def test_stimp(T, m): if T.ndim > 1: T = T.copy() T = T[0] n = 3 seed = np.random.randint(100000) np.random.seed(seed) ref = stumpy.aamp_stimp(T, m) for i in range(n): ref.update() np.random.seed(seed) cmp = stumpy.stimp(T, m, normalize=False) for i in range(n): cmp.update() # Compare raw pan ref_PAN = ref._PAN cmp_PAN = cmp._PAN naive.replace_inf(ref_PAN) naive.replace_inf(cmp_PAN) npt.assert_almost_equal(ref_PAN, cmp_PAN) # Compare transformed pan npt.assert_almost_equal(ref.PAN_, cmp.PAN_)
def test_stimp_max_m(T): threshold = 0.2 percentage = 0.01 min_m = 3 max_m = 5 n = T.shape[0] - min_m + 1 seed = np.random.randint(100000) np.random.seed(seed) pan = stimp( T, min_m=min_m, max_m=max_m, step=1, percentage=percentage, pre_scrump=True, # normalize=True, ) for i in range(n): pan.update() ref_PAN = np.full((pan.M_.shape[0], T.shape[0]), fill_value=np.inf) np.random.seed(seed) for idx, m in enumerate(pan.M_[:n]): zone = int(np.ceil(m / 4)) s = zone tmp_P, tmp_I = naive.prescrump(T, m, T, s=s, exclusion_zone=zone) ref_mp = naive.scrump(T, m, T, percentage, zone, True, s) for i in range(ref_mp.shape[0]): if tmp_P[i] < ref_mp[i, 0]: ref_mp[i, 0] = tmp_P[i] ref_mp[i, 1] = tmp_I[i] ref_PAN[pan._bfs_indices[idx], :ref_mp.shape[0]] = ref_mp[:, 0] # Compare raw pan cmp_PAN = pan._PAN naive.replace_inf(ref_PAN) naive.replace_inf(cmp_PAN) npt.assert_almost_equal(ref_PAN, cmp_PAN) # Compare transformed pan cmp_pan = pan.PAN_ ref_pan = naive.transform_pan(pan._PAN, pan._M, threshold, pan._bfs_indices, pan._n_processed) naive.replace_inf(ref_pan) naive.replace_inf(cmp_pan) npt.assert_almost_equal(ref_pan, cmp_pan)
def test_stimp_max_m(T): percentage = 0.01 min_m = 3 max_m = 5 n = T.shape[0] - min_m + 1 seed = np.random.randint(100000) np.random.seed(seed) pmp = stimp( T, min_m=min_m, max_m=max_m, step=1, percentage=percentage, pre_scrump=True, normalize=True, ) for i in range(n): pmp.update() ref_P = np.full((pmp.M_.shape[0], T.shape[0]), fill_value=np.inf) ref_I = np.ones((pmp.M_.shape[0], T.shape[0]), dtype=np.int64) * -1 np.random.seed(seed) for idx, m in enumerate(pmp.M_[:n]): zone = int(np.ceil(m / 4)) s = zone tmp_P, tmp_I = naive.prescrump(T, m, T, s=s, exclusion_zone=zone) ref_mp = naive.scrump(T, m, T, percentage, zone, True, s) for i in range(ref_mp.shape[0]): if tmp_P[i] < ref_mp[i, 0]: ref_mp[i, 0] = tmp_P[i] ref_mp[i, 1] = tmp_I[i] ref_P[pmp.bfs_indices_[idx], :ref_mp.shape[0]] = ref_mp[:, 0] ref_I[pmp.bfs_indices_[idx], :ref_mp.shape[0]] = ref_mp[:, 1] comp_P = pmp.P_ comp_I = pmp.I_ naive.replace_inf(ref_P) naive.replace_inf(ref_I) naive.replace_inf(comp_P) naive.replace_inf(comp_I) npt.assert_almost_equal(ref_P, comp_P) npt.assert_almost_equal(ref_I, comp_I)
def test_stimp_100_percent(T): threshold = 0.2 percentage = 1.0 min_m = 3 n = T.shape[0] - min_m + 1 pan = stimp( T, min_m=min_m, max_m=None, step=1, percentage=percentage, pre_scrump=True, # normalize=True, ) for i in range(n): pan.update() ref_PAN = np.full((pan.M_.shape[0], T.shape[0]), fill_value=np.inf) for idx, m in enumerate(pan.M_[:n]): zone = int(np.ceil(m / 4)) ref_mp = naive.stump(T, m, T_B=None, exclusion_zone=zone) ref_PAN[pan._bfs_indices[idx], :ref_mp.shape[0]] = ref_mp[:, 0] # Compare raw pan cmp_PAN = pan._PAN naive.replace_inf(ref_PAN) naive.replace_inf(cmp_PAN) npt.assert_almost_equal(ref_PAN, cmp_PAN) # Compare transformed pan cmp_pan = pan.PAN_ ref_pan = naive.transform_pan(pan._PAN, pan._M, threshold, pan._bfs_indices, pan._n_processed) naive.replace_inf(ref_pan) naive.replace_inf(cmp_pan) npt.assert_almost_equal(ref_pan, cmp_pan)