def test_chebyshev(): assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2 * x**2 - 1 assert chebyshevt(3, x) == 4 * x**3 - 3 * x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert chebyshevt(n, z) == 0 for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert chebyshevu(n, z) == 0
def test_chebyshev(): assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2*x**2-1 assert chebyshevt(3, x) == 4*x**3-3*x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert simplify(chebyshevt(n, z)) == 0 for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert simplify(chebyshevu(n, z)) == 0
def test_jacobi(): n = Symbol("n") a = Symbol("a") b = Symbol("b") assert jacobi(0, a, b, x) == 1 assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1) assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n)*gegenbauer(n, a + S(1)/2, x)/RisingFactorial(2*a + 1, n) assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)* factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1))) assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)* gamma(-b + n + 1)/gamma(n + 1)) assert jacobi(n, 0, 0, x) == legendre(n, x) assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(S(3)/2, n)*chebyshevu(n, x)/factorial(n + 1) assert jacobi(n, -S.Half, -S.Half, x) == RisingFactorial(S(1)/2, n)*chebyshevt(n, x)/factorial(n) X = jacobi(n, a, b, x) assert isinstance(X, jacobi) assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x) assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1)) assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n) m = Symbol("m", positive=True) assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m) assert conjugate(jacobi(m, a, b, x)) == jacobi(m, conjugate(a), conjugate(b), conjugate(x)) assert diff(jacobi(n,a,b,x), n) == Derivative(jacobi(n, a, b, x), n) assert diff(jacobi(n,a,b,x), x) == (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x)
def test_manualintegrate_orthogonal_poly(): n = symbols('n') a, b = 7, S(5)/3 polys = [jacobi(n, a, b, x), gegenbauer(n, a, x), chebyshevt(n, x), chebyshevu(n, x), legendre(n, x), hermite(n, x), laguerre(n, x), assoc_laguerre(n, a, x)] for p in polys: integral = manualintegrate(p, x) for deg in [-2, -1, 0, 1, 3, 5, 8]: # some accept negative "degree", some do not try: p_subbed = p.subs(n, deg) except ValueError: continue assert (integral.subs(n, deg).diff(x) - p_subbed).expand() == 0 # can also integrate simple expressions with these polynomials q = x*p.subs(x, 2*x + 1) integral = manualintegrate(q, x) for deg in [2, 4, 7]: assert (integral.subs(n, deg).diff(x) - q.subs(n, deg)).expand() == 0 # cannot integrate with respect to any other parameter t = symbols('t') for i in range(len(p.args) - 1): new_args = list(p.args) new_args[i] = t assert isinstance(manualintegrate(p.func(*new_args), t), Integral)
def callback(q, v=0, u = 0, w=0, kind = 0): ans = '' if kind == 1: ans = str(sp.gamma(v)) elif kind == 2: ans = str(sp.gamma(u) * sp.gamma(v) / sp.gamma(u + v)) elif kind == 3: ans = str(functions.Legendre_Polynomials(v)) elif kind == 4: ans = str(sp.assoc_legendre(v, u, x)) elif kind == 5: ans = str(functions.bessel_function_1st(v)) elif kind == 6: ans = str(sp.jacobi(u, v, w, x)) elif kind == 7: ans = str(sp.jacobi_normalized(u, v, w, x)) elif kind == 8: ans = str(sp.gegenbauer(u, v, x)) elif kind == 9: # 1st kind ans = str(sp.chebyshevt(u, x)) elif kind == 10: ans = str(sp.chebyshevt_root(u, v)) elif kind == 11: # 2nd kind ans = str(sp.chebyshevu(u, x)) elif kind == 12: ans = str(sp.chebyshevu_root(u, v)) elif kind == 13: ans = str(sp.hermite(u, x)) elif kind == 14: ans = str(sp.laguerre(u, x)) elif kind == 15: ans = str(sp.assoc_laguerre(u, v, x)) q.put(ans)
def test_manualintegrate_orthogonal_poly(): n = symbols("n") a, b = 7, Rational(5, 3) polys = [ jacobi(n, a, b, x), gegenbauer(n, a, x), chebyshevt(n, x), chebyshevu(n, x), legendre(n, x), hermite(n, x), laguerre(n, x), assoc_laguerre(n, a, x), ] for p in polys: integral = manualintegrate(p, x) for deg in [-2, -1, 0, 1, 3, 5, 8]: # some accept negative "degree", some do not try: p_subbed = p.subs(n, deg) except ValueError: continue assert (integral.subs(n, deg).diff(x) - p_subbed).expand() == 0 # can also integrate simple expressions with these polynomials q = x * p.subs(x, 2 * x + 1) integral = manualintegrate(q, x) for deg in [2, 4, 7]: assert (integral.subs(n, deg).diff(x) - q.subs(n, deg)).expand() == 0 # cannot integrate with respect to any other parameter t = symbols("t") for i in range(len(p.args) - 1): new_args = list(p.args) new_args[i] = t assert isinstance(manualintegrate(p.func(*new_args), t), Integral)
def test_jacobi(): n = Symbol("n") a = Symbol("a") b = Symbol("b") assert jacobi(0, a, b, x) == 1 assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1) assert jacobi(n, a, a, x) == RisingFactorial( a + 1, n)*gegenbauer(n, a + S.Half, x)/RisingFactorial(2*a + 1, n) assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)* factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1))) assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)* gamma(-b + n + 1)/gamma(n + 1)) assert jacobi(n, 0, 0, x) == legendre(n, x) assert jacobi(n, S.Half, S.Half, x) == RisingFactorial( Rational(3, 2), n)*chebyshevu(n, x)/factorial(n + 1) assert jacobi(n, Rational(-1, 2), Rational(-1, 2), x) == RisingFactorial( S.Half, n)*chebyshevt(n, x)/factorial(n) X = jacobi(n, a, b, x) assert isinstance(X, jacobi) assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x) assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper( (-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1)) assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n) m = Symbol("m", positive=True) assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m) assert unchanged(jacobi, n, a, b, oo) assert conjugate(jacobi(m, a, b, x)) == \ jacobi(m, conjugate(a), conjugate(b), conjugate(x)) _k = Dummy('k') assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n) assert diff(jacobi(n, a, b, x), a).dummy_eq(Sum((jacobi(n, a, b, x) + (2*_k + a + b + 1)*RisingFactorial(_k + b + 1, -_k + n)*jacobi(_k, a, b, x)/((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)))/(_k + a + b + n + 1), (_k, 0, n - 1))) assert diff(jacobi(n, a, b, x), b).dummy_eq(Sum(((-1)**(-_k + n)*(2*_k + a + b + 1)*RisingFactorial(_k + a + 1, -_k + n)*jacobi(_k, a, b, x)/ ((-_k + n)*RisingFactorial(_k + a + b + 1, -_k + n)) + jacobi(n, a, b, x))/(_k + a + b + n + 1), (_k, 0, n - 1))) assert diff(jacobi(n, a, b, x), x) == \ (a/2 + b/2 + n/2 + S.Half)*jacobi(n - 1, a + 1, b + 1, x) assert jacobi_normalized(n, a, b, x) == \ (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1) /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1)))) raises(ValueError, lambda: jacobi(-2.1, a, b, x)) raises(ValueError, lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo)) assert jacobi(n, a, b, x).rewrite("polynomial").dummy_eq(Sum((S.Half - x/2) **_k*RisingFactorial(-n, _k)*RisingFactorial(_k + a + 1, -_k + n)* RisingFactorial(a + b + n + 1, _k)/factorial(_k), (_k, 0, n))/factorial(n)) raises(ArgumentIndexError, lambda: jacobi(n, a, b, x).fdiff(5))
def test_chebyshev(): raises(ValueError, 'chebyshevt(-1, x)') raises(ValueError, 'chebyshevu(-1, x)') assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2*x**2-1 assert chebyshevt(3, x) == 4*x**3-3*x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert chebyshevt(n, z) == 0 raises(ValueError, 'chebyshevt_root(n, n)') for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert chebyshevu(n, z) == 0 raises(ValueError, 'chebyshevu_root(n, n)')
def test_jacobi(): n = Symbol("n") a = Symbol("a") b = Symbol("b") assert jacobi(0, a, b, x) == 1 assert jacobi(1, a, b, x) == a / 2 - b / 2 + x * (a / 2 + b / 2 + 1) assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n) * gegenbauer( n, a + S(1) / 2, x) / RisingFactorial(2 * a + 1, n) assert jacobi(n, a, -a, x) == ((-1)**a * (-x + 1)**(-a / 2) * (x + 1)**(a / 2) * assoc_legendre(n, a, x) * factorial(-a + n) * gamma(a + n + 1) / (factorial(a + n) * gamma(n + 1))) assert jacobi(n, -b, b, x) == ((-x + 1)**(b / 2) * (x + 1)**(-b / 2) * assoc_legendre(n, b, x) * gamma(-b + n + 1) / gamma(n + 1)) assert jacobi(n, 0, 0, x) == legendre(n, x) assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(S(3) / 2, n) * chebyshevu( n, x) / factorial(n + 1) assert jacobi( n, -S.Half, -S.Half, x) == RisingFactorial(S(1) / 2, n) * chebyshevt(n, x) / factorial(n) X = jacobi(n, a, b, x) assert isinstance(X, jacobi) assert jacobi(n, a, b, -x) == (-1)**n * jacobi(n, b, a, x) assert jacobi(n, a, b, 0) == 2**(-n) * gamma(a + n + 1) * hyper( (-b - n, -n), (a + 1, ), -1) / (factorial(n) * gamma(a + 1)) assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n) / factorial(n) m = Symbol("m", positive=True) assert jacobi(m, a, b, oo) == oo * RisingFactorial(a + b + m + 1, m) assert conjugate(jacobi(m, a, b, x)) == \ jacobi(m, conjugate(a), conjugate(b), conjugate(x)) assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n) assert diff(jacobi(n, a, b, x), x) == \ (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x) assert jacobi_normalized(n, a, b, x) == \ (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1) /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1)))) raises(ValueError, lambda: jacobi(-2.1, a, b, x)) raises(ValueError, lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo))
Function, TensorProductSpace, FunctionSpace, extract_bc_matrices, comm # Collect basis and solver from either Chebyshev or Legendre submodules family = sys.argv[-1].lower() if len(sys.argv) == 2 else 'chebyshev' base = importlib.import_module('.'.join(('shenfun', family))) BiharmonicSolver = base.la.Biharmonic # Use sympy to compute a rhs, given an analytical solution x, y = symbols("x,y", real=True) a = 1 b = -1 if family == 'jacobi': a = 0 b = 0 ue = (sin(2 * np.pi * x) * cos(2 * y)) * (1 - x**2) + a * ( 0.5 - 9. / 16. * x + 1. / 16. * chebyshevt(3, x)) + b * ( 0.5 + 9. / 16. * x - 1. / 16. * chebyshevt(3, x)) #ue = (sin(2*np.pi*x)*cos(2*y))*(1-x**2) + a*(0.5-0.6*x+1/10*legendre(3, x)) + b*(0.5+0.6*x-1./10.*legendre(3, x)) fe = ue.diff(x, 4) + ue.diff(y, 4) + 2 * ue.diff(x, 2, y, 2) # Size of discretization N = (30, 30) if family == 'chebyshev': assert N[0] % 2 == 0, "Biharmonic solver only implemented for even numbers" #SD = FunctionSpace(N[0], family=family, bc='Biharmonic') SD = FunctionSpace(N[0], family=family, bc=(a, b, 0, 0)) K1 = FunctionSpace(N[1], family='F') T = TensorProductSpace(comm, (SD, K1), axes=(0, 1))
""" import os import sympy as sp import numpy as np from shenfun import inner, div, grad, TestFunction, TrialFunction, \ Array, Function, FunctionSpace, dx, legendre, extract_bc_matrices, \ TensorProductSpace, comm, la # Use sympy to compute a rhs, given an analytical solution # Choose a solution with non-zero values xdomain = (-1, 1) ydomain = (-1, 1) x, y = sp.symbols("x,y", real=True) #ue = sp.cos(2*sp.pi*x)*sp.cos(2*sp.pi*y) ue = sp.chebyshevt(4, x) * sp.chebyshevt(4, y) #ue = sp.legendre(4, x)*sp.legendre(4, y) #ue = x**2 + sp.exp(x+2*y) #ue = (0.5-x**3)*(0.5-y**3) #ue = (1-y**2)*sp.sin(2*sp.pi*x) fe = -ue.diff(x, 2) - ue.diff(y, 2) # different types of boundary conditions bcx = [ { 'left': ('D', ue.subs(x, xdomain[0])), 'right': ('D', ue.subs(x, xdomain[1])) }, { 'left': ('N', ue.diff(x, 1).subs(x, xdomain[0])), 'right': ('N', ue.diff(x, 1).subs(x, xdomain[1]))
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == r'f{\left (x \right )}' assert latex(f) == r'f' g = Function('g') assert latex(g(x, y)) == r'g{\left (x,y \right )}' assert latex(g) == r'g' h = Function('h') assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}' assert latex(h) == r'h' Li = Function('Li') assert latex(Li) == r'\operatorname{Li}' assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}' beta = Function('beta') # not to be confused with the beta function assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(beta) == r"\beta" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(subfactorial(k)) == r"!k" assert latex(subfactorial(-k)) == r"!\left(- k\right)" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}" assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x + y)) == r"\Re{x} + \Re{y}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma{\left(x \right)}" w = Wild('w') assert latex(gamma(w)) == r"\Gamma{\left(w \right)}" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(Order(x, x)) == r"\mathcal{O}\left(x\right)" assert latex(Order(x, x, 0)) == r"\mathcal{O}\left(x\right)" assert latex(Order(x, x, oo)) == r"\mathcal{O}\left(x; x\rightarrow\infty\right)" assert latex( Order(x, x, y) ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow0\right)" assert latex( Order(x, x, y, 0) ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow0\right)" assert latex( Order(x, x, y, oo) ) == r"\mathcal{O}\left(x; \begin{pmatrix}x, & y\end{pmatrix}\rightarrow\infty\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left (x \right )}' assert latex(coth(x)) == r'\coth{\left (x \right )}' assert latex(re(x)) == r'\Re{x}' assert latex(im(x)) == r'\Im{x}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left (x \right )}' assert latex(zeta(x)) == r'\zeta\left(x\right)' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex(polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(elliptic_k(z)) == r"K\left(z\right)" assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)" assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)" assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)" assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)" assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)" assert latex(elliptic_e(z)) == r"E\left(z\right)" assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)" assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y, z)**2) == \ r"\Pi^{2}\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)" assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}' assert latex(Chi(x)) == r'\operatorname{Chi}{\left (x \right )}' assert latex(jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)' assert latex(jacobi( n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}' assert latex(gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)' assert latex(gegenbauer( n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)' assert latex(chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}' assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)' assert latex(chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}' assert latex(legendre(n, x)) == r'P_{n}\left(x\right)' assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}' assert latex(assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_legendre( n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)' assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}' assert latex(assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_laguerre( n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(hermite(n, x)) == r'H_{n}\left(x\right)' assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}' theta = Symbol("theta", real=True) phi = Symbol("phi", real=True) assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)' assert latex( Ynm(n, m, theta, phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}' assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)' assert latex( Znm(n, m, theta, phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}' # Test latex printing of function names with "_" assert latex( polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}" assert latex(polar_lift(0)** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}" assert latex(totient(n)) == r'\phi\left( n \right)' # some unknown function name should get rendered with \operatorname fjlkd = Function('fjlkd') assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}' # even when it is referred to without an argument assert latex(fjlkd) == r'\operatorname{fjlkd}'
def sympy_basis(self, i=0): x = sympy.symbols('x') return sympy.chebyshevt(i, x)
def test_J13(): a = symbols('a', integer=True, negative=False) assert chebyshevt(a, -1) == (-1)**a
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == r'f{\left (x \right )}' assert latex(f) == r'f' g = Function('g') assert latex(g(x, y)) == r'g{\left (x,y \right )}' assert latex(g) == r'g' h = Function('h') assert latex(h(x, y, z)) == r'h{\left (x,y,z \right )}' assert latex(h) == r'h' Li = Function('Li') assert latex(Li) == r'\operatorname{Li}' assert latex(Li(x)) == r'\operatorname{Li}{\left (x \right )}' beta = Function('beta') # not to be confused with the beta function assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(beta) == r"\beta" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(subfactorial(k)) == r"!k" assert latex(subfactorial(-k)) == r"!\left(- k\right)" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex( FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}" assert latex(Abs(x)) == r"\left\lvert{x}\right\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x + y)) == r"\Re{x} + \Re{y}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left (x \right )}' assert latex(coth(x)) == r'\coth{\left (x \right )}' assert latex(re(x)) == r'\Re{x}' assert latex(im(x)) == r'\Im{x}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left (x \right )}' assert latex(zeta(x)) == r'\zeta\left(x\right)' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex( polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(elliptic_k(z)) == r"K\left(z\right)" assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)" assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)" assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)" assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)" assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)" assert latex(elliptic_e(z)) == r"E\left(z\right)" assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)" assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y, z)**2) == \ r"\Pi^{2}\left(x; y\middle| z\right)" assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)" assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}', latex(Chi(x)**2) assert latex( jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)' assert latex(jacobi(n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}' assert latex( gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)' assert latex(gegenbauer(n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)' assert latex( chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}' assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)' assert latex( chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}' assert latex(legendre(n, x)) == r'P_{n}\left(x\right)' assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}' assert latex( assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_legendre(n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)' assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}' assert latex( assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_laguerre(n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(hermite(n, x)) == r'H_{n}\left(x\right)' assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}' theta = Symbol("theta", real=True) phi = Symbol("phi", real=True) assert latex(Ynm(n,m,theta,phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)' assert latex(Ynm(n, m, theta, phi)**3) == r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}' assert latex(Znm(n,m,theta,phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)' assert latex(Znm(n, m, theta, phi)**3) == r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}' # Test latex printing of function names with "_" assert latex( polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}" assert latex(polar_lift( 0)**3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}" assert latex(totient(n)) == r'\phi\left( n \right)' # some unknown function name should get rendered with \operatorname fjlkd = Function('fjlkd') assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left (x \right )}' # even when it is referred to without an argument assert latex(fjlkd) == r'\operatorname{fjlkd}'
def test_J12(): skip('takes too much time') assert simplify( chebyshevt(1008, x) - 2 * x * chebyshevt(1007, x) + chebyshevt(1006, x)) == 0
def test_chebyshev(): assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2*x**2 - 1 assert chebyshevt(3, x) == 4*x**3 - 3*x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert chebyshevt(n, z) == 0 raises(ValueError, lambda: chebyshevt_root(n, n)) for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert chebyshevu(n, z) == 0 raises(ValueError, lambda: chebyshevu_root(n, n)) n = Symbol("n") X = chebyshevt(n, x) assert isinstance(X, chebyshevt) assert chebyshevt(n, -x) == (-1)**n*chebyshevt(n, x) assert chebyshevt(-n, x) == chebyshevt(n, x) assert chebyshevt(n, 0) == cos(pi*n/2) assert chebyshevt(n, 1) == 1 assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x)) assert diff(chebyshevt(n, x), x) == n*chebyshevu(n - 1, x) X = chebyshevu(n, x) assert isinstance(X, chebyshevu) assert chebyshevu(n, -x) == (-1)**n*chebyshevu(n, x) assert chebyshevu(-n, x) == -chebyshevu(n - 2, x) assert chebyshevu(n, 0) == cos(pi*n/2) assert chebyshevu(n, 1) == n + 1 assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x)) assert diff(chebyshevu(n, x), x) == \ (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
def test_J13(): a = Symbol("a", integer=True, negative=False) assert chebyshevt(a, -1) == (-1)**a
from shenfun import inner, div, grad, TestFunction, TrialFunction, Array, \ Function, TensorProductSpace, FunctionSpace, comm, la # Collect basis and solver from either Chebyshev or Legendre submodules family = sys.argv[-1].lower() if len(sys.argv) == 2 else 'chebyshev' base = importlib.import_module('.'.join(('shenfun', family))) BiharmonicSolver = base.la.Biharmonic # Use sympy to compute a rhs, given an analytical solution x, y = symbols("x,y", real=True) a = 1 b = -1 if family == 'jacobi': a = 0 b = 0 ue = (sin(2*pi*x))*(1-x**2) + a*(1/2-9/16*x+1/16*chebyshevt(3, x)) + b*(1/2+9/16*x-1/16*chebyshevt(3, x)) #ue = (sin(2*np.pi*x)*cos(2*y))*(1-x**2) + a*(0.5-0.6*x+1/10*legendre(3, x)) + b*(0.5+0.6*x-1./10.*legendre(3, x)) fe = ue.diff(x, 4) + ue.diff(y, 4) + 2*ue.diff(x, 2, y, 2) # Size of discretization N = (30, 30) if family == 'chebyshev': assert N[0] % 2 == 0, "Biharmonic solver only implemented for even numbers" bcs = (ue.subs(x, -1), ue.subs(x, 1), ue.diff(x, 1).subs(x, -1), ue.diff(x, 1).subs(x, 1)) #SD = FunctionSpace(N[0], family=family, bc='Biharmonic') SD = FunctionSpace(N[0], family=family, bc=bcs) K1 = FunctionSpace(N[1], family='F') T = TensorProductSpace(comm, (SD, K1), axes=(0, 1))
def sympy_basis(self, i=0): x = sympy.symbols('x') return sympy.chebyshevt(i, x) - (i/(i+2))**2*sympy.chebyshevt(i+2, x)
Solver = base.la.Biharmonic # Use sympy to compute a rhs, given an analytical solution # Allow for a non-standard domain. Reference domain is (-1, 1) domain = (-1., 2.) d = 2. / (domain[1] - domain[0]) x = symbols("x") x_map = -1 + (x - domain[0]) * d a = 1 b = -1 if family == 'jacobi': a = 0 b = 0 # Manufactured solution that satisfies (u(\pm 1) = u'(\pm 1) = 0) ue = sin(4 * np.pi * x_map) * (x_map - 1) * (x_map + 1) + a * ( 0.5 - 9. / 16. * x_map + 1. / 16. * chebyshevt(3, x_map)) + b * ( 0.5 + 9. / 16. * x_map - 1. / 16. * chebyshevt(3, x_map)) # Use coefficients typical for Navier-Stokes solver for channel (https://github.com/spectralDNS/spectralDNS/blob/master/spectralDNS/solvers/KMM.py) k = 8 nu = 1. / 590. dt = 5e-5 cc = -(k**2 + nu * dt / 2 * k**4) bb = 1.0 + nu * dt * k**2 aa = -nu * dt / 2. fe = aa * ue.diff(x, 4) + bb * ue.diff(x, 2) + cc * ue # Size of discretization N = int(sys.argv[-2]) SD = Basis(N, family=family, bc=(a, b, 0, 0), domain=domain)
base = importlib.import_module('.'.join(('shenfun', family))) Solver = base.la.Biharmonic # Use sympy to compute a rhs, given an analytical solution # Allow for a non-standard domain. Reference domain is (-1, 1) domain = (-1., 1.) d = 2./(domain[1]-domain[0]) x = symbols("x", real=True) x_map = -1+(x-domain[0])*d a = 0 b = -0 if family == 'jacobi': a = 0 b = 0 # Manufactured solution that satisfies (u(\pm 1) = u'(\pm 1) = 0) ue = sin(4*np.pi*x_map)*(x_map-1)*(x_map+1) + a*(0.5-9./16.*x_map+1./16.*chebyshevt(3, x_map)) + b*(0.5+9./16.*x_map-1./16.*chebyshevt(3, x_map)) # Use coefficients typical for Navier-Stokes solver for channel (https://github.com/spectralDNS/spectralDNS/blob/master/spectralDNS/solvers/KMM.py) k = 8 nu = 1./590. dt = 5e-5 cc = -(k**2+nu*dt/2*k**4) bb = 1.0+nu*dt*k**2 aa = -nu*dt/2. fe = aa*ue.diff(x, 4) + bb*ue.diff(x, 2) + cc*ue # Size of discretization N = int(sys.argv[-2]) SD = FunctionSpace(N, family=family, bc=(a, b, 0, 0), domain=domain, basis=basis) X = SD.mesh()
def test_J12(): assert simplify( chebyshevt(1008, x) - 2 * x * chebyshevt(1007, x) + chebyshevt(1006, x)) == 0
def test_J12(): assert simplify(chebyshevt(1008, x) - 2*x*chebyshevt(1007, x) + chebyshevt(1006, x)) == 0
def test_chebyshev(): assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2 * x**2 - 1 assert chebyshevt(3, x) == 4 * x**3 - 3 * x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert chebyshevt(n, z) == 0 raises(ValueError, lambda: chebyshevt_root(n, n)) for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert chebyshevu(n, z) == 0 raises(ValueError, lambda: chebyshevu_root(n, n)) n = Symbol("n") X = chebyshevt(n, x) assert isinstance(X, chebyshevt) assert chebyshevt(n, -x) == (-1)**n * chebyshevt(n, x) assert chebyshevt(-n, x) == chebyshevt(n, x) assert chebyshevt(n, 0) == cos(pi * n / 2) assert chebyshevt(n, 1) == 1 assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x)) assert diff(chebyshevt(n, x), x) == n * chebyshevu(n - 1, x) X = chebyshevu(n, x) assert isinstance(X, chebyshevu) assert chebyshevu(n, -x) == (-1)**n * chebyshevu(n, x) assert chebyshevu(-n, x) == -chebyshevu(n - 2, x) assert chebyshevu(n, 0) == cos(pi * n / 2) assert chebyshevu(n, 1) == n + 1 assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x)) assert diff(chebyshevu(n, x), x) == \ (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1)
def test_chebyshev(): assert chebyshevt(0, x) == 1 assert chebyshevt(1, x) == x assert chebyshevt(2, x) == 2*x**2 - 1 assert chebyshevt(3, x) == 4*x**3 - 3*x for n in range(1, 4): for k in range(n): z = chebyshevt_root(n, k) assert chebyshevt(n, z) == 0 raises(ValueError, lambda: chebyshevt_root(n, n)) for n in range(1, 4): for k in range(n): z = chebyshevu_root(n, k) assert chebyshevu(n, z) == 0 raises(ValueError, lambda: chebyshevu_root(n, n)) n = Symbol("n") X = chebyshevt(n, x) assert isinstance(X, chebyshevt) assert unchanged(chebyshevt, n, x) assert chebyshevt(n, -x) == (-1)**n*chebyshevt(n, x) assert chebyshevt(-n, x) == chebyshevt(n, x) assert chebyshevt(n, 0) == cos(pi*n/2) assert chebyshevt(n, 1) == 1 assert chebyshevt(n, oo) is oo assert conjugate(chebyshevt(n, x)) == chebyshevt(n, conjugate(x)) assert diff(chebyshevt(n, x), x) == n*chebyshevu(n - 1, x) X = chebyshevu(n, x) assert isinstance(X, chebyshevu) y = Symbol('y') assert chebyshevu(n, -x) == (-1)**n*chebyshevu(n, x) assert chebyshevu(-n, x) == -chebyshevu(n - 2, x) assert unchanged(chebyshevu, -n + y, x) assert chebyshevu(n, 0) == cos(pi*n/2) assert chebyshevu(n, 1) == n + 1 assert chebyshevu(n, oo) is oo assert conjugate(chebyshevu(n, x)) == chebyshevu(n, conjugate(x)) assert diff(chebyshevu(n, x), x) == \ (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1) _k = Dummy('k') assert chebyshevt(n, x).rewrite("polynomial").dummy_eq(Sum(x**(-2*_k + n) *(x**2 - 1)**_k*binomial(n, 2*_k), (_k, 0, floor(n/2)))) assert chebyshevu(n, x).rewrite("polynomial").dummy_eq(Sum((-1)**_k*(2*x) **(-2*_k + n)*factorial(-_k + n)/(factorial(_k)* factorial(-2*_k + n)), (_k, 0, floor(n/2)))) raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(1)) raises(ArgumentIndexError, lambda: chebyshevt(n, x).fdiff(3)) raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(1)) raises(ArgumentIndexError, lambda: chebyshevu(n, x).fdiff(3))
def sympy_basis(self, i=0): x = sympy.symbols('x') return sympy.chebyshevt(i, x) - (2*(i+2)/(i+3))*sympy.chebyshevt(i+2, x) + (i+1)/(i+3)*sympy.chebyshevt(i+4, x)
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function("f") assert latex(f(x)) == "\\operatorname{f}{\\left (x \\right )}" beta = Function("beta") assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2 * x ** 2), fold_func_brackets=True) == r"\sin {2 x^{2}}" assert latex(sin(x ** 2), fold_func_brackets=True) == r"\sin {x^{2}}" assert latex(asin(x) ** 2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x) ** 2, inv_trig_style="full") == r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x) ** 2, inv_trig_style="power") == r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x ** 2), inv_trig_style="power", fold_func_brackets=True) == r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(subfactorial(k)) == r"!k" assert latex(subfactorial(-k)) == r"!\left(- k\right)" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Min(x, 2, x ** 3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Min(x, y) ** 2) == r"\min\left(x, y\right)^{2}" assert latex(Max(x, 2, x ** 3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Max(x, y) ** 2) == r"\max\left(x, y\right)^{2}" assert latex(Abs(x)) == r"\lvert{x}\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x + y)) == r"\Re{x} + \Re{y}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(lowergamma(x, y)) == r"\gamma\left(x, y\right)" assert latex(uppergamma(x, y)) == r"\Gamma\left(x, y\right)" assert latex(cot(x)) == r"\cot{\left (x \right )}" assert latex(coth(x)) == r"\coth{\left (x \right )}" assert latex(re(x)) == r"\Re{x}" assert latex(im(x)) == r"\Im{x}" assert latex(root(x, y)) == r"x^{\frac{1}{y}}" assert latex(arg(x)) == r"\arg{\left (x \right )}" assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x) ** 2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y) ** 2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x) ** 2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex(polylog(x, y) ** 2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n) ** 2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(Ei(x)) == r"\operatorname{Ei}{\left (x \right )}" assert latex(Ei(x) ** 2) == r"\operatorname{Ei}^{2}{\left (x \right )}" assert latex(expint(x, y) ** 2) == r"\operatorname{E}_{x}^{2}\left(y\right)" assert latex(Shi(x) ** 2) == r"\operatorname{Shi}^{2}{\left (x \right )}" assert latex(Si(x) ** 2) == r"\operatorname{Si}^{2}{\left (x \right )}" assert latex(Ci(x) ** 2) == r"\operatorname{Ci}^{2}{\left (x \right )}" assert latex(Chi(x) ** 2) == r"\operatorname{Chi}^{2}{\left (x \right )}" assert latex(jacobi(n, a, b, x)) == r"P_{n}^{\left(a,b\right)}\left(x\right)" assert latex(jacobi(n, a, b, x) ** 2) == r"\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}" assert latex(gegenbauer(n, a, x)) == r"C_{n}^{\left(a\right)}\left(x\right)" assert latex(gegenbauer(n, a, x) ** 2) == r"\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}" assert latex(chebyshevt(n, x)) == r"T_{n}\left(x\right)" assert latex(chebyshevt(n, x) ** 2) == r"\left(T_{n}\left(x\right)\right)^{2}" assert latex(chebyshevu(n, x)) == r"U_{n}\left(x\right)" assert latex(chebyshevu(n, x) ** 2) == r"\left(U_{n}\left(x\right)\right)^{2}" assert latex(legendre(n, x)) == r"P_{n}\left(x\right)" assert latex(legendre(n, x) ** 2) == r"\left(P_{n}\left(x\right)\right)^{2}" assert latex(assoc_legendre(n, a, x)) == r"P_{n}^{\left(a\right)}\left(x\right)" assert latex(assoc_legendre(n, a, x) ** 2) == r"\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}" assert latex(laguerre(n, x)) == r"L_{n}\left(x\right)" assert latex(laguerre(n, x) ** 2) == r"\left(L_{n}\left(x\right)\right)^{2}" assert latex(assoc_laguerre(n, a, x)) == r"L_{n}^{\left(a\right)}\left(x\right)" assert latex(assoc_laguerre(n, a, x) ** 2) == r"\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}" assert latex(hermite(n, x)) == r"H_{n}\left(x\right)" assert latex(hermite(n, x) ** 2) == r"\left(H_{n}\left(x\right)\right)^{2}" # Test latex printing of function names with "_" assert latex(polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}" assert latex(polar_lift(0) ** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
def max_rE_gains_2d(order, numeric=True): """Deprecated.""" max_rE = np.max( [sp.chebyshevt_root(order + 1, i) for i in range(order + 1)]) return [sp.chebyshevt(n, max_rE) for n in range(order + 1)]
def test_latex_functions(): assert latex(exp(x)) == "e^{x}" assert latex(exp(1) + exp(2)) == "e + e^{2}" f = Function('f') assert latex(f(x)) == '\\operatorname{f}{\\left (x \\right )}' beta = Function('beta') assert latex(beta(x)) == r"\beta{\left (x \right )}" assert latex(sin(x)) == r"\sin{\left (x \right )}" assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}" assert latex(sin(2*x**2), fold_func_brackets=True) == \ r"\sin {2 x^{2}}" assert latex(sin(x**2), fold_func_brackets=True) == \ r"\sin {x^{2}}" assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="full") == \ r"\arcsin^{2}{\left (x \right )}" assert latex(asin(x)**2, inv_trig_style="power") == \ r"\sin^{-1}{\left (x \right )}^{2}" assert latex(asin(x**2), inv_trig_style="power", fold_func_brackets=True) == \ r"\sin^{-1} {x^{2}}" assert latex(factorial(k)) == r"k!" assert latex(factorial(-k)) == r"\left(- k\right)!" assert latex(subfactorial(k)) == r"!k" assert latex(subfactorial(-k)) == r"!\left(- k\right)" assert latex(factorial2(k)) == r"k!!" assert latex(factorial2(-k)) == r"\left(- k\right)!!" assert latex(binomial(2, k)) == r"{\binom{2}{k}}" assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{\left(k\right)}" assert latex(RisingFactorial(3, k)) == r"{\left(3\right)}^{\left(k\right)}" assert latex(floor(x)) == r"\lfloor{x}\rfloor" assert latex(ceiling(x)) == r"\lceil{x}\rceil" assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)" assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}" assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)" assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}" assert latex(Abs(x)) == r"\lvert{x}\rvert" assert latex(re(x)) == r"\Re{x}" assert latex(re(x + y)) == r"\Re{x} + \Re{y}" assert latex(im(x)) == r"\Im{x}" assert latex(conjugate(x)) == r"\overline{x}" assert latex(gamma(x)) == r"\Gamma\left(x\right)" assert latex(Order(x)) == r"\mathcal{O}\left(x\right)" assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)' assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)' assert latex(cot(x)) == r'\cot{\left (x \right )}' assert latex(coth(x)) == r'\coth{\left (x \right )}' assert latex(re(x)) == r'\Re{x}' assert latex(im(x)) == r'\Im{x}' assert latex(root(x, y)) == r'x^{\frac{1}{y}}' assert latex(arg(x)) == r'\arg{\left (x \right )}' assert latex(zeta(x)) == r'\zeta\left(x\right)' assert latex(zeta(x)) == r"\zeta\left(x\right)" assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)" assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)" assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)" assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)" assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)" assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)" assert latex(polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)" assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)" assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)" assert latex(Ei(x)) == r'\operatorname{Ei}{\left (x \right )}' assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left (x \right )}' assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)' assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left (x \right )}' assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left (x \right )}' assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left (x \right )}' assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}{\left (x \right )}' assert latex(jacobi(n, a, b, x)) == r'P_{n}^{\left(a,b\right)}\left(x\right)' assert latex(jacobi( n, a, b, x)**2) == r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}' assert latex(gegenbauer(n, a, x)) == r'C_{n}^{\left(a\right)}\left(x\right)' assert latex(gegenbauer( n, a, x)**2) == r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)' assert latex(chebyshevt(n, x)**2) == r'\left(T_{n}\left(x\right)\right)^{2}' assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)' assert latex(chebyshevu(n, x)**2) == r'\left(U_{n}\left(x\right)\right)^{2}' assert latex(legendre(n, x)) == r'P_{n}\left(x\right)' assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}' assert latex(assoc_legendre(n, a, x)) == r'P_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_legendre( n, a, x)**2) == r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)' assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}' assert latex(assoc_laguerre(n, a, x)) == r'L_{n}^{\left(a\right)}\left(x\right)' assert latex(assoc_laguerre( n, a, x)**2) == r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}' assert latex(hermite(n, x)) == r'H_{n}\left(x\right)' assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}' # Test latex printing of function names with "_" assert latex( polar_lift(0)) == r"\operatorname{polar\_lift}{\left (0 \right )}" assert latex(polar_lift(0)** 3) == r"\operatorname{polar\_lift}^{3}{\left (0 \right )}"
def test_J12(): skip('takes too much time') assert simplify(chebyshevt(1008,x) - 2*x*chebyshevt(1007,x) + chebyshevt(1006,x)) == 0