def test_stimp(T, m):
    if T.ndim > 1:
        T = T.copy()
        T = T[0]
    n = 3
    seed = np.random.randint(100000)

    np.random.seed(seed)
    ref = stumpy.aamp_stimp(T, m)
    for i in range(n):
        ref.update()

    np.random.seed(seed)
    cmp = stumpy.stimp(T, m, normalize=False)
    for i in range(n):
        cmp.update()

    # Compare raw pan
    ref_PAN = ref._PAN
    cmp_PAN = cmp._PAN

    naive.replace_inf(ref_PAN)
    naive.replace_inf(cmp_PAN)

    npt.assert_almost_equal(ref_PAN, cmp_PAN)

    # Compare transformed pan
    npt.assert_almost_equal(ref.PAN_, cmp.PAN_)
Esempio n. 2
0
def test_stimp_max_m(T):
    threshold = 0.2
    percentage = 0.01
    min_m = 3
    max_m = 5
    n = T.shape[0] - min_m + 1

    seed = np.random.randint(100000)

    np.random.seed(seed)
    pan = stimp(
        T,
        min_m=min_m,
        max_m=max_m,
        step=1,
        percentage=percentage,
        pre_scrump=True,
        # normalize=True,
    )

    for i in range(n):
        pan.update()

    ref_PAN = np.full((pan.M_.shape[0], T.shape[0]), fill_value=np.inf)

    np.random.seed(seed)
    for idx, m in enumerate(pan.M_[:n]):
        zone = int(np.ceil(m / 4))
        s = zone
        tmp_P, tmp_I = naive.prescrump(T, m, T, s=s, exclusion_zone=zone)
        ref_mp = naive.scrump(T, m, T, percentage, zone, True, s)
        for i in range(ref_mp.shape[0]):
            if tmp_P[i] < ref_mp[i, 0]:
                ref_mp[i, 0] = tmp_P[i]
                ref_mp[i, 1] = tmp_I[i]
        ref_PAN[pan._bfs_indices[idx], :ref_mp.shape[0]] = ref_mp[:, 0]

    # Compare raw pan
    cmp_PAN = pan._PAN

    naive.replace_inf(ref_PAN)
    naive.replace_inf(cmp_PAN)

    npt.assert_almost_equal(ref_PAN, cmp_PAN)

    # Compare transformed pan
    cmp_pan = pan.PAN_
    ref_pan = naive.transform_pan(pan._PAN, pan._M, threshold,
                                  pan._bfs_indices, pan._n_processed)

    naive.replace_inf(ref_pan)
    naive.replace_inf(cmp_pan)

    npt.assert_almost_equal(ref_pan, cmp_pan)
Esempio n. 3
0
def test_stimp_max_m(T):
    percentage = 0.01
    min_m = 3
    max_m = 5
    n = T.shape[0] - min_m + 1

    seed = np.random.randint(100000)

    np.random.seed(seed)
    pmp = stimp(
        T,
        min_m=min_m,
        max_m=max_m,
        step=1,
        percentage=percentage,
        pre_scrump=True,
        normalize=True,
    )

    for i in range(n):
        pmp.update()

    ref_P = np.full((pmp.M_.shape[0], T.shape[0]), fill_value=np.inf)
    ref_I = np.ones((pmp.M_.shape[0], T.shape[0]), dtype=np.int64) * -1

    np.random.seed(seed)
    for idx, m in enumerate(pmp.M_[:n]):
        zone = int(np.ceil(m / 4))
        s = zone
        tmp_P, tmp_I = naive.prescrump(T, m, T, s=s, exclusion_zone=zone)
        ref_mp = naive.scrump(T, m, T, percentage, zone, True, s)
        for i in range(ref_mp.shape[0]):
            if tmp_P[i] < ref_mp[i, 0]:
                ref_mp[i, 0] = tmp_P[i]
                ref_mp[i, 1] = tmp_I[i]
        ref_P[pmp.bfs_indices_[idx], :ref_mp.shape[0]] = ref_mp[:, 0]
        ref_I[pmp.bfs_indices_[idx], :ref_mp.shape[0]] = ref_mp[:, 1]

    comp_P = pmp.P_
    comp_I = pmp.I_

    naive.replace_inf(ref_P)
    naive.replace_inf(ref_I)
    naive.replace_inf(comp_P)
    naive.replace_inf(comp_I)

    npt.assert_almost_equal(ref_P, comp_P)
    npt.assert_almost_equal(ref_I, comp_I)
Esempio n. 4
0
def test_stimp_100_percent(T):
    threshold = 0.2
    percentage = 1.0
    min_m = 3
    n = T.shape[0] - min_m + 1

    pan = stimp(
        T,
        min_m=min_m,
        max_m=None,
        step=1,
        percentage=percentage,
        pre_scrump=True,
        # normalize=True,
    )

    for i in range(n):
        pan.update()

    ref_PAN = np.full((pan.M_.shape[0], T.shape[0]), fill_value=np.inf)

    for idx, m in enumerate(pan.M_[:n]):
        zone = int(np.ceil(m / 4))
        ref_mp = naive.stump(T, m, T_B=None, exclusion_zone=zone)
        ref_PAN[pan._bfs_indices[idx], :ref_mp.shape[0]] = ref_mp[:, 0]

    # Compare raw pan
    cmp_PAN = pan._PAN

    naive.replace_inf(ref_PAN)
    naive.replace_inf(cmp_PAN)

    npt.assert_almost_equal(ref_PAN, cmp_PAN)

    # Compare transformed pan
    cmp_pan = pan.PAN_
    ref_pan = naive.transform_pan(pan._PAN, pan._M, threshold,
                                  pan._bfs_indices, pan._n_processed)

    naive.replace_inf(ref_pan)
    naive.replace_inf(cmp_pan)

    npt.assert_almost_equal(ref_pan, cmp_pan)