c', 'nc', 'ct', 'ctt']: raise ValueError("regression option %s not understood") % regression x = np.asarray(x) nobs = x.shape[0] if maxlag is None: #from Greene referencing Schwert 1989 maxlag = int(np.ceil(12. * np.power(nobs / 100., 1 / 4.))) xdiff = np.diff(x) xdall = lagmat(xdiff[:, None], maxlag, trim='both', original='in') nobs = xdall.shape[0] # pylint: disable=E1103 xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] if store: resstore = ResultsStore() if autolag: if regression != 'nc': fullRHS = add_trend(xdall, regression, prepend=True) else: fullRHS = xdall startlag = fullRHS.shape[1] - xdall.shape[1] + 1 # 1 for level # pylint: disable=E1103 #search for lag length with smallest information criteria #Note: use the same number of observations to have comparable IC #aic and bic: smaller is better if not regresults: icbest, bestlag = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag) else: icbest, bestlag, alres = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag, regresults=regresults) resstore.autolag_results = alres bestlag -= startlag # convert to lag not column index #rerun ols with best autolag xdall = lagmat(xdiff[:, None], bestlag, trim='both', original='in') nobs = xdall.shape[0] # pylint: disable=E1103 xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] usedlag = bestlag else: usedlag = maxlag icbest = None if regression != 'nc': resols = OLS(xdshort, add_trend(xdall[:, :usedlag + 1], regression)).fit() else: resols = OLS(xdshort, xdall[:, :usedlag + 1]).fit() adfstat = resols.tvalues[0] # adfstat = (resols.params[0]-1.0)/resols.bse[0] # the "asymptotically correct" z statistic is obtained as # nobs/(1-np.sum(resols.params[1:-(trendorder+1)])) (resols.params[0] - 1) # I think this is the statistic that is used for series that are integrated # for orders higher than I(1), ie., not ADF but cointegration tests. # Get approx p-value and critical values pvalue = mackinnonp(adfstat, regression=regression, N=1) critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs) critvalues = {"1%" : critvalues[0], "5%" : critvalues[1], "10%" : critvalues[2]} if store: resstore.resols = resols resstore.maxlag = maxlag resstore.usedlag = usedlag resstore.adfstat = adfstat resstore.critvalues = critvalues resstore.nobs = nobs resstore.H0 = ("The coefficient on the lagged level equals 1 - " "unit root") resstore.HA = "The coefficient on the lagged level < 1 - stationary" resstore.icbest = icbest resstore._str = 'Augmented Dickey-Fuller Test Results' return adfstat, pvalue, critvalues, resstore else: if not autolag: return adfstat, pvalue, usedlag, nobs, critvalues else: return adfstat, pvalue, usedlag, nobs, critvalues, icbest
def run(self, x, regression='c', trunclag=None): """ Phillips-Perron unit-root test The Phillips-Perron test (1998) can be used to test for a unit root in a univariate process. Parameters ---------- x : array_like, 1d data series regression : {'nc', 'c', 'ct'} constant and trend order to include in regression * 'nc' : no constant, no trend * 'c' : constant only (default) * 'ct' : constant and trend trunclag : {int, None} number of truncation lags, default=int(sqrt(nobs)/5) (SAS, 2015) Returns ------- tau : float Z-tau test statistic tau_pv : float Z-tau p-value based on MacKinnon (1994) regression surface model lags : int number of truncation lags used for covariance estimation nobs : int number of observations used in regression tau_cvdict : dict critical values for the Z-tau test statistic at 1%, 5%, 10% rho : float Z-rho test statistic rho_pv : float Z-rho p-value based on interpolated simulation-derived critical values rho_cvdict : dict critical values for the Z-rho test statistic at 1%, 5%, 10% Notes ----- H0 = series has a unit root (i.e., non-stationary) Basic process is to fit the time series under test with an AR(1) model using heteroscedasticity- and autocorrelation-consistent residual covariance estimation in order to generate the Phillips-Perron Z-rho and Z-tau statistics (1988) which are asymptotically equivalent to the Dickey-Fuller (1979, 1981) rho/tau statistics. Z-tau p-values are calculated using the statsmodel implementation of MacKinnon's (1994, 2010) regression surface model. Z-rho p-values are interpolated from Monte-Carlo derived critical values. References ---------- Dickey, D.A., and Fuller, W.A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74: 427-431. Dickey, D.A., and Fuller, W.A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49: 1057-1072. MacKinnon, J.G. (1994). Approximate asymptotic distribution functions for unit-root and cointegration tests. Journal of Business and Economic Statistics, 12: 167-176. MacKinnon, J.G. (2010). Critical values for cointegration tests. Working Paper 1227, Queen's University, Department of Economics. Retrieved from URL: https://www.econ.queensu.ca/research/working-papers. Newey, W.K., and West, K.D. (1994). A simple, positive semi-definite, heteroscedasticity- and autocorrelation-consistent covariance matrix. Econometrica, 20: 73-103. Phillips, P.C.B, and Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75: 335-346. SAS Institute Inc. (2015). SAS/ETS 14.1 User's Guide. Cary, NC: SAS Institute Inc. Schwert, G.W. (1987). Effects of model specification on tests for unit roots in macroeconomic data. Journal of Monetary Economics, 20: 73-103. Seabold, S., and Perktold, J. (2010). Statsmodels: econometric and statistical modeling with python. In S. van der Walt and J. Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 57-61). """ if regression not in ['nc', 'c', 'ct']: raise ValueError( 'PP: regression option \'{}\' not understood'.format( regression)) if x.ndim > 2 or (x.ndim == 2 and x.shape[1] != 1): raise ValueError( 'PP: x must be a 1d array or a 2d array with a single column') nobs = x.shape[0] - 1 if trunclag is not None and (trunclag < 0 or trunclag > x.shape[0] - 2): raise ValueError( 'PP: trunclags must be in range [0, {}]'.format(x.shape - 2)) # set up exog matrix x = np.reshape(x, (-1, 1)) if regression == 'nc': exog = np.ones(shape=(nobs, 1)) elif regression == 'c': exog = np.ones(shape=(nobs, 2)) else: exog = np.ones(shape=(x.shape[0] - 1, 3)) exog[:, 1] = np.arange(1, nobs + 1).reshape(nobs, ) exog[:, -1] = x[:-1].reshape(nobs, ) # set up endog vector endog = x[1:].reshape(nobs, 1) # run auxiliary regression ols = OLS(endog, exog).fit() # save the coefficient of the AR(1) term rho_hat = ols.params[-1] # save the standard error of the AR(1) term se = ols.bse[-1] # calculate bandwidth for Bartlett kernel. if trunclag # is not provided, calculate according to SAS 9.4 (2015) # methodology. if trunclag is None: lags = np.amax([1, int(np.sqrt(nobs) / 5)]) else: lags = trunclag bw = lags + 1 # get the residual self variances and covariances var, cov = self._sigma_est_pp(ols.resid, nobs, bw) s_hat = var + cov mse = var * nobs / (nobs - exog.shape[1]) tau1 = np.sqrt(var / s_hat) * (rho_hat - 1) / se tau2 = 0.5 * cov * nobs * se / (np.sqrt(s_hat) * np.sqrt(mse)) tau = tau1 - tau2 rho = nobs * (rho_hat - 1) - \ tau2 * np.sqrt(s_hat) * nobs * se / np.sqrt(mse) # get Z-tau p-value and critical values using # MacKinnon (1994, 2010) response surface model # from statsmodels (2010) tau_pv = mackinnonp(tau, regression=regression) tau_cvs = mackinnoncrit(regression=regression, nobs=nobs) tau_cvdict = {'1%': tau_cvs[0], '5%': tau_cvs[1], '10%': tau_cvs[2]} # get Z-rho p-value and critical values using # simulation-derived critical values rho_crit = self.__pp_crit(rho, regression) rho_pv = rho_crit[0] rho_cvdict = rho_crit[1] return tau, tau_pv, tau_cvdict, rho, rho_pv, rho_cvdict, lags, nobs
def coint(y0, y1, trend='c', method='aeg', maxlag=None, autolag='aic', return_results=None): """Test for no-cointegration of a univariate equation The null hypothesis is no cointegration. Variables in y0 and y1 are assumed to be integrated of order 1, I(1). This uses the augmented Engle-Granger two-step cointegration test. Constant or trend is included in 1st stage regression, i.e. in cointegrating equation. **Warning:** The autolag default has changed compared to statsmodels 0.8. In 0.8 autolag was always None, no the keyword is used and defaults to 'aic'. Use `autolag=None` to avoid the lag search. Parameters ---------- y1 : array_like, 1d first element in cointegrating vector y2 : array_like remaining elements in cointegrating vector trend : str {'c', 'ct'} trend term included in regression for cointegrating equation * 'c' : constant * 'ct' : constant and linear trend * also available quadratic trend 'ctt', and no constant 'nc' method : string currently only 'aeg' for augmented Engle-Granger test is available. default might change. maxlag : None or int keyword for `adfuller`, largest or given number of lags autolag : string keyword for `adfuller`, lag selection criterion. * if None, then maxlag lags are used without lag search * if 'AIC' (default) or 'BIC', then the number of lags is chosen to minimize the corresponding information criterion * 't-stat' based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test return_results : bool for future compatibility, currently only tuple available. If True, then a results instance is returned. Otherwise, a tuple with the test outcome is returned. Set `return_results=False` to avoid future changes in return. Returns ------- coint_t : float t-statistic of unit-root test on residuals pvalue : float MacKinnon's approximate, asymptotic p-value based on MacKinnon (1994) crit_value : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels based on regression curve. This depends on the number of observations. Notes ----- The Null hypothesis is that there is no cointegration, the alternative hypothesis is that there is cointegrating relationship. If the pvalue is small, below a critical size, then we can reject the hypothesis that there is no cointegrating relationship. P-values and critical values are obtained through regression surface approximation from MacKinnon 1994 and 2010. If the two series are almost perfectly collinear, then computing the test is numerically unstable. However, the two series will be cointegrated under the maintained assumption that they are integrated. In this case the t-statistic will be set to -inf and the pvalue to zero. TODO: We could handle gaps in data by dropping rows with nans in the auxiliary regressions. Not implemented yet, currently assumes no nans and no gaps in time series. References ---------- MacKinnon, J.G. 1994 "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests." Journal of Business & Economics Statistics, 12.2, 167-76. MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen's University, Dept of Economics Working Papers 1227. http://ideas.repec.org/p/qed/wpaper/1227.html """ trend = trend.lower() if trend not in ['c', 'nc', 'ct', 'ctt']: raise ValueError("trend option %s not understood" % trend) y0 = np.asarray(y0) y1 = np.asarray(y1) if y1.ndim < 2: y1 = y1[:, None] nobs, k_vars = y1.shape k_vars += 1 # add 1 for y0 if trend == 'nc': xx = y1 else: xx = add_trend(y1, trend=trend, prepend=False) res_co = OLS(y0, xx).fit() OLS_params = res_co.params if res_co.rsquared < 1 - 100 * SQRTEPS: res_adf = adfuller(res_co.resid, maxlag=maxlag, autolag=autolag, regression='nc') else: # Edge case where series are too similar res_adf = (-np.inf, ) pval_asy = mackinnonp(res_adf[0], regression=trend, N=k_vars) return res_adf[0], pval_asy, OLS_params
def adfuller( x, maxlag=None, regression="c", autolag="AIC", store=False, regresults=False, ): """ Augmented Dickey-Fuller unit root test. The Augmented Dickey-Fuller test can be used to test for a unit root in a univariate process in the presence of serial correlation. Parameters ---------- x : array_like, 1d The data series to test. maxlag : int Maximum lag which is included in test, default 12*(nobs/100)^{1/4}. regression : {"c","ct","ctt","nc"} Constant and trend order to include in regression. * "c" : constant only (default). * "ct" : constant and trend. * "ctt" : constant, and linear and quadratic trend. * "nc" : no constant, no trend. autolag : {"AIC", "BIC", "t-stat", None} Method to use when automatically determining the lag length among the values 0, 1, ..., maxlag. * If "AIC" (default) or "BIC", then the number of lags is chosen to minimize the corresponding information criterion. * "t-stat" based choice of maxlag. Starts with maxlag and drops a lag until the t-statistic on the last lag length is significant using a 5%-sized test. * If None, then the number of included lags is set to maxlag. store : bool If True, then a result instance is returned additionally to the adf statistic. Default is False. regresults : bool, optional If True, the full regression results are returned. Default is False. Returns ------- adf : float The test statistic. pvalue : float MacKinnon's approximate p-value based on MacKinnon (1994, 2010). usedlag : int The number of lags used. nobs : int The number of observations used for the ADF regression and calculation of the critical values. critical values : dict Critical values for the test statistic at the 1 %, 5 %, and 10 % levels. Based on MacKinnon (2010). icbest : float The maximized information criterion if autolag is not None. resstore : ResultStore, optional A dummy class with results attached as attributes. Notes ----- The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then we cannot reject that there is a unit root. The p-values are obtained through regression surface approximation from MacKinnon 1994, but using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to reject the null. The autolag option and maxlag for it are described in Greene. References ---------- .. [1] W. Green. "Econometric Analysis," 5th ed., Pearson, 2003. .. [2] Hamilton, J.D. "Time Series Analysis". Princeton, 1994. .. [3] MacKinnon, J.G. 1994. "Approximate asymptotic distribution functions for unit-root and cointegration tests. `Journal of Business and Economic Statistics` 12, 167-76. .. [4] MacKinnon, J.G. 2010. "Critical Values for Cointegration Tests." Queen"s University, Dept of Economics, Working Papers. Available at http://ideas.repec.org/p/qed/wpaper/1227.html Examples -------- See example notebook """ x = array_like(x, "x") maxlag = int_like(maxlag, "maxlag", optional=True) regression = string_like(regression, "regression", options=("c", "ct", "ctt", "nc")) autolag = string_like(autolag, "autolag", optional=True, options=("aic", "bic", "t-stat")) store = bool_like(store, "store") regresults = bool_like(regresults, "regresults") if regresults: store = True trenddict = {None: "nc", 0: "c", 1: "ct", 2: "ctt"} if regression is None or isinstance(regression, int): regression = trenddict[regression] regression = regression.lower() nobs = x.shape[0] ntrend = len(regression) if regression != "nc" else 0 if maxlag is None: # from Greene referencing Schwert 1989 maxlag = int(np.ceil(12.0 * np.power(nobs / 100.0, 1 / 4.0))) # -1 for the diff maxlag = min(nobs // 2 - ntrend - 1, maxlag) if maxlag < 0: raise ValueError("sample size is too short to use selected " "regression component") elif maxlag > nobs // 2 - ntrend - 1: raise ValueError("maxlag must be less than (nobs/2 - 1 - ntrend) " "where n trend is the number of included " "deterministic regressors") xdiff = np.diff(x) xdall = lagmat(xdiff[:, None], maxlag, trim="both", original="in") nobs = xdall.shape[0] xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] if store: from statsmodels.stats.diagnostic import ResultsStore resstore = ResultsStore() if autolag: if regression != "nc": fullRHS = add_trend(xdall, regression, prepend=True) else: fullRHS = xdall startlag = fullRHS.shape[1] - xdall.shape[1] + 1 # 1 for level # search for lag length with smallest information criteria # Note: use the same number of observations to have comparable IC # aic and bic: smaller is better if not regresults: icbest, bestlag = _autolag(OLS, xdshort, fullRHS, startlag, maxlag, autolag) else: icbest, bestlag, alres = _autolag( OLS, xdshort, fullRHS, startlag, maxlag, autolag, regresults=regresults, ) resstore.autolag_results = alres bestlag -= startlag # convert to lag not column index # rerun ols with best autolag xdall = lagmat(xdiff[:, None], bestlag, trim="both", original="in") nobs = xdall.shape[0] xdall[:, 0] = x[-nobs - 1:-1] # replace 0 xdiff with level of x xdshort = xdiff[-nobs:] usedlag = bestlag else: usedlag = maxlag icbest = None if regression != "nc": resols = OLS(xdshort, add_trend(xdall[:, :usedlag + 1], regression)).fit() else: resols = OLS(xdshort, xdall[:, :usedlag + 1]).fit() adfstat = resols.tvalues[0] # adfstat = (resols.params[0]-1.0)/resols.bse[0] # the "asymptotically correct" z statistic is obtained as # nobs/(1-np.sum(resols.params[1:-(trendorder+1)])) (resols.params[0] - 1) # I think this is the statistic that is used for series that are integrated # for orders higher than I(1), ie., not ADF but cointegration tests. # Get approx p-value and critical values pvalue = mackinnonp(adfstat, regression=regression, N=1) critvalues = mackinnoncrit(N=1, regression=regression, nobs=nobs) critvalues = { "1%": critvalues[0], "5%": critvalues[1], "10%": critvalues[2], } if store: resstore.resols = resols resstore.maxlag = maxlag resstore.usedlag = usedlag resstore.adfstat = adfstat resstore.critvalues = critvalues resstore.nobs = nobs resstore.H0 = ("The coefficient on the lagged level equals 1 - " "unit root") resstore.HA = "The coefficient on the lagged level < 1 - stationary" resstore.icbest = icbest resstore._str = "Augmented Dickey-Fuller Test Results" return adfstat, pvalue, critvalues, resstore else: if not autolag: return adfstat, pvalue, usedlag, nobs, critvalues else: return adfstat, pvalue, usedlag, nobs, critvalues, icbest
def test_shape(series, maxlag=None): """Get series and return the p-value and the t-stat of the coefficient""" if maxlag is None: n = int(12 * ((len(series) / 100)**(1. / 4))) elif maxlag < 1: n = 1 else: n = maxlag # Putting the X values on a Tensor with Double as type X = torch.tensor(series) X = X.type(torch.DoubleTensor) # Generating the lagged tensor to calculate the difference X_1 = X.narrow(0, 1, X.shape[0] - 1) # Re-sizing the x values to get the difference X = X.narrow(0, 0, X.shape[0] - 1) dX = X_1 - X expanded_dX = toeplitz_like(dX, n) X = torch.cat( (X.narrow(0, 0, expanded_dX.shape[0]).unsqueeze(1), expanded_dX), dim=1) '''# Generating the lagged difference tensors # and concatenating the lagged tensors into a single one for i in range(1, n + 1): lagged_n = dX.narrow(0, n - i, (dX.shape[0] - n)) lagged_reshape = torch.reshape(lagged_n, (lagged_n.shape[0], 1)) if i == 1: lagged_tensors = lagged_reshape else: lagged_tensors = torch.cat((lagged_tensors, lagged_reshape), 1) # Reshaping the X and the difference tensor # to match the dimension of the lagged ones X = X.narrow(0, 0, X.shape[0] - n) X = torch.cat((torch.reshape(X, (X.shape[0], 1)), lagged_tensors), 1)''' dX = dX.narrow(0, n, dX.shape[0] - n).unsqueeze(0).t() print(dX.shape) ones_columns = torch.ones((X.shape[0], 1)) X_ = torch.cat((X, torch.ones_like(ones_columns, dtype=torch.float64)), 1) nobs = X_.shape[0] # Xb = y -> Xt.X.b = Xt.y -> b = (Xt.X)^-1.Xt.y coeff = torch.mm( torch.mm(torch.inverse(torch.mm(torch.t(X_), X_)), torch.t(X_)), dX) std_error = get_std_error(X_, dX, coeff) coeff_std_err = get_coeff_std_error(X_, std_error, coeff)[0] t_stat = coeff[0] / coeff_std_err p_value = mackinnonp(t_stat.item(), regression="c", N=1) critvalues = mackinnoncrit(N=1, regression="c", nobs=nobs) critvalues = { "1%": critvalues[0], "5%": critvalues[1], "10%": critvalues[2] } return t_stat.item(), p_value, n, nobs, critvalues