def autotune(benchmark, returnBest=None, tester_lambda=None, pop_lambda=None, hlconfig_lambda=None, config_lambda=None): return storagedirs.callWithLogDir( lambda: autotuneInner(benchmark, returnBest, tester_lambda, pop_lambda, hlconfig_lambda, config_lambda), config.output_dir, config.delete_output_dir)
def regression_check(benchmark): tunerconfig.applypatch(tunerconfig.patch_regression) storagedirs.callWithLogDir(lambda: autotuneInner(benchmark), config.output_dir, config.delete_output_dir)
def autotune(benchmark, returnBest=None, tester_lambda=None, pop_lambda=None, hlconfig_lambda=None, config_lambda=None): return storagedirs.callWithLogDir(lambda: autotuneInner(benchmark, returnBest, tester_lambda, pop_lambda, hlconfig_lambda, config_lambda), config.output_dir, config.delete_output_dir)
def onlinelearn(benchmark): storagedirs.callWithLogDir(lambda: onlinelearnInner(benchmark), config.output_dir, config.delete_output_dir)
] print '#', ','.join(headers) t = csv.DictWriter(sys.stdout, headers, extrasaction='ignore') t.writerows(rows) if __name__ == "__main__": from optparse import OptionParser parser = OptionParser( usage="usage: graphgen.py [options] benchmark candidatelog.csv") parser.add_option('--trials', type='int', default=10) parser.add_option('--confidence', type='float', default=.95) parser.add_option('--timeout', type='float', default=5.0) parser.add_option('--onlyrounds', type='int', default=True) parser.add_option('-n', type='int', default=1024) warnings.simplefilter('ignore', tunerwarnings.TooManyTrials) (options, args) = parser.parse_args() if len(args) != 2: parser.print_usage() sys.exit(1) benchmark = args[0] config = os.path.abspath(args[1]) pbutil.chdirToPetabricksRoot() #pbutil.compilePetabricks(); benchmark = pbutil.normalizeBenchmarkName(benchmark) #pbutil.compileBenchmarks([benchmark]) storagedirs.callWithLogDir(lambda: main(benchmark, options.n, config), '/tmp', True)
def autotune(benchmark): return storagedirs.callWithLogDir(lambda: autotuneInner(benchmark), config.output_dir, config.delete_output_dir)
headers = ['time','minperf', 'perf_on_%d'%n, 'perf_on_%d_ci'%n, 'tests', 'candidates', 'input_size', 'invperf', 'tests_timeout'] print '#',','.join(headers) t=csv.DictWriter(sys.stdout, headers, extrasaction='ignore') t.writerows(rows) if __name__ == "__main__": from optparse import OptionParser parser = OptionParser(usage="usage: graphgen.py [options] benchmark candidatelog.csv") parser.add_option('--trials', type='int', default=10) parser.add_option('--confidence', type='float', default=.95) parser.add_option('--timeout', type='float', default=5.0) parser.add_option('--onlyrounds', type='int', default=True) parser.add_option('-n', type='int', default=1024) warnings.simplefilter('ignore', tunerwarnings.TooManyTrials) (options, args) = parser.parse_args() if len(args)!=2: parser.print_usage() sys.exit(1) benchmark=args[0] config=os.path.abspath(args[1]) pbutil.chdirToPetabricksRoot(); #pbutil.compilePetabricks(); benchmark=pbutil.normalizeBenchmarkName(benchmark) #pbutil.compileBenchmarks([benchmark]) storagedirs.callWithLogDir(lambda: main(benchmark, options.n, config), '/tmp', True)