Esempio n. 1
0
def dup_gcdex(f, g, K):
    """
    Extended Euclidean algorithm in `F[x]`.

    Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
    >>> g = x**3 + x**2 - 4*x - 4

    >>> R.dup_gcdex(f, g)
    (-1/5*x + 3/5, 1/5*x**2 - 6/5*x + 2, x + 1)

    """
    s, h = dup_half_gcdex(f, g, K)

    F = dup_sub_mul(h, s, f, K)
    t = dup_quo(F, g, K)

    return s, t, h
Esempio n. 2
0
def dup_half_gcdex(f, g, K):
    """
    Half extended Euclidean algorithm in ``F[x]``.

    Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.

    **Examples**

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_half_gcdex

    >>> f = QQ.map([1, -2, -6, 12, 15])
    >>> g = QQ.map([1, 1, -4, -4])

    >>> dup_half_gcdex(f, g, QQ)
    ([-1/5, 3/5], [1/1, 1/1])

    """
    if not (K.has_Field or not K.is_Exact):
        raise DomainError("can't compute half extended GCD over %s" % K)

    a, b = [K.one], []

    while g:
        q, r = dup_div(f, g, K)
        f, g = g, r
        a, b = b, dup_sub_mul(a, q, b, K)

    a = dup_exquo_ground(a, dup_LC(f, K), K)
    f = dup_monic(f, K)

    return a, f
Esempio n. 3
0
def dup_half_gcdex(f, g, K):
    """
    Half extended Euclidean algorithm in `F[x]`.

    Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
    >>> g = x**3 + x**2 - 4*x - 4

    >>> R.dup_half_gcdex(f, g)
    (-1/5*x + 3/5, x + 1)

    """
    if not K.has_Field:
        raise DomainError("can't compute half extended GCD over %s" % K)

    a, b = [K.one], []

    while g:
        q, r = dup_div(f, g, K)
        f, g = g, r
        a, b = b, dup_sub_mul(a, q, b, K)

    a = dup_quo_ground(a, dup_LC(f, K), K)
    f = dup_monic(f, K)

    return a, f
Esempio n. 4
0
def dup_half_gcdex(f, g, K):
    """
    Half extended Euclidean algorithm in `F[x]`.

    Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
    >>> g = x**3 + x**2 - 4*x - 4

    >>> R.dup_half_gcdex(f, g)
    (-1/5*x + 3/5, x + 1)

    """
    if not K.has_Field:
        raise DomainError("can't compute half extended GCD over %s" % K)

    a, b = [K.one], []

    while g:
        q, r = dup_div(f, g, K)
        f, g = g, r
        a, b = b, dup_sub_mul(a, q, b, K)

    a = dup_quo_ground(a, dup_LC(f, K), K)
    f = dup_monic(f, K)

    return a, f
Esempio n. 5
0
def dup_gcdex(f, g, K):
    """
    Extended Euclidean algorithm in `F[x]`.

    Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_gcdex

    >>> f = QQ.map([1, -2, -6, 12, 15])
    >>> g = QQ.map([1, 1, -4, -4])

    >>> dup_gcdex(f, g, QQ)
    ([-1/5, 3/5], [1/5, -6/5, 2/1], [1/1, 1/1])

    """
    s, h = dup_half_gcdex(f, g, K)

    F = dup_sub_mul(h, s, f, K)
    t = dup_quo(F, g, K)

    return s, t, h
Esempio n. 6
0
def dup_gcdex(f, g, K):
    """
    Extended Euclidean algorithm in `F[x]`.

    Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

    Examples
    ========

    >>> from sympy.polys import ring, QQ
    >>> R, x = ring("x", QQ)

    >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
    >>> g = x**3 + x**2 - 4*x - 4

    >>> R.dup_gcdex(f, g)
    (-1/5*x + 3/5, 1/5*x**2 - 6/5*x + 2, x + 1)

    """
    s, h = dup_half_gcdex(f, g, K)

    F = dup_sub_mul(h, s, f, K)
    t = dup_quo(F, g, K)

    return s, t, h
Esempio n. 7
0
def dup_gcdex(f, g, K):
    """
    Extended Euclidean algorithm in `F[x]`.

    Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_gcdex

    >>> f = QQ.map([1, -2, -6, 12, 15])
    >>> g = QQ.map([1, 1, -4, -4])

    >>> dup_gcdex(f, g, QQ)
    ([-1/5, 3/5], [1/5, -6/5, 2/1], [1/1, 1/1])

    """
    s, h = dup_half_gcdex(f, g, K)

    F = dup_sub_mul(h, s, f, K)
    t = dup_quo(F, g, K)

    return s, t, h
Esempio n. 8
0
def dup_half_gcdex(f, g, K):
    """
    Half extended Euclidean algorithm in `F[x]`.

    Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.

    Examples
    ========

    >>> from sympy.polys.domains import QQ
    >>> from sympy.polys.euclidtools import dup_half_gcdex

    >>> f = QQ.map([1, -2, -6, 12, 15])
    >>> g = QQ.map([1, 1, -4, -4])

    >>> dup_half_gcdex(f, g, QQ)
    ([-1/5, 3/5], [1/1, 1/1])

    """
    if not (K.has_Field or not K.is_Exact):
        raise DomainError("can't compute half extended GCD over %s" % K)

    a, b = [K.one], []

    while g:
        q, r = dup_div(f, g, K)
        f, g = g, r
        a, b = b, dup_sub_mul(a, q, b, K)

    a = dup_quo_ground(a, dup_LC(f, K), K)
    f = dup_monic(f, K)

    return a, f
Esempio n. 9
0
def test_dup_sub_mul():
    assert dup_sub_mul([ZZ(1), ZZ(2), ZZ(3)], [ZZ(3), ZZ(2), ZZ(1)], [ZZ(1), ZZ(2)], ZZ) == [
        ZZ(-3),
        ZZ(-7),
        ZZ(-3),
        ZZ(1),
    ]
Esempio n. 10
0
def test_dup_sub_mul():
    assert dup_sub_mul([ZZ(1), ZZ(2), ZZ(3)],
                       [ZZ(3), ZZ(2), ZZ(1)], [ZZ(1), ZZ(2)],
                       ZZ) == [ZZ(-3), ZZ(-7), ZZ(-3),
                               ZZ(1)]
    assert dmp_sub_mul([[ZZ(1), ZZ(2)], [ZZ(3)]],
                       [[ZZ(3)], [ZZ(2), ZZ(1)]], [[ZZ(1)], [ZZ(2)]], 1,
                       ZZ) == [[ZZ(-3)], [ZZ(-1), ZZ(-5)], [ZZ(-4),
                                                            ZZ(1)]]
Esempio n. 11
0
def dup_zz_hensel_step(m, f, g, h, s, t, K):
    """
    One step in Hensel lifting in `Z[x]`.

    Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s`
    and `t` such that::

        f == g*h (mod m)
        s*g + t*h == 1 (mod m)

        lc(f) is not a zero divisor (mod m)
        lc(h) == 1

        deg(f) == deg(g) + deg(h)
        deg(s) < deg(h)
        deg(t) < deg(g)

    returns polynomials `G`, `H`, `S` and `T`, such that::

        f == G*H (mod m**2)
        S*G + T**H == 1 (mod m**2)

    References
    ==========

    1. [Gathen99]_

    """
    M = m**2

    e = dup_sub_mul(f, g, h, K)
    e = dup_trunc(e, M, K)

    q, r = dup_div(dup_mul(s, e, K), h, K)

    q = dup_trunc(q, M, K)
    r = dup_trunc(r, M, K)

    u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K)
    G = dup_trunc(dup_add(g, u, K), M, K)
    H = dup_trunc(dup_add(h, r, K), M, K)

    u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K)
    b = dup_trunc(dup_sub(u, [K.one], K), M, K)

    c, d = dup_div(dup_mul(s, b, K), H, K)

    c = dup_trunc(c, M, K)
    d = dup_trunc(d, M, K)

    u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K)
    S = dup_trunc(dup_sub(s, d, K), M, K)
    T = dup_trunc(dup_sub(t, u, K), M, K)

    return G, H, S, T
Esempio n. 12
0
def dup_zz_hensel_step(m, f, g, h, s, t, K):
    """
    One step in Hensel lifting in `Z[x]`.

    Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s`
    and `t` such that::

        f == g*h (mod m)
        s*g + t*h == 1 (mod m)

        lc(f) is not a zero divisor (mod m)
        lc(h) == 1

        deg(f) == deg(g) + deg(h)
        deg(s) < deg(h)
        deg(t) < deg(g)

    returns polynomials `G`, `H`, `S` and `T`, such that::

        f == G*H (mod m**2)
        S*G + T**H == 1 (mod m**2)

    References
    ==========

    1. [Gathen99]_

    """
    M = m**2

    e = dup_sub_mul(f, g, h, K)
    e = dup_trunc(e, M, K)

    q, r = dup_div(dup_mul(s, e, K), h, K)

    q = dup_trunc(q, M, K)
    r = dup_trunc(r, M, K)

    u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K)
    G = dup_trunc(dup_add(g, u, K), M, K)
    H = dup_trunc(dup_add(h, r, K), M, K)

    u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K)
    b = dup_trunc(dup_sub(u, [K.one], K), M, K)

    c, d = dup_div(dup_mul(s, b, K), H, K)

    c = dup_trunc(c, M, K)
    d = dup_trunc(d, M, K)

    u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K)
    S = dup_trunc(dup_sub(s, d, K), M, K)
    T = dup_trunc(dup_sub(t, u, K), M, K)

    return G, H, S, T
Esempio n. 13
0
def test_dup_sub_mul():
    assert dup_sub_mul([ZZ(1),ZZ(2),ZZ(3)], [ZZ(3),ZZ(2),ZZ(1)],
               [ZZ(1),ZZ(2)], ZZ) == [ZZ(-3),ZZ(-7),ZZ(-3), ZZ(1)]
Esempio n. 14
0
def test_dup_sub_mul():
    assert dup_sub_mul([ZZ(1), ZZ(2), ZZ(3)], [ZZ(3), ZZ(2), ZZ(1)],
               [ZZ(1), ZZ(2)], ZZ) == [ZZ(-3), ZZ(-7), ZZ(-3), ZZ(1)]
    assert dmp_sub_mul([[ZZ(1), ZZ(2)], [ZZ(3)]], [[ZZ(3)], [ZZ(2), ZZ(1)]],
               [[ZZ(1)], [ZZ(2)]], 1, ZZ) == [[ZZ(-3)], [ZZ(-1), ZZ(-5)], [ZZ(-4), ZZ(1)]]