Exemple #1
0
def test_apply_support():
    E = Symbol('E')
    I = Symbol('I')

    b = Beam(4, E, I)
    b.apply_support(0, "cantilever")
    b.apply_load(20, 4, -1)
    M_0, R_0 = symbols('M_0, R_0')
    b.solve_for_reaction_loads(R_0, M_0)
    assert b.slope() == (80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2)
                + 10*SingularityFunction(x, 4, 2))/(E*I)
    assert b.deflection() == (40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3
                + 10*SingularityFunction(x, 4, 3)/3)/(E*I)

    b = Beam(30, E, I)
    b.apply_support(10, "pin")
    b.apply_support(30, "roller")
    b.apply_load(-8, 0, -1)
    b.apply_load(120, 30, -2)
    R_10, R_30 = symbols('R_10, R_30')
    b.solve_for_reaction_loads(R_10, R_30)
    assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
            + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
    assert b.deflection() == (4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
            + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
Exemple #2
0
def test_apply_support():
    E = Symbol('E')
    I = Symbol('I')

    b = Beam(4, E, I)
    b.apply_support(0, "cantilever")
    b.apply_load(20, 4, -1)
    M_0, R_0 = symbols('M_0, R_0')
    b.solve_for_reaction_loads(R_0, M_0)
    assert b.slope() == (80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2)
                + 10*SingularityFunction(x, 4, 2))/(E*I)
    assert b.deflection() == (40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3
                + 10*SingularityFunction(x, 4, 3)/3)/(E*I)

    b = Beam(30, E, I)
    b.apply_support(10, "pin")
    b.apply_support(30, "roller")
    b.apply_load(-8, 0, -1)
    b.apply_load(120, 30, -2)
    R_10, R_30 = symbols('R_10, R_30')
    b.solve_for_reaction_loads(R_10, R_30)
    assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
            + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
    assert b.deflection() == (4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
            + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
Exemple #3
0
def test_variable_moment():
    E = Symbol('E')
    I = Symbol('I')

    b = Beam(4, E, 2*(4 - x))
    b.apply_load(20, 4, -1)
    R, M = symbols('R, M')
    b.apply_load(R, 0, -1)
    b.apply_load(M, 0, -2)
    b.bc_deflection = [(0, 0)]
    b.bc_slope = [(0, 0)]
    b.solve_for_reaction_loads(R, M)
    assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0)
        - 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand()
    assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0)
        - 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True))
        + 40*SingularityFunction(x, 4, 1))/E).expand()

    b = Beam(4, E - x, I)
    b.apply_load(20, 4, -1)
    R, M = symbols('R, M')
    b.apply_load(R, 0, -1)
    b.apply_load(M, 0, -2)
    b.bc_deflection = [(0, 0)]
    b.bc_slope = [(0, 0)]
    b.solve_for_reaction_loads(R, M)
    assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0)
        + 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E)
        + E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x)
        + x - 4)*SingularityFunction(x, 4, 0))/I).expand()
Exemple #4
0
def test_apply_support():
    E = Symbol('E')
    I = Symbol('I')

    b = Beam(4, E, I)
    b.apply_support(0, "cantilever")
    b.apply_load(20, 4, -1)
    M_0, R_0 = symbols('M_0, R_0')
    b.solve_for_reaction_loads(R_0, M_0)
    assert b.slope() == (80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2)
                + 10*SingularityFunction(x, 4, 2))/(E*I)
    assert b.deflection() == (40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3
                + 10*SingularityFunction(x, 4, 3)/3)/(E*I)

    b = Beam(30, E, I)
    b.apply_support(10, "pin")
    b.apply_support(30, "roller")
    b.apply_load(-8, 0, -1)
    b.apply_load(120, 30, -2)
    R_10, R_30 = symbols('R_10, R_30')
    b.solve_for_reaction_loads(R_10, R_30)
    assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
            + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + Rational(4000, 3))/(E*I)
    assert b.deflection() == (x*Rational(4000, 3) - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
            + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)

    P = Symbol('P', positive=True)
    L = Symbol('L', positive=True)
    b = Beam(L, E, I)
    b.apply_support(0, type='fixed')
    b.apply_support(L, type='fixed')
    b.apply_load(-P, L/2, -1)
    R_0, R_L, M_0, M_L = symbols('R_0, R_L, M_0, M_L')
    b.solve_for_reaction_loads(R_0, R_L, M_0, M_L)
    assert b.reaction_loads == {R_0: P/2, R_L: P/2, M_0: -L*P/8, M_L: L*P/8}
Exemple #5
0
def test_apply_support():
    E = Symbol('E')
    I = Symbol('I')

    b = Beam(4, E, I)
    b.apply_support(0, "cantilever")
    b.apply_load(20, 4, -1)
    M_0, R_0 = symbols('M_0, R_0')
    b.solve_for_reaction_loads(R_0, M_0)
    assert b.slope() == (80*SingularityFunction(x, 0, 1) - 10*SingularityFunction(x, 0, 2)
                + 10*SingularityFunction(x, 4, 2))/(E*I)
    assert b.deflection() == (40*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 0, 3)/3
                + 10*SingularityFunction(x, 4, 3)/3)/(E*I)

    b = Beam(30, E, I)
    b.apply_support(10, "pin")
    b.apply_support(30, "roller")
    b.apply_load(-8, 0, -1)
    b.apply_load(120, 30, -2)
    R_10, R_30 = symbols('R_10, R_30')
    b.solve_for_reaction_loads(R_10, R_30)
    assert b.slope() == (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
            + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + S(4000)/3)/(E*I)
    assert b.deflection() == (4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
            + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)

    P = Symbol('P', positive=True)
    L = Symbol('L', positive=True)
    b = Beam(L, E, I)
    b.apply_support(0, type='fixed')
    b.apply_support(L, type='fixed')
    b.apply_load(-P, L/2, -1)
    R_0, R_L, M_0, M_L = symbols('R_0, R_L, M_0, M_L')
    b.solve_for_reaction_loads(R_0, R_L, M_0, M_L)
    assert b.reaction_loads == {R_0: P/2, R_L: P/2, M_0: -L*P/8, M_L: L*P/8}
Exemple #6
0
def test_variable_moment():
    E = Symbol('E')
    I = Symbol('I')

    b = Beam(4, E, 2*(4 - x))
    b.apply_load(20, 4, -1)
    R, M = symbols('R, M')
    b.apply_load(R, 0, -1)
    b.apply_load(M, 0, -2)
    b.bc_deflection = [(0, 0)]
    b.bc_slope = [(0, 0)]
    b.solve_for_reaction_loads(R, M)
    assert b.slope().expand() == ((10*x*SingularityFunction(x, 0, 0)
        - 10*(x - 4)*SingularityFunction(x, 4, 0))/E).expand()
    assert b.deflection().expand() == ((5*x**2*SingularityFunction(x, 0, 0)
        - 10*Piecewise((0, Abs(x)/4 < 1), (16*meijerg(((3, 1), ()), ((), (2, 0)), x/4), True))
        + 40*SingularityFunction(x, 4, 1))/E).expand()

    b = Beam(4, E - x, I)
    b.apply_load(20, 4, -1)
    R, M = symbols('R, M')
    b.apply_load(R, 0, -1)
    b.apply_load(M, 0, -2)
    b.bc_deflection = [(0, 0)]
    b.bc_slope = [(0, 0)]
    b.solve_for_reaction_loads(R, M)
    assert b.slope().expand() == ((-80*(-log(-E) + log(-E + x))*SingularityFunction(x, 0, 0)
        + 80*(-log(-E + 4) + log(-E + x))*SingularityFunction(x, 4, 0) + 20*(-E*log(-E)
        + E*log(-E + x) + x)*SingularityFunction(x, 0, 0) - 20*(-E*log(-E + 4) + E*log(-E + x)
        + x - 4)*SingularityFunction(x, 4, 0))/I).expand()
Exemple #7
0
def test_insufficient_bconditions():
    # Test cases when required number of boundary conditions
    # are not provided to solve the integration constants.
    L = symbols('L', positive=True)
    E, I, P, a3, a4 = symbols('E I P a3 a4')

    b = Beam(L, E, I, base_char='a')
    b.apply_load(R2, L, -1)
    b.apply_load(R1, 0, -1)
    b.apply_load(-P, L/2, -1)
    b.solve_for_reaction_loads(R1, R2)

    p = b.slope()
    q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4
    assert p == q/(E*I) + a3

    p = b.deflection()
    q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
    assert p == q/(E*I) + a3*x + a4

    b.bc_deflection = [(0, 0)]
    p = b.deflection()
    q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
    assert p == q/(E*I)

    b.bc_deflection = [(0, 0), (L, 0)]
    p = b.deflection()
    q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
    assert p == q/(E*I)
Exemple #8
0
def test_insufficient_bconditions():
    # Test cases when required number of boundary conditions
    # are not provided to solve the integration constants.
    L = symbols('L', positive=True)
    E, I, P, a3, a4 = symbols('E I P a3 a4')

    b = Beam(L, E, I, base_char='a')
    b.apply_load(R2, L, -1)
    b.apply_load(R1, 0, -1)
    b.apply_load(-P, L/2, -1)
    b.solve_for_reaction_loads(R1, R2)

    p = b.slope()
    q = P*SingularityFunction(x, 0, 2)/4 - P*SingularityFunction(x, L/2, 2)/2 + P*SingularityFunction(x, L, 2)/4
    assert p == q/(E*I) + a3

    p = b.deflection()
    q = P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
    assert p == q/(E*I) + a3*x + a4

    b.bc_deflection = [(0, 0)]
    p = b.deflection()
    q = a3*x + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
    assert p == q/(E*I)

    b.bc_deflection = [(0, 0), (L, 0)]
    p = b.deflection()
    q = -L**2*P*x/16 + P*SingularityFunction(x, 0, 3)/12 - P*SingularityFunction(x, L/2, 3)/6 + P*SingularityFunction(x, L, 3)/12
    assert p == q/(E*I)
Exemple #9
0
def test_Beam():
    E = Symbol('E')
    E_1 = Symbol('E_1')
    I = Symbol('I')
    I_1 = Symbol('I_1')
    b = Beam(1, E, I)
    assert b.length == 1
    assert b.elastic_modulus == E
    assert b.second_moment == I
    assert b.variable == x

    # Test the length setter
    b.length = 4
    assert b.length == 4

    # Test the E setter
    b.elastic_modulus = E_1
    assert b.elastic_modulus == E_1

    # Test the I setter
    b.second_moment = I_1
    assert b.second_moment is I_1

    # Test the variable setter
    b.variable = y
    assert b.variable is y

    # Test for all boundary conditions.
    b.bc_deflection = [(0, 2)]
    b.bc_slope = [(0, 1)]
    assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]}

    # Test for slope boundary condition method
    b.bc_slope.extend([(4, 3), (5, 0)])
    s_bcs = b.bc_slope
    assert s_bcs == [(0, 1), (4, 3), (5, 0)]

    # Test for deflection boundary condition method
    b.bc_deflection.extend([(4, 3), (5, 0)])
    d_bcs = b.bc_deflection
    assert d_bcs == [(0, 2), (4, 3), (5, 0)]

    # Test for updated boundary conditions
    bcs_new = b.boundary_conditions
    assert bcs_new == {
        'deflection': [(0, 2), (4, 3), (5, 0)],
        'slope': [(0, 1), (4, 3), (5, 0)]}

    b1 = Beam(30, E, I)
    b1.apply_load(-8, 0, -1)
    b1.apply_load(R1, 10, -1)
    b1.apply_load(R2, 30, -1)
    b1.apply_load(120, 30, -2)
    b1.bc_deflection = [(10, 0), (30, 0)]
    b1.solve_for_reaction_loads(R1, R2)

    # Test for finding reaction forces
    p = b1.reaction_loads
    q = {R1: 6, R2: 2}
    assert p == q

    # Test for load distribution function.
    p = b1.load
    q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
    assert p == q

    # Test for shear force distribution function
    p = b1.shear_force()
    q = -8*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 10, 0) + 120*SingularityFunction(x, 30, -1) + 2*SingularityFunction(x, 30, 0)
    assert p == q

    # Test for bending moment distribution function
    p = b1.bending_moment()
    q = -8*SingularityFunction(x, 0, 1) + 6*SingularityFunction(x, 10, 1) + 120*SingularityFunction(x, 30, 0) + 2*SingularityFunction(x, 30, 1)
    assert p == q

    # Test for slope distribution function
    p = b1.slope()
    q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3
    assert p == q/(E*I)

    # Test for deflection distribution function
    p = b1.deflection()
    q = 4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000
    assert p == q/(E*I)

    # Test using symbols
    l = Symbol('l')
    w0 = Symbol('w0')
    w2 = Symbol('w2')
    a1 = Symbol('a1')
    c = Symbol('c')
    c1 = Symbol('c1')
    d = Symbol('d')
    e = Symbol('e')
    f = Symbol('f')

    b2 = Beam(l, E, I)

    b2.apply_load(w0, a1, 1)
    b2.apply_load(w2, c1, -1)

    b2.bc_deflection = [(c, d)]
    b2.bc_slope = [(e, f)]

    # Test for load distribution function.
    p = b2.load
    q = w0*SingularityFunction(x, a1, 1) + w2*SingularityFunction(x, c1, -1)
    assert p == q

    # Test for shear force distribution function
    p = b2.shear_force()
    q = w0*SingularityFunction(x, a1, 2)/2 + w2*SingularityFunction(x, c1, 0)
    assert p == q

    # Test for bending moment distribution function
    p = b2.bending_moment()
    q = w0*SingularityFunction(x, a1, 3)/6 + w2*SingularityFunction(x, c1, 1)
    assert p == q

    # Test for slope distribution function
    p = b2.slope()
    q = (w0*SingularityFunction(x, a1, 4)/24 + w2*SingularityFunction(x, c1, 2)/2)/(E*I) + (E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I)
    assert p == q

    # Test for deflection distribution function
    p = b2.deflection()
    q = x*(E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I) + (w0*SingularityFunction(x, a1, 5)/120 + w2*SingularityFunction(x, c1, 3)/6)/(E*I) + (E*I*(-c*f + d) + c*w0*SingularityFunction(e, a1, 4)/24 + c*w2*SingularityFunction(e, c1, 2)/2 - w0*SingularityFunction(c, a1, 5)/120 - w2*SingularityFunction(c, c1, 3)/6)/(E*I)
    assert p == q

    b3 = Beam(9, E, I)
    b3.apply_load(value=-2, start=2, order=2, end=3)
    b3.bc_slope.append((0, 2))
    C3 = symbols('C3')
    C4 = symbols('C4')
    p = b3.load
    q = -2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
    assert p == q

    p = b3.slope()
    q = 2 + (-SingularityFunction(x, 2, 5)/30 + SingularityFunction(x, 3, 3)/3 + SingularityFunction(x, 3, 4)/6 + SingularityFunction(x, 3, 5)/30)/(E*I)
    assert p == q

    p = b3.deflection()
    q = 2*x + (-SingularityFunction(x, 2, 6)/180 + SingularityFunction(x, 3, 4)/12 + SingularityFunction(x, 3, 5)/30 + SingularityFunction(x, 3, 6)/180)/(E*I)
    assert p == q + C4

    b4 = Beam(4, E, I)
    b4.apply_load(-3, 0, 0, end=3)

    p = b4.load
    q = -3*SingularityFunction(x, 0, 0) + 3*SingularityFunction(x, 3, 0)
    assert p == q

    p = b4.slope()
    q = -3*SingularityFunction(x, 0, 3)/6 + 3*SingularityFunction(x, 3, 3)/6
    assert p == q/(E*I) + C3

    p = b4.deflection()
    q = -3*SingularityFunction(x, 0, 4)/24 + 3*SingularityFunction(x, 3, 4)/24
    assert p == q/(E*I) + C3*x + C4

    # can't use end with point loads
    raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3))
    with raises(TypeError):
        b4.variable = 1
Exemple #10
0
def test_cross_section():
    I = Symbol('I')
    l = Symbol('l')
    E = Symbol('E')
    C3, C4 = symbols('C3, C4')
    a, c, g, h, r, n = symbols('a, c, g, h, r, n')

    # test for second_moment and cross_section setter
    b0 = Beam(l, E, I)
    assert b0.second_moment == I
    assert b0.cross_section == None
    b0.cross_section = Circle((0, 0), 5)
    assert b0.second_moment == pi*Rational(625, 4)
    assert b0.cross_section == Circle((0, 0), 5)
    b0.second_moment = 2*n - 6
    assert b0.second_moment == 2*n-6
    assert b0.cross_section == None
    with raises(ValueError):
        b0.second_moment = Circle((0, 0), 5)

    # beam with a circular cross-section
    b1 = Beam(50, E, Circle((0, 0), r))
    assert b1.cross_section == Circle((0, 0), r)
    assert b1.second_moment == pi*r*Abs(r)**3/4

    b1.apply_load(-10, 0, -1)
    b1.apply_load(R1, 5, -1)
    b1.apply_load(R2, 50, -1)
    b1.apply_load(90, 45, -2)
    b1.solve_for_reaction_loads(R1, R2)
    assert b1.load == (-10*SingularityFunction(x, 0, -1) + 82*SingularityFunction(x, 5, -1)/S(9)
                         + 90*SingularityFunction(x, 45, -2) + 8*SingularityFunction(x, 50, -1)/9)
    assert b1.bending_moment() == (-10*SingularityFunction(x, 0, 1) + 82*SingularityFunction(x, 5, 1)/9
                                     + 90*SingularityFunction(x, 45, 0) + 8*SingularityFunction(x, 50, 1)/9)
    q = (-5*SingularityFunction(x, 0, 2) + 41*SingularityFunction(x, 5, 2)/S(9)
           + 90*SingularityFunction(x, 45, 1) + 4*SingularityFunction(x, 50, 2)/S(9))/(pi*E*r*Abs(r)**3)
    assert b1.slope() == C3 + 4*q
    q = (-5*SingularityFunction(x, 0, 3)/3 + 41*SingularityFunction(x, 5, 3)/27 + 45*SingularityFunction(x, 45, 2)
           + 4*SingularityFunction(x, 50, 3)/27)/(pi*E*r*Abs(r)**3)
    assert b1.deflection() == C3*x + C4 + 4*q

    # beam with a recatangular cross-section
    b2 = Beam(20, E, Polygon((0, 0), (a, 0), (a, c), (0, c)))
    assert b2.cross_section == Polygon((0, 0), (a, 0), (a, c), (0, c))
    assert b2.second_moment == a*c**3/12
    # beam with a triangular cross-section
    b3 = Beam(15, E, Triangle((0, 0), (g, 0), (g/2, h)))
    assert b3.cross_section == Triangle(Point2D(0, 0), Point2D(g, 0), Point2D(g/2, h))
    assert b3.second_moment == g*h**3/36

    # composite beam
    b = b2.join(b3, "fixed")
    b.apply_load(-30, 0, -1)
    b.apply_load(65, 0, -2)
    b.apply_load(40, 0, -1)
    b.bc_slope = [(0, 0)]
    b.bc_deflection = [(0, 0)]

    assert b.second_moment == Piecewise((a*c**3/12, x <= 20), (g*h**3/36, x <= 35))
    assert b.cross_section == None
    assert b.length == 35
    assert b.slope().subs(x, 7) == 8400/(E*a*c**3)
    assert b.slope().subs(x, 25) == 52200/(E*g*h**3) + 39600/(E*a*c**3)
    assert b.deflection().subs(x, 30) == 537000/(E*g*h**3) + 712000/(E*a*c**3)
Exemple #11
0
def test_Beam():
    E = Symbol("E")
    E_1 = Symbol("E_1")
    I = Symbol("I")
    I_1 = Symbol("I_1")
    b = Beam(1, E, I)
    assert b.length == 1
    assert b.elastic_modulus == E
    assert b.second_moment == I
    assert b.variable == x

    # Test the length setter
    b.length = 4
    assert b.length == 4

    # Test the E setter
    b.elastic_modulus = E_1
    assert b.elastic_modulus == E_1

    # Test the I setter
    b.second_moment = I_1
    assert b.second_moment is I_1

    # Test the variable setter
    b.variable = y
    assert b.variable is y

    # Test for all boundary conditions.
    b.bc_deflection = [(0, 2)]
    b.bc_slope = [(0, 1)]
    assert b.boundary_conditions == {"deflection": [(0, 2)], "slope": [(0, 1)]}

    # Test for slope boundary condition method
    b.bc_slope.extend([(4, 3), (5, 0)])
    s_bcs = b.bc_slope
    assert s_bcs == [(0, 1), (4, 3), (5, 0)]

    # Test for deflection boundary condition method
    b.bc_deflection.extend([(4, 3), (5, 0)])
    d_bcs = b.bc_deflection
    assert d_bcs == [(0, 2), (4, 3), (5, 0)]

    # Test for updated boundary conditions
    bcs_new = b.boundary_conditions
    assert bcs_new == {"deflection": [(0, 2), (4, 3), (5, 0)], "slope": [(0, 1), (4, 3), (5, 0)]}

    b1 = Beam(30, E, I)
    b1.apply_load(-8, 0, -1)
    b1.apply_load(R1, 10, -1)
    b1.apply_load(R2, 30, -1)
    b1.apply_load(120, 30, -2)
    b1.bc_deflection = [(10, 0), (30, 0)]
    b1.solve_for_reaction_loads(R1, R2)

    # Test for finding reaction forces
    p = b1.reaction_loads
    q = {R1: 6, R2: 2}
    assert p == q

    # Test for load distribution function.
    p = b1.load
    q = (
        -8 * SingularityFunction(x, 0, -1)
        + 6 * SingularityFunction(x, 10, -1)
        + 120 * SingularityFunction(x, 30, -2)
        + 2 * SingularityFunction(x, 30, -1)
    )
    assert p == q

    # Test for shear force distribution function
    p = b1.shear_force()
    q = (
        -8 * SingularityFunction(x, 0, 0)
        + 6 * SingularityFunction(x, 10, 0)
        + 120 * SingularityFunction(x, 30, -1)
        + 2 * SingularityFunction(x, 30, 0)
    )
    assert p == q

    # Test for bending moment distribution function
    p = b1.bending_moment()
    q = (
        -8 * SingularityFunction(x, 0, 1)
        + 6 * SingularityFunction(x, 10, 1)
        + 120 * SingularityFunction(x, 30, 0)
        + 2 * SingularityFunction(x, 30, 1)
    )
    assert p == q

    # Test for slope distribution function
    p = b1.slope()
    q = (
        -4 * SingularityFunction(x, 0, 2)
        + 3 * SingularityFunction(x, 10, 2)
        + 120 * SingularityFunction(x, 30, 1)
        + SingularityFunction(x, 30, 2)
        + 4000 / 3
    )
    assert p == q / (E * I)

    # Test for deflection distribution function
    p = b1.deflection()
    q = (
        4000 * x / 3
        - 4 * SingularityFunction(x, 0, 3) / 3
        + SingularityFunction(x, 10, 3)
        + 60 * SingularityFunction(x, 30, 2)
        + SingularityFunction(x, 30, 3) / 3
        - 12000
    )
    assert p == q / (E * I)

    # Test using symbols
    l = Symbol("l")
    w0 = Symbol("w0")
    w2 = Symbol("w2")
    a1 = Symbol("a1")
    c = Symbol("c")
    c1 = Symbol("c1")
    d = Symbol("d")
    e = Symbol("e")
    f = Symbol("f")

    b2 = Beam(l, E, I)

    b2.apply_load(w0, a1, 1)
    b2.apply_load(w2, c1, -1)

    b2.bc_deflection = [(c, d)]
    b2.bc_slope = [(e, f)]

    # Test for load distribution function.
    p = b2.load
    q = w0 * SingularityFunction(x, a1, 1) + w2 * SingularityFunction(x, c1, -1)
    assert p == q

    # Test for shear force distribution function
    p = b2.shear_force()
    q = w0 * SingularityFunction(x, a1, 2) / 2 + w2 * SingularityFunction(x, c1, 0)
    assert p == q

    # Test for bending moment distribution function
    p = b2.bending_moment()
    q = w0 * SingularityFunction(x, a1, 3) / 6 + w2 * SingularityFunction(x, c1, 1)
    assert p == q

    # Test for slope distribution function
    p = b2.slope()
    q = (
        f
        - w0 * SingularityFunction(e, a1, 4) / 24
        + w0 * SingularityFunction(x, a1, 4) / 24
        - w2 * SingularityFunction(e, c1, 2) / 2
        + w2 * SingularityFunction(x, c1, 2) / 2
    )
    assert p == q / (E * I)

    # Test for deflection distribution function
    p = b2.deflection()
    q = (
        -c * f
        + c * w0 * SingularityFunction(e, a1, 4) / 24
        + c * w2 * SingularityFunction(e, c1, 2) / 2
        + d
        + f * x
        - w0 * x * SingularityFunction(e, a1, 4) / 24
        - w0 * SingularityFunction(c, a1, 5) / 120
        + w0 * SingularityFunction(x, a1, 5) / 120
        - w2 * x * SingularityFunction(e, c1, 2) / 2
        - w2 * SingularityFunction(c, c1, 3) / 6
        + w2 * SingularityFunction(x, c1, 3) / 6
    )
    assert p == q / (E * I)

    b3 = Beam(9, E, I)
    b3.apply_load(value=-2, start=2, order=2, end=3)
    b3.bc_slope.append((0, 2))
    p = b3.load
    q = -2 * SingularityFunction(x, 2, 2) + 2 * SingularityFunction(x, 3, 0) + 2 * SingularityFunction(x, 3, 2)
    assert p == q

    p = b3.slope()
    q = -SingularityFunction(x, 2, 5) / 30 + SingularityFunction(x, 3, 3) / 3 + SingularityFunction(x, 3, 5) / 30 + 2
    assert p == q / (E * I)

    p = b3.deflection()
    q = (
        2 * x
        - SingularityFunction(x, 2, 6) / 180
        + SingularityFunction(x, 3, 4) / 12
        + SingularityFunction(x, 3, 6) / 180
    )
    assert p == q / (E * I)

    b4 = Beam(4, E, I)
    b4.apply_load(-3, 0, 0, end=3)

    p = b4.load
    q = -3 * SingularityFunction(x, 0, 0) + 3 * SingularityFunction(x, 3, 0)
    assert p == q

    p = b4.slope()
    q = -3 * SingularityFunction(x, 0, 3) / 6 + 3 * SingularityFunction(x, 3, 3) / 6
    assert p == q / (E * I)

    p = b4.deflection()
    q = -3 * SingularityFunction(x, 0, 4) / 24 + 3 * SingularityFunction(x, 3, 4) / 24
    assert p == q / (E * I)

    raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3))
    with raises(TypeError):
        b4.variable = 1
Exemple #12
0
def test_Beam():
    E = Symbol('E')
    E_1 = Symbol('E_1')
    I = Symbol('I')
    I_1 = Symbol('I_1')
    b = Beam(1, E, I)
    assert b.length == 1
    assert b.elastic_modulus == E
    assert b.second_moment == I
    assert b.variable == x

    # Test the length setter
    b.length = 4
    assert b.length == 4

    # Test the E setter
    b.elastic_modulus = E_1
    assert b.elastic_modulus == E_1

    # Test the I setter
    b.second_moment = I_1
    assert b.second_moment is I_1

    # Test the variable setter
    b.variable = y
    assert b.variable is y

    # Test for all boundary conditions.
    b.bc_deflection = [(0, 2)]
    b.bc_slope = [(0, 1)]
    assert b.boundary_conditions == {'deflection': [(0, 2)], 'slope': [(0, 1)]}

    # Test for slope boundary condition method
    b.bc_slope.extend([(4, 3), (5, 0)])
    s_bcs = b.bc_slope
    assert s_bcs == [(0, 1), (4, 3), (5, 0)]

    # Test for deflection boundary condition method
    b.bc_deflection.extend([(4, 3), (5, 0)])
    d_bcs = b.bc_deflection
    assert d_bcs == [(0, 2), (4, 3), (5, 0)]

    # Test for updated boundary conditions
    bcs_new = b.boundary_conditions
    assert bcs_new == {
        'deflection': [(0, 2), (4, 3), (5, 0)],
        'slope': [(0, 1), (4, 3), (5, 0)]}

    b1 = Beam(30, E, I)
    b1.apply_load(-8, 0, -1)
    b1.apply_load(R1, 10, -1)
    b1.apply_load(R2, 30, -1)
    b1.apply_load(120, 30, -2)
    b1.bc_deflection = [(10, 0), (30, 0)]
    b1.solve_for_reaction_loads(R1, R2)

    # Test for finding reaction forces
    p = b1.reaction_loads
    q = {R1: 6, R2: 2}
    assert p == q

    # Test for load distribution function.
    p = b1.load
    q = -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
    assert p == q

    # Test for shear force distribution function
    p = b1.shear_force()
    q = -8*SingularityFunction(x, 0, 0) + 6*SingularityFunction(x, 10, 0) + 120*SingularityFunction(x, 30, -1) + 2*SingularityFunction(x, 30, 0)
    assert p == q

    # Test for bending moment distribution function
    p = b1.bending_moment()
    q = -8*SingularityFunction(x, 0, 1) + 6*SingularityFunction(x, 10, 1) + 120*SingularityFunction(x, 30, 0) + 2*SingularityFunction(x, 30, 1)
    assert p == q

    # Test for slope distribution function
    p = b1.slope()
    q = -4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + S(4000)/3
    assert p == q/(E*I)

    # Test for deflection distribution function
    p = b1.deflection()
    q = 4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000
    assert p == q/(E*I)

    # Test using symbols
    l = Symbol('l')
    w0 = Symbol('w0')
    w2 = Symbol('w2')
    a1 = Symbol('a1')
    c = Symbol('c')
    c1 = Symbol('c1')
    d = Symbol('d')
    e = Symbol('e')
    f = Symbol('f')

    b2 = Beam(l, E, I)

    b2.apply_load(w0, a1, 1)
    b2.apply_load(w2, c1, -1)

    b2.bc_deflection = [(c, d)]
    b2.bc_slope = [(e, f)]

    # Test for load distribution function.
    p = b2.load
    q = w0*SingularityFunction(x, a1, 1) + w2*SingularityFunction(x, c1, -1)
    assert p == q

    # Test for shear force distribution function
    p = b2.shear_force()
    q = w0*SingularityFunction(x, a1, 2)/2 + w2*SingularityFunction(x, c1, 0)
    assert p == q

    # Test for bending moment distribution function
    p = b2.bending_moment()
    q = w0*SingularityFunction(x, a1, 3)/6 + w2*SingularityFunction(x, c1, 1)
    assert p == q

    # Test for slope distribution function
    p = b2.slope()
    q = (w0*SingularityFunction(x, a1, 4)/24 + w2*SingularityFunction(x, c1, 2)/2)/(E*I) + (E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I)
    assert p == q

    # Test for deflection distribution function
    p = b2.deflection()
    q = x*(E*I*f - w0*SingularityFunction(e, a1, 4)/24 - w2*SingularityFunction(e, c1, 2)/2)/(E*I) + (w0*SingularityFunction(x, a1, 5)/120 + w2*SingularityFunction(x, c1, 3)/6)/(E*I) + (E*I*(-c*f + d) + c*w0*SingularityFunction(e, a1, 4)/24 + c*w2*SingularityFunction(e, c1, 2)/2 - w0*SingularityFunction(c, a1, 5)/120 - w2*SingularityFunction(c, c1, 3)/6)/(E*I)
    assert p == q

    b3 = Beam(9, E, I)
    b3.apply_load(value=-2, start=2, order=2, end=3)
    b3.bc_slope.append((0, 2))
    C3 = symbols('C3')
    C4 = symbols('C4')
    p = b3.load
    q = -2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
    assert p == q

    p = b3.slope()
    q = 2 + (-SingularityFunction(x, 2, 5)/30 + SingularityFunction(x, 3, 3)/3 + SingularityFunction(x, 3, 4)/6 + SingularityFunction(x, 3, 5)/30)/(E*I)
    assert p == q

    p = b3.deflection()
    q = 2*x + (-SingularityFunction(x, 2, 6)/180 + SingularityFunction(x, 3, 4)/12 + SingularityFunction(x, 3, 5)/30 + SingularityFunction(x, 3, 6)/180)/(E*I)
    assert p == q + C4

    b4 = Beam(4, E, I)
    b4.apply_load(-3, 0, 0, end=3)

    p = b4.load
    q = -3*SingularityFunction(x, 0, 0) + 3*SingularityFunction(x, 3, 0)
    assert p == q

    p = b4.slope()
    q = -3*SingularityFunction(x, 0, 3)/6 + 3*SingularityFunction(x, 3, 3)/6
    assert p == q/(E*I) + C3

    p = b4.deflection()
    q = -3*SingularityFunction(x, 0, 4)/24 + 3*SingularityFunction(x, 3, 4)/24
    assert p == q/(E*I) + C3*x + C4

    # can't use end with point loads
    raises(ValueError, lambda: b4.apply_load(-3, 0, -1, end=3))
    with raises(TypeError):
        b4.variable = 1