def test_perfect_reconstruction(families, wavelets, modes, epsilon, dtype):
    for wavelet in wavelets:
        for pmode, mmode in modes:
            print "Wavelet: %-8s Mode: %s" % (wavelet, pmode),

            w = pywt.Wavelet(wavelet)
            data_size = range(2, 40) + [100, 200, 500, 1000, 2000, 10000, 50000, 100000]

            ok, over = 0, 0
            for N in data_size:
                data = numpy.asarray(numpy.random.random(N), dtype)

                # compute dwt coefficients
                pa, pd = pywt.dwt(data, wavelet, pmode)

                # compute reconstruction
                rec = pywt.idwt(pa, pd, wavelet, pmode)

                if len(data) % 2:
                    rec = rec[:len(data)]

                rms_rec = rms(data, rec)
                if rms_rec > epsilon:
                    if not over:
                        print
                    print '[RMS_REC > EPSILON] for Mode: %s, Wavelet: %s, Length: %d, rms=%.3g' % (pmode, wavelet, len(data), rms_rec, )
                    over += 1
                else:
                    ok += 1
            if not over:
                print "- RMSE for all %d cases was under %s" % (len(data_size), epsilon)
Exemple #2
0
def plot(data, w, title):
    w = pywt.Wavelet(w)
    a = data
    ca = []
    cd = []
    if DWT:
        for i in xrange(5):
            (a, d) = pywt.dwt(a, w, mode)
            ca.append(a)
            cd.append(d)
    else:
        for a, d in pywt.swt(data, w, 5):
            ca.append(a)
            cd.append(d)

    pylab.figure()
    ax_main = pylab.subplot(len(ca) + 1, 1, 1)
    pylab.title(title)
    ax_main.plot(data)
    pylab.xlim(0, len(data) - 1)

    for i, x in enumerate(ca):
        #print len(data), len(x), len(data) / (2**(i+1))
        lims = -(len(data) / (2.**(i + 1)) - len(x)) / 2.
        ax = pylab.subplot(len(ca) + 1, 2, 3 + i * 2)
        ax.plot(x, 'r')
        if DWT:
            pylab.xlim(0, len(x) - 1)
        else:
            pylab.xlim(w.dec_len * i, len(x) - 1 - w.dec_len * i)
        pylab.ylabel("A%d" % (i + 1))

    for i, x in enumerate(cd):
        ax = pylab.subplot(len(cd) + 1, 2, 4 + i * 2)
        ax.plot(x, 'g')
        pylab.xlim(0, len(x) - 1)
        if DWT:
            pylab.ylim(min(0, 1.4 * min(x)), max(0, 1.4 * max(x)))
        else:  #SWT
            pylab.ylim(
                min(
                    0, 2 * min(x[w.dec_len * (1 + i):len(x) - w.dec_len *
                                 (1 + i)])),
                max(
                    0, 2 * max(x[w.dec_len * (1 + i):len(x) - w.dec_len *
                                 (1 + i)])))
        pylab.ylabel("D%d" % (i + 1))
def plot(data, w, title):
	print title
	w = pywt.Wavelet(w)
	a = data
	ca = []
	cd = []
        for i in xrange(5):
                (a, d) = pywt.dwt(a, w, mode)
                ca.append(a)
                cd.append(d)

	rec_a = []
	rec_d = []

	for i, coeff in enumerate(ca):
            coeff_list = [coeff, None] + [None]*i
            rec_a.append(pywt.waverec(coeff_list, w))
            
	for i, coeff in enumerate(cd):
            coeff_list = [None, coeff] + [None]*i
            rec_d.append(pywt.waverec(coeff_list, w))
			
	pylab.figure()
	ax_main = pylab.subplot(len(rec_a)+1,1,1)
	pylab.title(title)
	ax_main.plot(data)
	pylab.xlim(0, len(data)-1)

	for i, y in enumerate(rec_a):
		#print len(data), len(x), len(data) / (2**(i+1))
		ax = pylab.subplot(len(rec_a)+1, 2, 3+i*2)
		ax.plot(y, 'r')
		pylab.xlim(0, len(y)-1)
		pylab.ylabel("A%d" % (i+1))

	for i, y in enumerate(rec_d):
		ax = pylab.subplot(len(rec_d)+1, 2, 4+i*2)
		ax.plot(y, 'g')
		pylab.xlim(0, len(y)-1)
		#pylab.ylim(min(0,1.4*min(x)), max(0,1.4*max(x)))
		pylab.ylabel("D%d" % (i+1))
Exemple #4
0
def plot(data, w, title):
    print title
    w = pywt.Wavelet(w)
    a = data
    ca = []
    cd = []
    for i in xrange(5):
        (a, d) = pywt.dwt(a, w, mode)
        ca.append(a)
        cd.append(d)

    rec_a = []
    rec_d = []

    for i, coeff in enumerate(ca):
        coeff_list = [coeff, None] + [None] * i
        rec_a.append(pywt.waverec(coeff_list, w))

    for i, coeff in enumerate(cd):
        coeff_list = [None, coeff] + [None] * i
        rec_d.append(pywt.waverec(coeff_list, w))

    pylab.figure()
    ax_main = pylab.subplot(len(rec_a) + 1, 1, 1)
    pylab.title(title)
    ax_main.plot(data)
    pylab.xlim(0, len(data) - 1)

    for i, y in enumerate(rec_a):
        #print len(data), len(x), len(data) / (2**(i+1))
        ax = pylab.subplot(len(rec_a) + 1, 2, 3 + i * 2)
        ax.plot(y, 'r')
        pylab.xlim(0, len(y) - 1)
        pylab.ylabel("A%d" % (i + 1))

    for i, y in enumerate(rec_d):
        ax = pylab.subplot(len(rec_d) + 1, 2, 4 + i * 2)
        ax.plot(y, 'g')
        pylab.xlim(0, len(y) - 1)
        #pylab.ylim(min(0,1.4*min(x)), max(0,1.4*max(x)))
        pylab.ylabel("D%d" % (i + 1))
def test_perfect_reconstruction(families, wavelets, modes, epsilon, dtype):
    for wavelet in wavelets:
        for pmode, mmode in modes:
            print "Wavelet: %-8s Mode: %s" % (wavelet, pmode),

            w = pywt.Wavelet(wavelet)
            data_size = range(
                2, 40) + [100, 200, 500, 1000, 2000, 10000, 50000, 100000]

            ok, over = 0, 0
            for N in data_size:
                data = numpy.asarray(numpy.random.random(N), dtype)

                # compute dwt coefficients
                pa, pd = pywt.dwt(data, wavelet, pmode)

                # compute reconstruction
                rec = pywt.idwt(pa, pd, wavelet, pmode)

                if len(data) % 2:
                    rec = rec[:len(data)]

                rms_rec = rms(data, rec)
                if rms_rec > epsilon:
                    if not over:
                        print
                    print '[RMS_REC > EPSILON] for Mode: %s, Wavelet: %s, Length: %d, rms=%.3g' % (
                        pmode,
                        wavelet,
                        len(data),
                        rms_rec,
                    )
                    over += 1
                else:
                    ok += 1
            if not over:
                print "- RMSE for all %d cases was under %s" % (len(data_size),
                                                                epsilon)
Exemple #6
0
times_idwt = [[] for i in range(len(wavelets))]

repeat = 3

for j, size in enumerate(sizes):
    if size > 500000:
        print "Warning, too big data size may cause page swapping if computer does not have enough memory."

    data = numpy.ones((size, ), numpy.float64)

    print("%d/%d" % (j + 1, len(sizes))).rjust(6), str(size).rjust(9),
    for i, w in enumerate(wavelets):
        min_t1, min_t2 = 9999., 9999.
        for _ in xrange(repeat):
            t1 = clock()
            (a, d) = pywt.dwt(data, w, mode)
            t1 = clock() - t1
            min_t1 = min(t1, min_t1)

            t2 = clock()
            a0 = pywt.idwt(a, d, w, mode)
            t2 = clock() - t2
            min_t2 = min(t2, min_t2)

        times_dwt[i].append(min_t1)
        times_idwt[i].append(min_t2)
        print '.',
    gc.collect()
    print

for j, (times, name) in enumerate([(times_dwt, 'dwt'), (times_idwt, 'idwt')]):
Exemple #7
0
    
    def __init__(self):
        self.filter_bank = self.dec_lo, self.dec_hi, self.rec_lo, self.rec_hi

data = [1,2,3,4,5,6]

############################################################################
print "Case 1 (custom filter bank - Haar wavelet)"

myBank = FilterBank()
# pass the user supplied filter bank as argument
myWavelet = pywt.Wavelet(name="UserSuppliedWavelet", filter_bank=myBank)
#print myWavelet.get_filters_coeffs()

print "data:", data
a, d = pywt.dwt(data, myWavelet)
print "a:", a
print "d:", d
print "rec:", pywt.idwt(a, d, myWavelet)

############################################################################
print "-" * 75
print "Case 2 (Wavelet object as filter bank - db2 wavelet)"

# builtin wavelets can also be treated as filter banks with theirs
# filter_bank attribute

builtinWavelet = pywt.Wavelet('db2')
myWavelet = pywt.Wavelet(name="UserSuppliedWavelet", filter_bank=builtinWavelet)

print "data:", data
Exemple #8
0
times_idwt = [[] for i in range(len(wavelets))]

repeat = 3

for j, size in enumerate(sizes):
    if size > 500000:
        print "Warning, too big data size may cause page swapping if computer does not have enough memory."

    data = numpy.ones((size,), numpy.float64)

    print ("%d/%d" % (j + 1, len(sizes))).rjust(6), str(size).rjust(9),
    for i, w in enumerate(wavelets):
        min_t1, min_t2 = 9999.0, 9999.0
        for _ in xrange(repeat):
            t1 = clock()
            (a, d) = pywt.dwt(data, w, mode)
            t1 = clock() - t1
            min_t1 = min(t1, min_t1)

            t2 = clock()
            a0 = pywt.idwt(a, d, w, mode)
            t2 = clock() - t2
            min_t2 = min(t2, min_t2)

        times_dwt[i].append(min_t1)
        times_idwt[i].append(min_t2)
        print ".",
    gc.collect()
    print