def test_chebyshev():
    assert chebyshevt(0, x) == 1
    assert chebyshevt(1, x) == x
    assert chebyshevt(2, x) == 2 * x**2 - 1
    assert chebyshevt(3, x) == 4 * x**3 - 3 * x
    for n in range(1, 4):
        for k in range(n):
            z = chebyshevt_root(n, k)
            assert chebyshevt(n, z) == 0
    for n in range(1, 4):
        for k in range(n):
            z = chebyshevu_root(n, k)
            assert chebyshevu(n, z) == 0
Exemple #2
0
def test_chebyshev():
    assert chebyshevt(0, x) == 1
    assert chebyshevt(1, x) == x
    assert chebyshevt(2, x) == 2*x**2-1
    assert chebyshevt(3, x) == 4*x**3-3*x
    for n in range(1, 4):
        for k in range(n):
            z = chebyshevt_root(n, k)
            assert simplify(chebyshevt(n, z)) == 0
    for n in range(1, 4):
        for k in range(n):
            z = chebyshevu_root(n, k)
            assert simplify(chebyshevu(n, z)) == 0
def test_jacobi():
    n = Symbol("n")
    a = Symbol("a")
    b = Symbol("b")

    assert jacobi(0, a, b, x) == 1
    assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1)

    assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n)*gegenbauer(n, a + S(1)/2, x)/RisingFactorial(2*a + 1, n)
    assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)*
                                   factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1)))
    assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)*
                                   gamma(-b + n + 1)/gamma(n + 1))
    assert jacobi(n, 0, 0, x) == legendre(n, x)
    assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(S(3)/2, n)*chebyshevu(n, x)/factorial(n + 1)
    assert jacobi(n, -S.Half, -S.Half, x) == RisingFactorial(S(1)/2, n)*chebyshevt(n, x)/factorial(n)

    X = jacobi(n, a, b, x)
    assert isinstance(X, jacobi)

    assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x)
    assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1))
    assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n)

    m = Symbol("m", positive=True)
    assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m)

    assert conjugate(jacobi(m, a, b, x)) == jacobi(m, conjugate(a), conjugate(b), conjugate(x))

    assert diff(jacobi(n,a,b,x), n) == Derivative(jacobi(n, a, b, x), n)
    assert diff(jacobi(n,a,b,x), x) == (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x)
Exemple #4
0
def test_manualintegrate_orthogonal_poly():
    n = symbols('n')
    a, b = 7, S(5)/3
    polys = [jacobi(n, a, b, x), gegenbauer(n, a, x), chebyshevt(n, x),
        chebyshevu(n, x), legendre(n, x), hermite(n, x), laguerre(n, x),
        assoc_laguerre(n, a, x)]
    for p in polys:
        integral = manualintegrate(p, x)
        for deg in [-2, -1, 0, 1, 3, 5, 8]:
            # some accept negative "degree", some do not
            try:
                p_subbed = p.subs(n, deg)
            except ValueError:
                continue
            assert (integral.subs(n, deg).diff(x) - p_subbed).expand() == 0

        # can also integrate simple expressions with these polynomials
        q = x*p.subs(x, 2*x + 1)
        integral = manualintegrate(q, x)
        for deg in [2, 4, 7]:
            assert (integral.subs(n, deg).diff(x) - q.subs(n, deg)).expand() == 0

        # cannot integrate with respect to any other parameter
        t = symbols('t')
        for i in range(len(p.args) - 1):
            new_args = list(p.args)
            new_args[i] = t
            assert isinstance(manualintegrate(p.func(*new_args), t), Integral)
 def callback(q, v=0, u = 0, w=0, kind = 0):
     ans = ''
     if kind == 1:
         ans = str(sp.gamma(v))
     elif kind == 2:
         ans = str(sp.gamma(u) * sp.gamma(v) / sp.gamma(u + v))
     elif kind == 3:
         ans = str(functions.Legendre_Polynomials(v))
     elif kind == 4:
         ans = str(sp.assoc_legendre(v, u, x))
     elif kind == 5:
         ans = str(functions.bessel_function_1st(v))
     elif kind == 6:
         ans = str(sp.jacobi(u, v, w, x))
     elif kind == 7:
         ans = str(sp.jacobi_normalized(u, v, w, x))
     elif kind == 8:
         ans = str(sp.gegenbauer(u, v, x))
     elif kind == 9:
         # 1st kind
         ans = str(sp.chebyshevt(u, x))
     elif kind == 10:
         ans = str(sp.chebyshevt_root(u, v))
     elif kind == 11:
         # 2nd kind
         ans = str(sp.chebyshevu(u, x))
     elif kind == 12:
         ans = str(sp.chebyshevu_root(u, v))
     elif kind == 13:
         ans = str(sp.hermite(u, x))
     elif kind == 14:
         ans = str(sp.laguerre(u, x))
     elif kind == 15:
         ans = str(sp.assoc_laguerre(u, v, x))
     q.put(ans)
Exemple #6
0
def test_manualintegrate_orthogonal_poly():
    n = symbols("n")
    a, b = 7, Rational(5, 3)
    polys = [
        jacobi(n, a, b, x),
        gegenbauer(n, a, x),
        chebyshevt(n, x),
        chebyshevu(n, x),
        legendre(n, x),
        hermite(n, x),
        laguerre(n, x),
        assoc_laguerre(n, a, x),
    ]
    for p in polys:
        integral = manualintegrate(p, x)
        for deg in [-2, -1, 0, 1, 3, 5, 8]:
            # some accept negative "degree", some do not
            try:
                p_subbed = p.subs(n, deg)
            except ValueError:
                continue
            assert (integral.subs(n, deg).diff(x) - p_subbed).expand() == 0

        # can also integrate simple expressions with these polynomials
        q = x * p.subs(x, 2 * x + 1)
        integral = manualintegrate(q, x)
        for deg in [2, 4, 7]:
            assert (integral.subs(n, deg).diff(x) - q.subs(n, deg)).expand() == 0

        # cannot integrate with respect to any other parameter
        t = symbols("t")
        for i in range(len(p.args) - 1):
            new_args = list(p.args)
            new_args[i] = t
            assert isinstance(manualintegrate(p.func(*new_args), t), Integral)
Exemple #7
0
def test_jacobi():
    n = Symbol("n")
    a = Symbol("a")
    b = Symbol("b")

    assert jacobi(0, a, b, x) == 1
    assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1)

    assert jacobi(n, a, a, x) == RisingFactorial(
        a + 1, n)*gegenbauer(n, a + S.Half, x)/RisingFactorial(2*a + 1, n)
    assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)*
                                   factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1)))
    assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)*
                                   gamma(-b + n + 1)/gamma(n + 1))
    assert jacobi(n, 0, 0, x) == legendre(n, x)
    assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(
        Rational(3, 2), n)*chebyshevu(n, x)/factorial(n + 1)
    assert jacobi(n, Rational(-1, 2), Rational(-1, 2), x) == RisingFactorial(
        S.Half, n)*chebyshevt(n, x)/factorial(n)

    X = jacobi(n, a, b, x)
    assert isinstance(X, jacobi)

    assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x)
    assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper(
        (-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1))
    assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n)

    m = Symbol("m", positive=True)
    assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m)
    assert unchanged(jacobi, n, a, b, oo)

    assert conjugate(jacobi(m, a, b, x)) == \
        jacobi(m, conjugate(a), conjugate(b), conjugate(x))

    _k = Dummy('k')
    assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n)
    assert diff(jacobi(n, a, b, x), a).dummy_eq(Sum((jacobi(n, a, b, x) +
        (2*_k + a + b + 1)*RisingFactorial(_k + b + 1, -_k + n)*jacobi(_k, a,
        b, x)/((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)))/(_k + a
        + b + n + 1), (_k, 0, n - 1)))
    assert diff(jacobi(n, a, b, x), b).dummy_eq(Sum(((-1)**(-_k + n)*(2*_k +
        a + b + 1)*RisingFactorial(_k + a + 1, -_k + n)*jacobi(_k, a, b, x)/
        ((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)) + jacobi(n, a,
        b, x))/(_k + a + b + n + 1), (_k, 0, n - 1)))
    assert diff(jacobi(n, a, b, x), x) == \
        (a/2 + b/2 + n/2 + S.Half)*jacobi(n - 1, a + 1, b + 1, x)

    assert jacobi_normalized(n, a, b, x) == \
           (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)
                                    /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))))

    raises(ValueError, lambda: jacobi(-2.1, a, b, x))
    raises(ValueError, lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))

    assert jacobi(n, a, b, x).rewrite("polynomial").dummy_eq(Sum((S.Half - x/2)
        **_k*RisingFactorial(-n, _k)*RisingFactorial(_k + a + 1, -_k + n)*
        RisingFactorial(a + b + n + 1, _k)/factorial(_k), (_k, 0, n))/factorial(n))
    raises(ArgumentIndexError, lambda: jacobi(n, a, b, x).fdiff(5))
def test_chebyshev():
    raises(ValueError, 'chebyshevt(-1, x)')
    raises(ValueError, 'chebyshevu(-1, x)')
    assert chebyshevt(0, x) == 1
    assert chebyshevt(1, x) == x
    assert chebyshevt(2, x) == 2*x**2-1
    assert chebyshevt(3, x) == 4*x**3-3*x
    for n in range(1, 4):
        for k in range(n):
            z = chebyshevt_root(n, k)
            assert chebyshevt(n, z) == 0
        raises(ValueError, 'chebyshevt_root(n, n)')
    for n in range(1, 4):
        for k in range(n):
            z = chebyshevu_root(n, k)
            assert chebyshevu(n, z) == 0
        raises(ValueError, 'chebyshevu_root(n, n)')
def test_jacobi():
    n = Symbol("n")
    a = Symbol("a")
    b = Symbol("b")

    assert jacobi(0, a, b, x) == 1
    assert jacobi(1, a, b, x) == a / 2 - b / 2 + x * (a / 2 + b / 2 + 1)

    assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n) * gegenbauer(
        n, a + S(1) / 2, x) / RisingFactorial(2 * a + 1, n)
    assert jacobi(n, a, -a,
                  x) == ((-1)**a * (-x + 1)**(-a / 2) * (x + 1)**(a / 2) *
                         assoc_legendre(n, a, x) * factorial(-a + n) *
                         gamma(a + n + 1) / (factorial(a + n) * gamma(n + 1)))
    assert jacobi(n, -b, b, x) == ((-x + 1)**(b / 2) * (x + 1)**(-b / 2) *
                                   assoc_legendre(n, b, x) *
                                   gamma(-b + n + 1) / gamma(n + 1))
    assert jacobi(n, 0, 0, x) == legendre(n, x)
    assert jacobi(n, S.Half,
                  S.Half, x) == RisingFactorial(S(3) / 2, n) * chebyshevu(
                      n, x) / factorial(n + 1)
    assert jacobi(
        n, -S.Half, -S.Half,
        x) == RisingFactorial(S(1) / 2, n) * chebyshevt(n, x) / factorial(n)

    X = jacobi(n, a, b, x)
    assert isinstance(X, jacobi)

    assert jacobi(n, a, b, -x) == (-1)**n * jacobi(n, b, a, x)
    assert jacobi(n, a, b, 0) == 2**(-n) * gamma(a + n + 1) * hyper(
        (-b - n, -n), (a + 1, ), -1) / (factorial(n) * gamma(a + 1))
    assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n) / factorial(n)

    m = Symbol("m", positive=True)
    assert jacobi(m, a, b, oo) == oo * RisingFactorial(a + b + m + 1, m)

    assert conjugate(jacobi(m, a, b, x)) == \
        jacobi(m, conjugate(a), conjugate(b), conjugate(x))

    assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n)
    assert diff(jacobi(n, a, b, x), x) == \
        (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x)

    assert jacobi_normalized(n, a, b, x) == \
           (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)
                                    /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))))

    raises(ValueError, lambda: jacobi(-2.1, a, b, x))
    raises(ValueError,
           lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))
Exemple #10
0
    Function, TensorProductSpace, FunctionSpace, extract_bc_matrices, comm

# Collect basis and solver from either Chebyshev or Legendre submodules
family = sys.argv[-1].lower() if len(sys.argv) == 2 else 'chebyshev'
base = importlib.import_module('.'.join(('shenfun', family)))
BiharmonicSolver = base.la.Biharmonic

# Use sympy to compute a rhs, given an analytical solution
x, y = symbols("x,y", real=True)
a = 1
b = -1
if family == 'jacobi':
    a = 0
    b = 0
ue = (sin(2 * np.pi * x) * cos(2 * y)) * (1 - x**2) + a * (
    0.5 - 9. / 16. * x + 1. / 16. * chebyshevt(3, x)) + b * (
        0.5 + 9. / 16. * x - 1. / 16. * chebyshevt(3, x))
#ue = (sin(2*np.pi*x)*cos(2*y))*(1-x**2) + a*(0.5-0.6*x+1/10*legendre(3, x)) + b*(0.5+0.6*x-1./10.*legendre(3, x))
fe = ue.diff(x, 4) + ue.diff(y, 4) + 2 * ue.diff(x, 2, y, 2)

# Size of discretization
N = (30, 30)

if family == 'chebyshev':
    assert N[0] % 2 == 0, "Biharmonic solver only implemented for even numbers"

#SD = FunctionSpace(N[0], family=family, bc='Biharmonic')
SD = FunctionSpace(N[0], family=family, bc=(a, b, 0, 0))
K1 = FunctionSpace(N[1], family='F')
T = TensorProductSpace(comm, (SD, K1), axes=(0, 1))
"""
import os
import sympy as sp
import numpy as np
from shenfun import inner, div, grad, TestFunction, TrialFunction, \
    Array, Function, FunctionSpace, dx, legendre, extract_bc_matrices, \
    TensorProductSpace, comm, la

# Use sympy to compute a rhs, given an analytical solution
# Choose a solution with non-zero values

xdomain = (-1, 1)
ydomain = (-1, 1)
x, y = sp.symbols("x,y", real=True)
#ue = sp.cos(2*sp.pi*x)*sp.cos(2*sp.pi*y)
ue = sp.chebyshevt(4, x) * sp.chebyshevt(4, y)
#ue = sp.legendre(4, x)*sp.legendre(4, y)
#ue = x**2 + sp.exp(x+2*y)
#ue = (0.5-x**3)*(0.5-y**3)
#ue = (1-y**2)*sp.sin(2*sp.pi*x)
fe = -ue.diff(x, 2) - ue.diff(y, 2)

# different types of boundary conditions
bcx = [
    {
        'left': ('D', ue.subs(x, xdomain[0])),
        'right': ('D', ue.subs(x, xdomain[1]))
    },
    {
        'left': ('N', ue.diff(x, 1).subs(x, xdomain[0])),
        'right': ('N', ue.diff(x, 1).subs(x, xdomain[1]))
Exemple #12
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == r'f{\left (x \right )}'
    assert latex(f) == r'f'

    g = Function('g')
    assert latex(g(x, y)) == r'g{\left (x,y \right )}'
    assert latex(g) == r'g'

    h = Function('h')
    assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}'
    assert latex(h) == r'h'

    Li = Function('Li')
    assert latex(Li) == r'\operatorname{Li}'
    assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}'

    beta = Function('beta')

    # not to be confused with the beta function
    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(beta) == r"\beta"

    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3,
                                  k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma{\left(x \right)}"
    w = Wild('w')
    assert latex(gamma(w)) == r"\Gamma{\left(w \right)}"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(Order(x, x)) == r"\mathcal{O}\left(x\right)"
    assert latex(Order(x, x, 0)) == r"\mathcal{O}\left(x\right)"
    assert latex(Order(x, x,
                       oo)) == r"\mathcal{O}\left(x; x\rightarrow\infty\right)"
    assert latex(
        Order(x, x, y)
    ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow0\right)"
    assert latex(
        Order(x, x, y, 0)
    ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow0\right)"
    assert latex(
        Order(x, x, y, oo)
    ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow\infty\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x,
                         y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(elliptic_k(z)) == r"K\left(z\right)"
    assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
    assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
    assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(z)) == r"E\left(z\right)"
    assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
    assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y, z)**2) == \
        r"\Pi^{2}\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
    assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'
    assert latex(Chi(x)) == r'\operatorname{Chi}{\left (x \right )}'

    assert latex(jacobi(n, a, b,
                        x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(
        n, a, b,
        x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(gegenbauer(n, a,
                            x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(
        n, a,
        x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(chebyshevt(n,
                            x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(chebyshevu(n,
                            x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_legendre(n, a,
                                x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(
        n, a,
        x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_laguerre(n, a,
                                x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(
        n, a,
        x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    theta = Symbol("theta", real=True)
    phi = Symbol("phi", real=True)
    assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
    assert latex(
        Ynm(n, m, theta,
            phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
    assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
    assert latex(
        Znm(n, m, theta,
            phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0)**
                 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"

    assert latex(totient(n)) == r'\phi\left( n \right)'

    # some unknown function name should get rendered with \operatorname
    fjlkd = Function('fjlkd')
    assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}'
    # even when it is referred to without an argument
    assert latex(fjlkd) == r'\operatorname{fjlkd}'
Exemple #13
0
 def sympy_basis(self, i=0):
     x = sympy.symbols('x')
     return sympy.chebyshevt(i, x)
Exemple #14
0
def test_J13():
    a = symbols('a', integer=True, negative=False)
    assert chebyshevt(a, -1) == (-1)**a
Exemple #15
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == r'f{\left (x \right )}'
    assert latex(f) == r'f'

    g = Function('g')
    assert latex(g(x, y)) == r'g{\left (x,y \right )}'
    assert latex(g) == r'g'

    h = Function('h')
    assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}'
    assert latex(h) == r'h'

    Li = Function('Li')
    assert latex(Li) == r'\operatorname{Li}'
    assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}'

    beta = Function('beta')

    # not to be confused with the beta function
    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(beta) == r"\beta"

    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(
        FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(
        polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(elliptic_k(z)) == r"K\left(z\right)"
    assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
    assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
    assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
    assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
    assert latex(elliptic_e(z)) == r"E\left(z\right)"
    assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
    assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y, z)**2) == \
        r"\Pi^{2}\left(x; y\middle| z\right)"
    assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
    assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}', latex(Chi(x)**2)

    assert latex(
        jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(
        gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(
        chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(
        chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(
        assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    theta = Symbol("theta", real=True)
    phi = Symbol("phi", real=True)
    assert latex(Ynm(n,m,theta,phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Ynm(n, m, theta, phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
    assert latex(Znm(n,m,theta,phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
    assert latex(Znm(n, m, theta, phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(
        0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"

    assert latex(totient(n)) == r'\phi\left( n \right)'

    # some unknown function name should get rendered with \operatorname
    fjlkd = Function('fjlkd')
    assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}'
    # even when it is referred to without an argument
    assert latex(fjlkd) == r'\operatorname{fjlkd}'
Exemple #16
0
def test_J12():
    skip('takes too much time')
    assert simplify(
        chebyshevt(1008, x) - 2 * x * chebyshevt(1007, x) +
        chebyshevt(1006, x)) == 0
def test_chebyshev():

    assert chebyshevt(0, x) == 1
    assert chebyshevt(1, x) == x
    assert chebyshevt(2, x) == 2*x**2 - 1
    assert chebyshevt(3, x) == 4*x**3 - 3*x

    for n in range(1, 4):
        for k in range(n):
            z = chebyshevt_root(n, k)
            assert chebyshevt(n, z) == 0
        raises(ValueError, lambda: chebyshevt_root(n, n))

    for n in range(1, 4):
        for k in range(n):
            z = chebyshevu_root(n, k)
            assert chebyshevu(n, z) == 0
        raises(ValueError, lambda: chebyshevu_root(n, n))

    n = Symbol("n")
    X = chebyshevt(n, x)
    assert isinstance(X, chebyshevt)
    assert chebyshevt(n, -x) == (-1)**n*chebyshevt(n, x)
    assert chebyshevt(-n, x) == chebyshevt(n, x)

    assert chebyshevt(n, 0) == cos(pi*n/2)
    assert chebyshevt(n, 1) == 1

    assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x))

    assert diff(chebyshevt(n, x), x) == n*chebyshevu(n - 1, x)

    X = chebyshevu(n, x)
    assert isinstance(X, chebyshevu)

    assert chebyshevu(n, -x) == (-1)**n*chebyshevu(n, x)
    assert chebyshevu(-n, x) == -chebyshevu(n - 2, x)

    assert chebyshevu(n, 0) == cos(pi*n/2)
    assert chebyshevu(n, 1) == n + 1

    assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x))

    assert diff(chebyshevu(n, x), x) == \
        (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
Exemple #18
0
def test_J13():
    a = Symbol("a", integer=True, negative=False)
    assert chebyshevt(a, -1) == (-1)**a
Exemple #19
0
from shenfun import inner, div, grad, TestFunction, TrialFunction, Array, \
    Function, TensorProductSpace, FunctionSpace, comm, la

# Collect basis and solver from either Chebyshev or Legendre submodules
family = sys.argv[-1].lower() if len(sys.argv) == 2 else 'chebyshev'
base = importlib.import_module('.'.join(('shenfun', family)))
BiharmonicSolver = base.la.Biharmonic

# Use sympy to compute a rhs, given an analytical solution
x, y = symbols("x,y", real=True)
a = 1
b = -1
if family == 'jacobi':
    a = 0
    b = 0
ue = (sin(2*pi*x))*(1-x**2) + a*(1/2-9/16*x+1/16*chebyshevt(3, x)) + b*(1/2+9/16*x-1/16*chebyshevt(3, x))
#ue = (sin(2*np.pi*x)*cos(2*y))*(1-x**2) + a*(0.5-0.6*x+1/10*legendre(3, x)) + b*(0.5+0.6*x-1./10.*legendre(3, x))
fe = ue.diff(x, 4) + ue.diff(y, 4) + 2*ue.diff(x, 2, y, 2)

# Size of discretization
N = (30, 30)

if family == 'chebyshev':
    assert N[0] % 2 == 0, "Biharmonic solver only implemented for even numbers"

bcs = (ue.subs(x, -1), ue.subs(x, 1), ue.diff(x, 1).subs(x, -1), ue.diff(x, 1).subs(x, 1))
#SD = FunctionSpace(N[0], family=family, bc='Biharmonic')
SD = FunctionSpace(N[0], family=family, bc=bcs)
K1 = FunctionSpace(N[1], family='F')
T = TensorProductSpace(comm, (SD, K1), axes=(0, 1))
Exemple #20
0
 def sympy_basis(self, i=0):
     x = sympy.symbols('x')
     return sympy.chebyshevt(i, x) - (i/(i+2))**2*sympy.chebyshevt(i+2, x)
Exemple #21
0
Solver = base.la.Biharmonic

# Use sympy to compute a rhs, given an analytical solution
# Allow for a non-standard domain. Reference domain is (-1, 1)
domain = (-1., 2.)
d = 2. / (domain[1] - domain[0])
x = symbols("x")
x_map = -1 + (x - domain[0]) * d
a = 1
b = -1
if family == 'jacobi':
    a = 0
    b = 0
# Manufactured solution that satisfies (u(\pm 1) = u'(\pm 1) = 0)
ue = sin(4 * np.pi * x_map) * (x_map - 1) * (x_map + 1) + a * (
    0.5 - 9. / 16. * x_map + 1. / 16. * chebyshevt(3, x_map)) + b * (
        0.5 + 9. / 16. * x_map - 1. / 16. * chebyshevt(3, x_map))

# Use coefficients typical for Navier-Stokes solver for channel (https://github.com/spectralDNS/spectralDNS/blob/master/spectralDNS/solvers/KMM.py)
k = 8
nu = 1. / 590.
dt = 5e-5
cc = -(k**2 + nu * dt / 2 * k**4)
bb = 1.0 + nu * dt * k**2
aa = -nu * dt / 2.
fe = aa * ue.diff(x, 4) + bb * ue.diff(x, 2) + cc * ue

# Size of discretization
N = int(sys.argv[-2])

SD = Basis(N, family=family, bc=(a, b, 0, 0), domain=domain)
Exemple #22
0
base = importlib.import_module('.'.join(('shenfun', family)))
Solver = base.la.Biharmonic

# Use sympy to compute a rhs, given an analytical solution
# Allow for a non-standard domain. Reference domain is (-1, 1)
domain = (-1., 1.)
d = 2./(domain[1]-domain[0])
x = symbols("x", real=True)
x_map = -1+(x-domain[0])*d
a = 0
b = -0
if family == 'jacobi':
    a = 0
    b = 0
# Manufactured solution that satisfies (u(\pm 1) = u'(\pm 1) = 0)
ue = sin(4*np.pi*x_map)*(x_map-1)*(x_map+1) + a*(0.5-9./16.*x_map+1./16.*chebyshevt(3, x_map)) + b*(0.5+9./16.*x_map-1./16.*chebyshevt(3, x_map))

# Use coefficients typical for Navier-Stokes solver for channel (https://github.com/spectralDNS/spectralDNS/blob/master/spectralDNS/solvers/KMM.py)
k = 8
nu = 1./590.
dt = 5e-5
cc = -(k**2+nu*dt/2*k**4)
bb = 1.0+nu*dt*k**2
aa = -nu*dt/2.
fe = aa*ue.diff(x, 4) + bb*ue.diff(x, 2) + cc*ue

# Size of discretization
N = int(sys.argv[-2])

SD = FunctionSpace(N, family=family, bc=(a, b, 0, 0), domain=domain, basis=basis)
X = SD.mesh()
Exemple #23
0
def test_J12():
    assert simplify(
        chebyshevt(1008, x) - 2 * x * chebyshevt(1007, x) +
        chebyshevt(1006, x)) == 0
Exemple #24
0
def test_J13():
    a = symbols('a', integer=True, negative=False)
    assert chebyshevt(a, -1) == (-1)**a
Exemple #25
0
def test_J13():
    a = Symbol("a", integer=True, negative=False)
    assert chebyshevt(a, -1) == (-1)**a
Exemple #26
0
def test_J12():
    assert simplify(chebyshevt(1008, x) - 2*x*chebyshevt(1007, x) + chebyshevt(1006, x)) == 0
def test_chebyshev():

    assert chebyshevt(0, x) == 1
    assert chebyshevt(1, x) == x
    assert chebyshevt(2, x) == 2 * x**2 - 1
    assert chebyshevt(3, x) == 4 * x**3 - 3 * x

    for n in range(1, 4):
        for k in range(n):
            z = chebyshevt_root(n, k)
            assert chebyshevt(n, z) == 0
        raises(ValueError, lambda: chebyshevt_root(n, n))

    for n in range(1, 4):
        for k in range(n):
            z = chebyshevu_root(n, k)
            assert chebyshevu(n, z) == 0
        raises(ValueError, lambda: chebyshevu_root(n, n))

    n = Symbol("n")
    X = chebyshevt(n, x)
    assert isinstance(X, chebyshevt)
    assert chebyshevt(n, -x) == (-1)**n * chebyshevt(n, x)
    assert chebyshevt(-n, x) == chebyshevt(n, x)

    assert chebyshevt(n, 0) == cos(pi * n / 2)
    assert chebyshevt(n, 1) == 1

    assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x))

    assert diff(chebyshevt(n, x), x) == n * chebyshevu(n - 1, x)

    X = chebyshevu(n, x)
    assert isinstance(X, chebyshevu)

    assert chebyshevu(n, -x) == (-1)**n * chebyshevu(n, x)
    assert chebyshevu(-n, x) == -chebyshevu(n - 2, x)

    assert chebyshevu(n, 0) == cos(pi * n / 2)
    assert chebyshevu(n, 1) == n + 1

    assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x))

    assert diff(chebyshevu(n, x), x) == \
        (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
Exemple #28
0
def test_chebyshev():
    assert chebyshevt(0, x) == 1
    assert chebyshevt(1, x) == x
    assert chebyshevt(2, x) == 2*x**2 - 1
    assert chebyshevt(3, x) == 4*x**3 - 3*x

    for n in range(1, 4):
        for k in range(n):
            z = chebyshevt_root(n, k)
            assert chebyshevt(n, z) == 0
        raises(ValueError, lambda: chebyshevt_root(n, n))

    for n in range(1, 4):
        for k in range(n):
            z = chebyshevu_root(n, k)
            assert chebyshevu(n, z) == 0
        raises(ValueError, lambda: chebyshevu_root(n, n))

    n = Symbol("n")
    X = chebyshevt(n, x)
    assert isinstance(X, chebyshevt)
    assert unchanged(chebyshevt, n, x)
    assert chebyshevt(n, -x) == (-1)**n*chebyshevt(n, x)
    assert chebyshevt(-n, x) == chebyshevt(n, x)

    assert chebyshevt(n, 0) == cos(pi*n/2)
    assert chebyshevt(n, 1) == 1
    assert chebyshevt(n, oo) is oo

    assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x))

    assert diff(chebyshevt(n, x), x) == n*chebyshevu(n - 1, x)

    X = chebyshevu(n, x)
    assert isinstance(X, chebyshevu)

    y = Symbol('y')
    assert chebyshevu(n, -x) == (-1)**n*chebyshevu(n, x)
    assert chebyshevu(-n, x) == -chebyshevu(n - 2, x)
    assert unchanged(chebyshevu, -n + y, x)

    assert chebyshevu(n, 0) == cos(pi*n/2)
    assert chebyshevu(n, 1) == n + 1
    assert chebyshevu(n, oo) is oo

    assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x))

    assert diff(chebyshevu(n, x), x) == \
        (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)

    _k = Dummy('k')
    assert chebyshevt(n, x).rewrite("polynomial").dummy_eq(Sum(x**(-2*_k + n)
                    *(x**2 - 1)**_k*binomial(n, 2*_k), (_k, 0, floor(n/2))))
    assert chebyshevu(n, x).rewrite("polynomial").dummy_eq(Sum((-1)**_k*(2*x)
                    **(-2*_k + n)*factorial(-_k + n)/(factorial(_k)*
                       factorial(-2*_k + n)), (_k, 0, floor(n/2))))
    raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(1))
    raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(3))
    raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(1))
    raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(3))
Exemple #29
0
 def sympy_basis(self, i=0):
     x = sympy.symbols('x')
     return sympy.chebyshevt(i, x) - (2*(i+2)/(i+3))*sympy.chebyshevt(i+2, x) + (i+1)/(i+3)*sympy.chebyshevt(i+4, x)
Exemple #30
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function("f")
    assert latex(f(x)) == "\\operatorname{f}{\\left (x \\right )}"

    beta = Function("beta")

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2 * x ** 2), fold_func_brackets=True) == r"\sin {2 x^{2}}"
    assert latex(sin(x ** 2), fold_func_brackets=True) == r"\sin {x^{2}}"

    assert latex(asin(x) ** 2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x) ** 2, inv_trig_style="full") == r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x) ** 2, inv_trig_style="power") == r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x ** 2), inv_trig_style="power", fold_func_brackets=True) == r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x ** 3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y) ** 2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x ** 3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y) ** 2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r"\gamma\left(x, y\right)"
    assert latex(uppergamma(x, y)) == r"\Gamma\left(x, y\right)"

    assert latex(cot(x)) == r"\cot{\left (x \right )}"
    assert latex(coth(x)) == r"\coth{\left (x \right )}"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(root(x, y)) == r"x^{\frac{1}{y}}"
    assert latex(arg(x)) == r"\arg{\left (x \right )}"
    assert latex(zeta(x)) == r"\zeta\left(x\right)"

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x) ** 2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y) ** 2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x) ** 2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x, y) ** 2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n) ** 2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r"\operatorname{Ei}{\left (x \right )}"
    assert latex(Ei(x) ** 2) == r"\operatorname{Ei}^{2}{\left (x \right )}"
    assert latex(expint(x, y) ** 2) == r"\operatorname{E}_{x}^{2}\left(y\right)"
    assert latex(Shi(x) ** 2) == r"\operatorname{Shi}^{2}{\left (x \right )}"
    assert latex(Si(x) ** 2) == r"\operatorname{Si}^{2}{\left (x \right )}"
    assert latex(Ci(x) ** 2) == r"\operatorname{Ci}^{2}{\left (x \right )}"
    assert latex(Chi(x) ** 2) == r"\operatorname{Chi}^{2}{\left (x \right )}"

    assert latex(jacobi(n, a, b, x)) == r"P_{n}^{\left(a,b\right)}\left(x\right)"
    assert latex(jacobi(n, a, b, x) ** 2) == r"\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}"
    assert latex(gegenbauer(n, a, x)) == r"C_{n}^{\left(a\right)}\left(x\right)"
    assert latex(gegenbauer(n, a, x) ** 2) == r"\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(chebyshevt(n, x)) == r"T_{n}\left(x\right)"
    assert latex(chebyshevt(n, x) ** 2) == r"\left(T_{n}\left(x\right)\right)^{2}"
    assert latex(chebyshevu(n, x)) == r"U_{n}\left(x\right)"
    assert latex(chebyshevu(n, x) ** 2) == r"\left(U_{n}\left(x\right)\right)^{2}"
    assert latex(legendre(n, x)) == r"P_{n}\left(x\right)"
    assert latex(legendre(n, x) ** 2) == r"\left(P_{n}\left(x\right)\right)^{2}"
    assert latex(assoc_legendre(n, a, x)) == r"P_{n}^{\left(a\right)}\left(x\right)"
    assert latex(assoc_legendre(n, a, x) ** 2) == r"\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(laguerre(n, x)) == r"L_{n}\left(x\right)"
    assert latex(laguerre(n, x) ** 2) == r"\left(L_{n}\left(x\right)\right)^{2}"
    assert latex(assoc_laguerre(n, a, x)) == r"L_{n}^{\left(a\right)}\left(x\right)"
    assert latex(assoc_laguerre(n, a, x) ** 2) == r"\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}"
    assert latex(hermite(n, x)) == r"H_{n}\left(x\right)"
    assert latex(hermite(n, x) ** 2) == r"\left(H_{n}\left(x\right)\right)^{2}"

    # Test latex printing of function names with "_"
    assert latex(polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0) ** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
Exemple #31
0
def max_rE_gains_2d(order, numeric=True):
    """Deprecated."""
    max_rE = np.max(
        [sp.chebyshevt_root(order + 1, i) for i in range(order + 1)])
    return [sp.chebyshevt(n, max_rE) for n in range(order + 1)]
Exemple #32
0
def test_latex_functions():
    assert latex(exp(x)) == "e^{x}"
    assert latex(exp(1) + exp(2)) == "e + e^{2}"

    f = Function('f')
    assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}'

    beta = Function('beta')

    assert latex(beta(x)) == r"\beta{\left (x \right )}"
    assert latex(sin(x)) == r"\sin{\left (x \right )}"
    assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
    assert latex(sin(2*x**2), fold_func_brackets=True) == \
        r"\sin {2 x^{2}}"
    assert latex(sin(x**2), fold_func_brackets=True) == \
        r"\sin {x^{2}}"

    assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="full") == \
        r"\arcsin^{2}{\left (x \right )}"
    assert latex(asin(x)**2, inv_trig_style="power") == \
        r"\sin^{-1}{\left (x \right )}^{2}"
    assert latex(asin(x**2), inv_trig_style="power",
                 fold_func_brackets=True) == \
        r"\sin^{-1} {x^{2}}"

    assert latex(factorial(k)) == r"k!"
    assert latex(factorial(-k)) == r"\left(- k\right)!"

    assert latex(subfactorial(k)) == r"!k"
    assert latex(subfactorial(-k)) == r"!\left(- k\right)"

    assert latex(factorial2(k)) == r"k!!"
    assert latex(factorial2(-k)) == r"\left(- k\right)!!"

    assert latex(binomial(2, k)) == r"{\binom{2}{k}}"

    assert latex(FallingFactorial(3,
                                  k)) == r"{\left(3\right)}_{\left(k\right)}"
    assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}"

    assert latex(floor(x)) == r"\lfloor{x}\rfloor"
    assert latex(ceiling(x)) == r"\lceil{x}\rceil"
    assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
    assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
    assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
    assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
    assert latex(Abs(x)) == r"\lvert{x}\rvert"
    assert latex(re(x)) == r"\Re{x}"
    assert latex(re(x + y)) == r"\Re{x} + \Re{y}"
    assert latex(im(x)) == r"\Im{x}"
    assert latex(conjugate(x)) == r"\overline{x}"
    assert latex(gamma(x)) == r"\Gamma\left(x\right)"
    assert latex(Order(x)) == r"\mathcal{O}\left(x\right)"
    assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
    assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'

    assert latex(cot(x)) == r'\cot{\left (x \right )}'
    assert latex(coth(x)) == r'\coth{\left (x \right )}'
    assert latex(re(x)) == r'\Re{x}'
    assert latex(im(x)) == r'\Im{x}'
    assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
    assert latex(arg(x)) == r'\arg{\left (x \right )}'
    assert latex(zeta(x)) == r'\zeta\left(x\right)'

    assert latex(zeta(x)) == r"\zeta\left(x\right)"
    assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
    assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
    assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
    assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
    assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
    assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
    assert latex(polylog(x,
                         y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
    assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
    assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"

    assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}'
    assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}'
    assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
    assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}'
    assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}'
    assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}'
    assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}'

    assert latex(jacobi(n, a, b,
                        x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)'
    assert latex(jacobi(
        n, a, b,
        x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
    assert latex(gegenbauer(n, a,
                            x)) == r'C_{n}^{\left(a\right)}\left(x\right)'
    assert latex(gegenbauer(
        n, a,
        x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
    assert latex(chebyshevt(n,
                            x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}'
    assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
    assert latex(chebyshevu(n,
                            x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}'
    assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
    assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_legendre(n, a,
                                x)) == r'P_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_legendre(
        n, a,
        x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
    assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
    assert latex(assoc_laguerre(n, a,
                                x)) == r'L_{n}^{\left(a\right)}\left(x\right)'
    assert latex(assoc_laguerre(
        n, a,
        x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
    assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
    assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'

    # Test latex printing of function names with "_"
    assert latex(
        polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}"
    assert latex(polar_lift(0)**
                 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
Exemple #33
0
def test_J12():
    skip('takes too much time')
    assert simplify(chebyshevt(1008,x) - 2*x*chebyshevt(1007,x) + chebyshevt(1006,x)) == 0