def dup_gcdex(f, g, K): """ Extended Euclidean algorithm in `F[x]`. Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. Examples ======== >>> from sympy.polys import ring, QQ >>> R, x = ring("x", QQ) >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4 >>> R.dup_gcdex(f, g) (-1/5*x + 3/5, 1/5*x**2 - 6/5*x + 2, x + 1) """ s, h = dup_half_gcdex(f, g, K) F = dup_sub_mul(h, s, f, K) t = dup_quo(F, g, K) return s, t, h
def dup_half_gcdex(f, g, K): """ Half extended Euclidean algorithm in ``F[x]``. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. **Examples** >>> from sympy.polys.domains import QQ >>> from sympy.polys.euclidtools import dup_half_gcdex >>> f = QQ.map([1, -2, -6, 12, 15]) >>> g = QQ.map([1, 1, -4, -4]) >>> dup_half_gcdex(f, g, QQ) ([-1/5, 3/5], [1/1, 1/1]) """ if not (K.has_Field or not K.is_Exact): raise DomainError("can't compute half extended GCD over %s" % K) a, b = [K.one], [] while g: q, r = dup_div(f, g, K) f, g = g, r a, b = b, dup_sub_mul(a, q, b, K) a = dup_exquo_ground(a, dup_LC(f, K), K) f = dup_monic(f, K) return a, f
def dup_half_gcdex(f, g, K): """ Half extended Euclidean algorithm in `F[x]`. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy.polys import ring, QQ >>> R, x = ring("x", QQ) >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4 >>> R.dup_half_gcdex(f, g) (-1/5*x + 3/5, x + 1) """ if not K.has_Field: raise DomainError("can't compute half extended GCD over %s" % K) a, b = [K.one], [] while g: q, r = dup_div(f, g, K) f, g = g, r a, b = b, dup_sub_mul(a, q, b, K) a = dup_quo_ground(a, dup_LC(f, K), K) f = dup_monic(f, K) return a, f
def dup_gcdex(f, g, K): """ Extended Euclidean algorithm in `F[x]`. Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.euclidtools import dup_gcdex >>> f = QQ.map([1, -2, -6, 12, 15]) >>> g = QQ.map([1, 1, -4, -4]) >>> dup_gcdex(f, g, QQ) ([-1/5, 3/5], [1/5, -6/5, 2/1], [1/1, 1/1]) """ s, h = dup_half_gcdex(f, g, K) F = dup_sub_mul(h, s, f, K) t = dup_quo(F, g, K) return s, t, h
def dup_half_gcdex(f, g, K): """ Half extended Euclidean algorithm in `F[x]`. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.euclidtools import dup_half_gcdex >>> f = QQ.map([1, -2, -6, 12, 15]) >>> g = QQ.map([1, 1, -4, -4]) >>> dup_half_gcdex(f, g, QQ) ([-1/5, 3/5], [1/1, 1/1]) """ if not (K.has_Field or not K.is_Exact): raise DomainError("can't compute half extended GCD over %s" % K) a, b = [K.one], [] while g: q, r = dup_div(f, g, K) f, g = g, r a, b = b, dup_sub_mul(a, q, b, K) a = dup_quo_ground(a, dup_LC(f, K), K) f = dup_monic(f, K) return a, f
def test_dup_sub_mul(): assert dup_sub_mul([ZZ(1), ZZ(2), ZZ(3)], [ZZ(3), ZZ(2), ZZ(1)], [ZZ(1), ZZ(2)], ZZ) == [ ZZ(-3), ZZ(-7), ZZ(-3), ZZ(1), ]
def test_dup_sub_mul(): assert dup_sub_mul([ZZ(1), ZZ(2), ZZ(3)], [ZZ(3), ZZ(2), ZZ(1)], [ZZ(1), ZZ(2)], ZZ) == [ZZ(-3), ZZ(-7), ZZ(-3), ZZ(1)] assert dmp_sub_mul([[ZZ(1), ZZ(2)], [ZZ(3)]], [[ZZ(3)], [ZZ(2), ZZ(1)]], [[ZZ(1)], [ZZ(2)]], 1, ZZ) == [[ZZ(-3)], [ZZ(-1), ZZ(-5)], [ZZ(-4), ZZ(1)]]
def dup_zz_hensel_step(m, f, g, h, s, t, K): """ One step in Hensel lifting in `Z[x]`. Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s` and `t` such that:: f == g*h (mod m) s*g + t*h == 1 (mod m) lc(f) is not a zero divisor (mod m) lc(h) == 1 deg(f) == deg(g) + deg(h) deg(s) < deg(h) deg(t) < deg(g) returns polynomials `G`, `H`, `S` and `T`, such that:: f == G*H (mod m**2) S*G + T**H == 1 (mod m**2) References ========== 1. [Gathen99]_ """ M = m**2 e = dup_sub_mul(f, g, h, K) e = dup_trunc(e, M, K) q, r = dup_div(dup_mul(s, e, K), h, K) q = dup_trunc(q, M, K) r = dup_trunc(r, M, K) u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K) G = dup_trunc(dup_add(g, u, K), M, K) H = dup_trunc(dup_add(h, r, K), M, K) u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K) b = dup_trunc(dup_sub(u, [K.one], K), M, K) c, d = dup_div(dup_mul(s, b, K), H, K) c = dup_trunc(c, M, K) d = dup_trunc(d, M, K) u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K) S = dup_trunc(dup_sub(s, d, K), M, K) T = dup_trunc(dup_sub(t, u, K), M, K) return G, H, S, T
def test_dup_sub_mul(): assert dup_sub_mul([ZZ(1),ZZ(2),ZZ(3)], [ZZ(3),ZZ(2),ZZ(1)], [ZZ(1),ZZ(2)], ZZ) == [ZZ(-3),ZZ(-7),ZZ(-3), ZZ(1)]