Exemple #1
0
def test_Geometry():
    sT(Point(0, 0), "Point2D(Integer(0), Integer(0))")
    sT(Ellipse(Point(0, 0), 5, 1),
       "Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))")
Exemple #2
0
def test_issue_12966():
    poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5),
        Point(10, 5), Point(10, 0))
    t = Symbol('t')
    pt = poly.arbitrary_point(t)
    DELTA = 5/poly.perimeter
    assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [
        Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10),
        Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)]
def convex_hull(*args, **kwargs):
    """The convex hull surrounding the Points contained in the list of entities.

    Parameters
    ==========

    args : a collection of Points, Segments and/or Polygons

    Returns
    =======

    convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where ``L`` and ``U`` are the lower and upper hulls, respectively.

    Notes
    =====

    This can only be performed on a set of points whose coordinates can
    be ordered on the number line.

    References
    ==========

    [1] http://en.wikipedia.org/wiki/Graham_scan

    [2] Andrew's Monotone Chain Algorithm
    (A.M. Andrew,
    "Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979)
    http://geomalgorithms.com/a10-_hull-1.html

    See Also
    ========

    sympy.geometry.point.Point, sympy.geometry.polygon.Polygon

    Examples
    ========

    >>> from sympy.geometry import Point, convex_hull
    >>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
    >>> convex_hull(*points)
    Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4))
    >>> convex_hull(*points, **dict(polygon=False))
    ([Point2D(-5, 2), Point2D(15, 4)],
     [Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)])

    """
    from .entity import GeometryEntity
    from .point import Point
    from .line import Segment
    from .polygon import Polygon

    polygon = kwargs.get('polygon', True)
    p = set()
    for e in args:
        if not isinstance(e, GeometryEntity):
            try:
                e = Point(e)
            except NotImplementedError:
                raise ValueError(
                    '%s is not a GeometryEntity and cannot be made into Point'
                    % str(e))
        if isinstance(e, Point):
            p.add(e)
        elif isinstance(e, Segment):
            p.update(e.points)
        elif isinstance(e, Polygon):
            p.update(e.vertices)
        else:
            raise NotImplementedError('Convex hull for %s not implemented.' %
                                      type(e))

    # make sure all our points are of the same dimension
    if any(len(x) != 2 for x in p):
        raise ValueError('Can only compute the convex hull in two dimensions')

    p = list(p)
    if len(p) == 1:
        return p[0] if polygon else (p[0], None)
    elif len(p) == 2:
        s = Segment(p[0], p[1])
        return s if polygon else (s, None)

    def _orientation(p, q, r):
        '''Return positive if p-q-r are clockwise, neg if ccw, zero if
        collinear.'''
        return (q.y - p.y) * (r.x - p.x) - (q.x - p.x) * (r.y - p.y)

    # scan to find upper and lower convex hulls of a set of 2d points.
    U = []
    L = []
    try:
        p.sort(key=lambda x: x.args)
    except TypeError:
        raise ValueError("The points could not be sorted.")
    for p_i in p:
        while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0:
            U.pop()
        while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0:
            L.pop()
        U.append(p_i)
        L.append(p_i)
    U.reverse()
    convexHull = tuple(L + U[1:-1])

    if len(convexHull) == 2:
        s = Segment(convexHull[0], convexHull[1])
        return s if polygon else (s, None)
    if polygon:
        return Polygon(*convexHull)
    else:
        U.reverse()
        return (U, L)
Exemple #4
0
def test_medians():
    t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
    assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S(1)/2, S(1)/2))
Exemple #5
0
def test_nine_point_circle():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \
        == Circle(Point2D(S(1)/4, S(1)/4), sqrt(2)/4)
Exemple #6
0
def test_incenter():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \
        == Point(1 - sqrt(2)/2, 1 - sqrt(2)/2)
Exemple #7
0
def test_incircle():
    assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \
        == Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
Exemple #8
0
def test_issue_15259():
    assert Circle((1, 2), 0) == Point(1, 2)
Exemple #9
0
def test_geometry():
    p = sympify(Point(0, 1))
    assert p == Point(0, 1) and isinstance(p, Point)
    L = sympify(Line(p, (1, 0)))
    assert L == Line((0, 1), (1, 0)) and isinstance(L, Line)
Exemple #10
0
def test_nine_point_circle():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \
        == Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4)
Exemple #11
0
def test_intersection():
    poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
    poly2 = Polygon(Point(0, 1), Point(-5, 0), Point(0, -4),
                    Point(0, Rational(1, 5)), Point(S.Half, -0.1), Point(1, 0),
                    Point(0, 1))

    assert poly1.intersection(poly2) == [
        Point2D(Rational(1, 3), 0),
        Segment(Point(0, Rational(1, 5)), Point(0, 0)),
        Segment(Point(1, 0), Point(0, 1))
    ]
    assert poly2.intersection(poly1) == [
        Point(Rational(1, 3), 0),
        Segment(Point(0, 0), Point(0, Rational(1, 5))),
        Segment(Point(1, 0), Point(0, 1))
    ]
    assert poly1.intersection(Point(0, 0)) == [Point(0, 0)]
    assert poly1.intersection(Point(-12, -43)) == []
    assert poly2.intersection(Line((-12, 0), (12, 0))) == [
        Point(-5, 0),
        Point(0, 0),
        Point(Rational(1, 3), 0),
        Point(1, 0)
    ]
    assert poly2.intersection(Line((-12, 12), (12, 12))) == []
    assert poly2.intersection(Ray(
        (-3, 4), (1, 0))) == [Segment(Point(1, 0), Point(0, 1))]
    assert poly2.intersection(Circle((0, -1),
                                     1)) == [Point(0, -2),
                                             Point(0, 0)]
    assert poly1.intersection(poly1) == [
        Segment(Point(0, 0), Point(1, 0)),
        Segment(Point(0, 1), Point(0, 0)),
        Segment(Point(1, 0), Point(0, 1))
    ]
    assert poly2.intersection(poly2) == [
        Segment(Point(-5, 0), Point(0, -4)),
        Segment(Point(0, -4), Point(0, Rational(1, 5))),
        Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))),
        Segment(Point(0, 1), Point(-5, 0)),
        Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)),
        Segment(Point(1, 0), Point(0, 1))
    ]
    assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \
        == [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))]
    assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == []
Exemple #12
0
def test_medial():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \
        == Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half))
Exemple #13
0
def test_medians():
    t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
    assert t.medians[Point(0, 0)] == Segment(Point(0, 0),
                                             Point(S.Half, S.Half))
Exemple #14
0
def test_transform():
    pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
    pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
    assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
        Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
Exemple #15
0
def test_reflect():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    b = Symbol('b')
    m = Symbol('m')
    l = Line((0, b), slope=m)
    p = Point(x, y)
    r = p.reflect(l)
    dp = l.perpendicular_segment(p).length
    dr = l.perpendicular_segment(r).length

    assert verify_numerically(dp, dr)
    t = Triangle((0, 0), (1, 0), (2, 3))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
        == Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
        == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
        == Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
    assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
        == Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
Exemple #16
0
def test_subs():
    x = Symbol("x", real=True)
    y = Symbol("y", real=True)
    p = Point(x, 2)
    q = Point(1, 1)
    r = Point(3, 4)
    for o in [
            p,
            Segment(p, q),
            Ray(p, q),
            Line(p, q),
            Triangle(p, q, r),
            RegularPolygon(p, 3, 6),
            Polygon(p, q, r, Point(5, 4)),
            Circle(p, 3),
            Ellipse(p, 3, 4),
    ]:
        assert "y" in str(o.subs(x, y))
    assert p.subs({x: 1}) == Point(1, 2)
    assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
    assert Point(1, 2).subs((1, 2), Point(3, 4)) == Point(3, 4)
    assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
    assert Point(1, 2).subs({(1, 2)}) == Point(2, 2)
    raises(ValueError, lambda: Point(1, 2).subs(1))
    raises(ValueError, lambda: Point(1, 1).subs(
        (Point(1, 1), Point(1, 2)), 1, 2))
Exemple #17
0
def test_bisectors():
    p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
    t = Triangle(p1, p2, p3)
    assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
Exemple #18
0
def test_Geometry():
    assert sstr(Point(0, 0)) == 'Point(0, 0)'
    assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point(0, 0), 3)'
Exemple #19
0
def test_inradius():
    assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1
Exemple #20
0
def test_ellipse_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    t = Symbol('t', real=True)
    y1 = Symbol('y1', real=True)
    half = Rational(1, 2)
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
    l1 = Line(p1, p2)

    # Test creation with three points
    cen, rad = Point(3*half, 2), 5*half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    raises(
        GeometryError, lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2)))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert e1 != l1
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi/2
    assert e3.area == pi*y1*abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2*pi*y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
    assert Ellipse(None, 1, None, 1).circumference == 2*pi
    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol('M')
    m = Symbol('m')
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == 4*M*Integral(
        sqrt((1 - _x**2*(M**2 - m**2)/M**2)/(1 - _x**2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(Point(3/2, 1), Point(3/2, 1/2))]
    assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(5/4, 2))]
    assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is True
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
    assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(77/25, 132/25)),
     Line(Point(0, 0), Point(33/5, 22/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
        [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
        [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
     Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]

    # for numerical calculations, we shouldn't demand exact equality,
    # so only test up to the desired precision
    def lines_close(l1, l2, prec):
        """ tests whether l1 and 12 are within 10**(-prec)
        of each other """
        return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec)
    def line_list_close(ll1, ll2, prec):
        return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2))

    e = Ellipse(Point(0, 0), 2, 1)
    assert e.normal_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines(Point(1, 0)) == \
        [Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines((0, 1)) == \
        [Line(Point(0, 0), Point(0, 1))]
    assert line_list_close(e.normal_lines(Point(1, 1), 2), [
        Line(Point(-51/26, -1/5), Point(-25/26, 17/83)),
        Line(Point(28/29, -7/8), Point(57/29, -9/2))], 2)
    # test the failure of Poly.intervals and checks a point on the boundary
    p = Point(sqrt(3), S.Half)
    assert p in e
    assert line_list_close(e.normal_lines(p, 2), [
        Line(Point(-341/171, -1/13), Point(-170/171, 5/64)),
        Line(Point(26/15, -1/2), Point(41/15, -43/26))], 2)
    # be sure to use the slope that isn't undefined on boundary
    e = Ellipse((0, 0), 2, 2*sqrt(3)/3)
    assert line_list_close(e.normal_lines((1, 1), 2), [
        Line(Point(-64/33, -20/71), Point(-31/33, 2/13)),
        Line(Point(1, -1), Point(2, -4))], 2)
    # general ellipse fails except under certain conditions
    e = Ellipse((0, 0), x, 1)
    assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
    raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))
    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)
    assert e4.semilatus_rectum == major*(1 - ecc ** 2)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
    assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1
    assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)]
    assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)]
    assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == []
    assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)]
    assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == []
    assert Circle((0, 0), 1/2).intersection(
        Triangle((-1, 0), (1, 0), (0, 1))) == [
        Point(-1/2, 0), Point(1/2, 0)]
    raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1))))
    raises(TypeError, lambda: intersection(e2, Rational(12)))
    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v/2, v/2) in points
    assert Point(v/2, -v/2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert elip.tangent_lines(Point(0, 0)) == []
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3, 0)) == \
        [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = 53/17
    c = 2*sqrt(3991)/17
    ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    c = sqrt(3991)
    ans = [Point(-c/68 + a, 2*c/17 + a/2), Point(c/68 + a, -2*c/17 + a/2)]
    assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
        [Line(Point(10, 0), Point(1, 0)),
        Line(Point(10, 0), Point(14/5, 18/5))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(
        e.center + Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(
        e.center + Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True

    assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
    assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
    assert e.rotate(pi) == e
    assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
    raises(NotImplementedError, lambda: e.rotate(pi/3))

    # Circle rotation tests (Issue #11743)
    # Link - https://github.com/sympy/sympy/issues/11743
    cir = Circle(Point(1, 0), 1)
    assert cir.rotate(pi/2) == Circle(Point(0, 1), 1)
    assert cir.rotate(pi/3) == Circle(Point(1/2, sqrt(3)/2), 1)
    assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1)
    assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(1/2 + sqrt(3)/2, 1/2 + sqrt(3)/2), 1)
Exemple #21
0
def test_exradii():
    t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2))
    assert t.exradii[t.sides[2]] == (-2 + sqrt(10))
Exemple #22
0
def test_parameter_value():
    t = Symbol('t')
    e = Ellipse(Point(0, 0), 3, 5)
    assert e.parameter_value((3, 0), t) == {t: 0}
    raises(ValueError, lambda: e.parameter_value((4, 0), t))
Exemple #23
0
def test_medial():
    assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \
        == Triangle(Point(S(1)/2, 0), Point(S(1)/2, S(1)/2), Point(0, S(1)/2))
Exemple #24
0
def test_polygon():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    q = Symbol('q', real=True)
    u = Symbol('u', real=True)
    v = Symbol('v', real=True)
    w = Symbol('w', real=True)
    x1 = Symbol('x1', real=True)
    half = Rational(1, 2)
    a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
    t = Triangle(a, b, c)
    assert Polygon(a, Point(1, 0), b, c) == t
    assert Polygon(Point(1, 0), b, c, a) == t
    assert Polygon(b, c, a, Point(1, 0)) == t
    # 2 "remove folded" tests
    assert Polygon(a, Point(3, 0), b, c) == t
    assert Polygon(a, b, Point(3, -1), b, c) == t
    # remove multiple collinear points
    assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
        Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
        Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
        Point(15, -3), Point(15, 10), Point(15, 15)) == \
        Polygon(Point(-15,-15), Point(15,-15), Point(15,15), Point(-15,15))

    p1 = Polygon(
        Point(0, 0), Point(3, -1),
        Point(6, 0), Point(4, 5),
        Point(2, 3), Point(0, 3))
    p2 = Polygon(
        Point(6, 0), Point(3, -1),
        Point(0, 0), Point(0, 3),
        Point(2, 3), Point(4, 5))
    p3 = Polygon(
        Point(0, 0), Point(3, 0),
        Point(5, 2), Point(4, 4))
    p4 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(5, 2), Point(3, 0))
    p5 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(0, 4))
    p6 = Polygon(
        Point(-11, 1), Point(-9, 6.6),
        Point(-4, -3), Point(-8.4, -8.7))
    p7 = Polygon(
        Point(x, y), Point(q, u),
        Point(v, w))
    p8 = Polygon(
        Point(x, y), Point(v, w),
        Point(q, u))
    p9 = Polygon(
        Point(0, 0), Point(4, 4),
        Point(3, 0), Point(5, 2))
    p10 = Polygon(
        Point(0, 2), Point(2, 2),
        Point(0, 0), Point(2, 0))
    p11 = Polygon(Point(0, 0), 1, n=3)

    r = Ray(Point(-9,6.6), Point(-9,5.5))
    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1.args) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0)
        ).is_convex() is False
    # ensure convex for both CW and CCW point specification
    assert p3.is_convex()
    assert p4.is_convex()
    dict5 = p5.angles
    assert dict5[Point(0, 0)] == pi / 4
    assert dict5[Point(0, 4)] == pi / 2
    assert p5.encloses_point(Point(x, y)) is None
    assert p5.encloses_point(Point(1, 3))
    assert p5.encloses_point(Point(0, 0)) is False
    assert p5.encloses_point(Point(4, 0)) is False
    assert p1.encloses(Circle(Point(2.5,2.5),5)) is False
    assert p1.encloses(Ellipse(Point(2.5,2),5,6)) is False
    p5.plot_interval('x') == [x, 0, 1]
    assert p5.distance(
        Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
    assert p5.distance(
        Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output"):
        Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
                Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))
    assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
    assert hash(p1) == hash(p2)
    assert hash(p7) == hash(p8)
    assert hash(p3) != hash(p9)
    assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
    assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
    assert p5 != Point(0, 4)
    assert Point(0, 1) in p5
    assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
        Point(0, 0)
    raises(ValueError, lambda: Polygon(
        Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x'))
    assert p6.intersection(r) == [Point(-9, -S(84)/13), Point(-9, S(33)/5)]
    assert p10.area == 0
    assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0)
    assert p11.vertices[0] == Point(1, 0)
    assert p11.args[0] == Point(0, 0)
    p11.spin(pi/2)
    assert p11.vertices[0] == Point(0, 1)
    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0,
           1), Point(1, 1)))
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
    raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))

    assert p1 != p2
    assert p1.interior_angle == 3*pi/5
    assert p1.exterior_angle == 2*pi/5
    assert p2.apothem == 5*cos(pi/5)
    assert p2.circumcenter == p1.circumcenter == Point(0, 0)
    assert p1.circumradius == p1.radius == 10
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
    p2.spin(pi / 10)
    dict1 = p2.angles
    assert dict1[Point(0, 5)] == 3 * pi / 5
    assert p1.is_convex()
    assert p1.rotation == 0
    assert p1.encloses_point(Point(0, 0))
    assert p1.encloses_point(Point(11, 0)) is False
    assert p2.encloses_point(Point(0, 4.9))
    p1.spin(pi/3)
    assert p1.rotation == pi/3
    assert p1.vertices[0] == Point(5, 5*sqrt(3))
    for var in p1.args:
        if isinstance(var, Point):
            assert var == Point(0, 0)
        else:
            assert var == 5 or var == 10 or var == pi / 3
    assert p1 != Point(0, 0)
    assert p1 != p5

    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, 2*pi/3)
    assert p1 == p1_old

    assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5))
    assert p1.length == 20*sqrt(-sqrt(5)/8 + S(5)/8)
    assert p1.scale(2, 2) == \
        RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
        Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))

    assert repr(p1) == str(p1)

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
    raises(GeometryError, lambda: Triangle(Point(0, 0)))

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() is False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf()/2)

    assert t1.is_equilateral() is False
    assert t2.is_equilateral()
    assert t3.is_equilateral() is False
    assert are_similar(t1, t2) is False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) is False
    assert t1.is_similar(Point(0, 0)) is False
    assert t1.is_similar(t2) is False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(
        p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t2.bisectors()[p2] == Segment(
        Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4))
    p4 = Point(0, x1)
    assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0))
    ic = (250 - 125*sqrt(2))/50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
    assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
    assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))

    # Exradius
    assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2

    # Circumcircle
    assert t1.circumcircle.center == Point(2.5, 2.5)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
    assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))

    # Nine-point circle
    assert t1.nine_point_circle == Circle(Point(2.5, 0),
                                          Point(0, 2.5), Point(2.5, 2.5))
    assert t1.nine_point_circle == Circle(Point(0, 0),
                                          Point(0, 2.5), Point(2.5, 2.5))

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2].equals(s1[0])
    assert altitudes[p3] == s1[2]
    assert t1.orthocenter == p1
    t = S('''Triangle(
    Point(100080156402737/5000000000000, 79782624633431/500000000000),
    Point(39223884078253/2000000000000, 156345163124289/1000000000000),
    Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
    assert t.orthocenter == S('''Point(-780660869050599840216997'''
    '''79471538701955848721853/80368430960602242240789074233100000000000000,'''
    '''20151573611150265741278060334545897615974257/16073686192120448448157'''
    '''8148466200000000000)''')

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(
        Point(0, 0), Point(1, 0),
        Point(1, 1), Point(0, 1))
    p2 = Polygon(
        Point(0, Rational(5)/4), Point(1, Rational(5)/4),
        Point(1, Rational(9)/4), Point(0, Rational(9)/4))
    p3 = Polygon(
        Point(1, 2), Point(2, 2),
        Point(2, 1))
    p4 = Polygon(
        Point(1, 1), Point(Rational(6)/5, 1),
        Point(1, Rational(6)/5))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)

    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3)/4
    assert p3.distance(pt2) == sqrt(2)/2

    '''Polygon to Polygon'''
    # p1.distance(p2) emits a warning
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output"):
        assert p1.distance(p2) == half/2

    assert p1.distance(p3) == sqrt(2)/2

    # p3.distance(p4) emits a warning
    with warns(UserWarning, \
               match="Polygons may intersect producing erroneous output"):
        assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
Exemple #25
0
def test_intersection():
    poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
    poly2 = Polygon(Point(0, 1), Point(-5, 0),
                    Point(0, -4), Point(0, S(1)/5),
                    Point(S(1)/2, -0.1), Point(1,0), Point(0, 1))

    assert poly1.intersection(poly2) == [Point2D(S(1)/3, 0),
        Segment(Point(0, S(1)/5), Point(0, 0)),
        Segment(Point(1, 0), Point(0, 1))]
    assert poly2.intersection(poly1) == [Point(S(1)/3, 0),
        Segment(Point(0, 0), Point(0, S(1)/5)),
        Segment(Point(1, 0), Point(0, 1))]
    assert poly1.intersection(Point(0, 0)) == [Point(0, 0)]
    assert poly1.intersection(Point(-12,  -43)) == []
    assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0),
        Point(0, 0),Point(S(1)/3, 0), Point(1, 0)]
    assert poly2.intersection(Line((-12, 12), (12, 12))) == []
    assert poly2.intersection(Ray((-3,4), (1,0))) == [Segment(Point(1, 0),
        Point(0, 1))]
    assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2),
        Point(0, 0)]
    assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)),
        Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))]
    assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)),
        Segment(Point(0, -4), Point(0, S(1)/5)),
        Segment(Point(0, S(1)/5), Point(S(1)/2, -S(1)/10)),
        Segment(Point(0, 1), Point(-5, 0)),
        Segment(Point(S(1)/2, -S(1)/10), Point(1, 0)),
        Segment(Point(1, 0), Point(0, 1))]
    assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \
        == [Point(-S(5)/7, S(6)/7), Segment(Point2D(0, 1), Point(1, 0))]
    assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == []
Exemple #26
0
def test_convex_hull():
    p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \
         Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \
         Point(4, -1), Point(6, 2)]
    ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1])
    #test handling of duplicate points
    p.append(p[3])

    #more than 3 collinear points
    another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \
                 Point(-45, -24)]
    ch2 = Segment(another_p[0], another_p[1])

    assert convex_hull(*another_p) == ch2
    assert convex_hull(*p) == ch
    assert convex_hull(p[0]) == p[0]
    assert convex_hull(p[0], p[1]) == Segment(p[0], p[1])

    # no unique points
    assert convex_hull(*[p[-1]]*3) == p[-1]

    # collection of items
    assert convex_hull(*[Point(0, 0), \
                        Segment(Point(1, 0), Point(1, 1)), \
                        RegularPolygon(Point(2, 0), 2, 4)]) == \
        Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))
def centroid(*args):
    """Find the centroid (center of mass) of the collection containing only Points,
    Segments or Polygons. The centroid is the weighted average of the individual centroid
    where the weights are the lengths (of segments) or areas (of polygons).
    Overlapping regions will add to the weight of that region.

    If there are no objects (or a mixture of objects) then None is returned.

    See Also
    ========

    sympy.geometry.point.Point, sympy.geometry.line.Segment,
    sympy.geometry.polygon.Polygon

    Examples
    ========

    >>> from sympy import Point, Segment, Polygon
    >>> from sympy.geometry.util import centroid
    >>> p = Polygon((0, 0), (10, 0), (10, 10))
    >>> q = p.translate(0, 20)
    >>> p.centroid, q.centroid
    (Point2D(20/3, 10/3), Point2D(20/3, 70/3))
    >>> centroid(p, q)
    Point2D(20/3, 40/3)
    >>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2))
    >>> centroid(p, q)
    Point2D(1, -sqrt(2) + 2)
    >>> centroid(Point(0, 0), Point(2, 0))
    Point2D(1, 0)

    Stacking 3 polygons on top of each other effectively triples the
    weight of that polygon:

    >>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1))
    >>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1))
    >>> centroid(p, q)
    Point2D(3/2, 1/2)
    >>> centroid(p, p, p, q) # centroid x-coord shifts left
    Point2D(11/10, 1/2)

    Stacking the squares vertically above and below p has the same
    effect:

    >>> centroid(p, p.translate(0, 1), p.translate(0, -1), q)
    Point2D(11/10, 1/2)

    """

    from sympy.geometry import Polygon, Segment, Point
    if args:
        if all(isinstance(g, Point) for g in args):
            c = Point(0, 0)
            for g in args:
                c += g
            den = len(args)
        elif all(isinstance(g, Segment) for g in args):
            c = Point(0, 0)
            L = 0
            for g in args:
                l = g.length
                c += g.midpoint * l
                L += l
            den = L
        elif all(isinstance(g, Polygon) for g in args):
            c = Point(0, 0)
            A = 0
            for g in args:
                a = g.area
                c += g.centroid * a
                A += a
            den = A
        c /= den
        return c.func(*[i.simplify() for i in c.args])
Exemple #28
0
def test_transform():
    pts = [Point(0, 0), Point(S(1)/2, S(1)/4), Point(1, 1)]
    pts_out = [Point(-4, -10), Point(-3, -S(37)/4), Point(-2, -7)]
    assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
        Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
def intersection(*entities, **kwargs):
    """The intersection of a collection of GeometryEntity instances.

    Parameters
    ==========
    entities : sequence of GeometryEntity
    pairwise (keyword argument) : Can be either True or False

    Returns
    =======
    intersection : list of GeometryEntity

    Raises
    ======
    NotImplementedError
        When unable to calculate intersection.

    Notes
    =====
    The intersection of any geometrical entity with itself should return
    a list with one item: the entity in question.
    An intersection requires two or more entities. If only a single
    entity is given then the function will return an empty list.
    It is possible for `intersection` to miss intersections that one
    knows exists because the required quantities were not fully
    simplified internally.
    Reals should be converted to Rationals, e.g. Rational(str(real_num))
    or else failures due to floating point issues may result.

    Case 1: When the keyword argument 'pairwise' is False (default value):
    In this case, the functon returns a list of intersections common to
    all entities.

    Case 2: When the keyword argument 'pairwise' is True:
    In this case, the functions returns a list intersections that occur
    between any pair of entities.

    See Also
    ========

    sympy.geometry.entity.GeometryEntity.intersection

    Examples
    ========

    >>> from sympy.geometry import Ray, Circle, intersection
    >>> c = Circle((0, 1), 1)
    >>> intersection(c, c.center)
    []
    >>> right = Ray((0, 0), (1, 0))
    >>> up = Ray((0, 0), (0, 1))
    >>> intersection(c, right, up)
    [Point2D(0, 0)]
    >>> intersection(c, right, up, pairwise=True)
    [Point2D(0, 0), Point2D(0, 2)]
    >>> left = Ray((1, 0), (0, 0))
    >>> intersection(right, left)
    [Segment2D(Point2D(0, 0), Point2D(1, 0))]

    """

    from .entity import GeometryEntity
    from .point import Point

    pairwise = kwargs.pop('pairwise', False)

    if len(entities) <= 1:
        return []

    # entities may be an immutable tuple
    entities = list(entities)
    for i, e in enumerate(entities):
        if not isinstance(e, GeometryEntity):
            entities[i] = Point(e)

    if not pairwise:
        # find the intersection common to all objects
        res = entities[0].intersection(entities[1])
        for entity in entities[2:]:
            newres = []
            for x in res:
                newres.extend(x.intersection(entity))
            res = newres
        return res

    # find all pairwise intersections
    ans = []
    for j in range(0, len(entities)):
        for k in range(j + 1, len(entities)):
            ans.extend(intersection(entities[j], entities[k]))
    return list(ordered(set(ans)))
from numpy import pi, linspace, array
from scipy.special import ellipeinc
from sympy import Symbol, solve, sqrt
from sympy.geometry import Point, Ellipse
from subprocess import check_output

chestData = check_output(["Rscript", "bodydata.r"], shell=True)
chestData = chestData.decode("UTF-8")
chestData = json.loads(chestData.splitlines()[0])
rc_min = chestData[0]
rc_max = chestData[1]
a = int(chestData[2]['mean'])
b = int(chestData[3]['mean'])

# MOMENT 0
e0 = Ellipse(Point(0, 0), hradius=a, vradius=b)
P = e0.circumference
E = e0.eccentricity
theta = Symbol('theta')

x = Symbol('x')
y = Symbol('y')
P = pi * (3 * (x + y) - sqrt((3 * x + y) * (x + 3 * y))) - P
x1, x2 = solve(P, x)


def radius_of_curvature(ellipse, points):
    a = ellipse.hradius
    b = ellipse.vradius
    rho_ellipse = []
    for i in range(len(points)):