def linearLSTM_over_TreeLstm(self, num_classes, sent_lstm_num_units): self.sent_cell = td.ScopedLayer(tf.contrib.rnn.BasicLSTMCell( num_units=sent_lstm_num_units), name_or_scope = self._sent_lstm_default_scope_name) sent_lstm = (td.Map(self.tree_lstm.tree_lstm() >> td.Concat()) >> td.RNN(self.sent_cell)) self.output_layer = td.FC( num_classes, activation=None, name=self._output_layer_default_scope_name) return (td.Scalar('int32'), sent_lstm >> td.GetItem(1) >> td.GetItem(0) >> self.output_layer) \ >> self.set_metrics()
def bidirectional_dynamic_FC(fw_cell, bw_cell, hidden): bidir_conv_lstm = td.Composition() with bidir_conv_lstm.scope(): fw_seq = td.Identity().reads(bidir_conv_lstm.input[0]) labels = ( td.GetItem(1) >> td.Map(td.Metric("labels")) >> td.Void()).reads( bidir_conv_lstm.input) bw_seq = td.Slice(step=-1).reads(fw_seq) forward_dir = (td.RNN(fw_cell) >> td.GetItem(0)).reads(fw_seq) back_dir = (td.RNN(bw_cell) >> td.GetItem(0)).reads(bw_seq) back_to_leftright = td.Slice(step=-1).reads(back_dir) output_transform = td.FC(1, activation=None) bidir_common = (td.ZipWith( td.Concat() >> output_transform >> td.Metric('logits'))).reads( forward_dir, back_to_leftright) bidir_conv_lstm.output.reads(bidir_common) return bidir_conv_lstm
def build_program_decoder_for_analysis(token_emb_size, rnn_cell): """ Does the same as build_program_decoder_for_analysis, but also returns the final hidden state of the decoder """ decoder_rnn = td.ScopedLayer(rnn_cell, 'decoder') decoder_rnn_output = td.RNN(decoder_rnn, initial_state_from_input=True) >> td.GetItem(0) fc_layer = td.FC(token_emb_size, activation=tf.nn.relu, initializer=tf.contrib.layers.xavier_initializer(), name='encoder_fc') # decoder_rnn_output.reads() un_normalised_token_probs = td.Map(fc_layer) return decoder_rnn_output >> td.AllOf(un_normalised_token_probs, td.Identity())
def build_token_level_RVAE(z_size, token_emb_size, look_behind_length): c = td.Composition() c.set_input_type( td.SequenceType(td.TensorType(([token_emb_size]), 'float32'))) with c.scope(): padded_input_sequence = c.input # build encoder block encoder_rnn_cell = build_program_encoder(default_gru_cell(2 * z_size)) output_sequence = td.RNN(encoder_rnn_cell) >> td.GetItem(0) mus_and_log_sigs = output_sequence >> td.GetItem(-1) reparam_z = resampling_block(z_size) if look_behind_length > 0: decoder_input_sequence = ( td.Slice(stop=-1) >> td.NGrams(look_behind_length) >> td.Map( td.Concat())) else: decoder_input_sequence = td.Map( td.Void() >> td.FromTensor(tf.zeros((0, )))) # build decoder block un_normalised_token_probs = build_program_decoder( token_emb_size, default_gru_cell(z_size), just_tokens=True) # remove padding for input sequence input_sequence = td.Slice(start=look_behind_length) input_sequence.reads(padded_input_sequence) mus_and_log_sigs.reads(input_sequence) reparam_z.reads(mus_and_log_sigs) decoder_input_sequence.reads(padded_input_sequence) td.Metric('encoder_sequence_length').reads( td.Length().reads(input_sequence)) td.Metric('decoder_sequence_length').reads( td.Length().reads(decoder_input_sequence)) un_normalised_token_probs.reads(decoder_input_sequence, reparam_z) c.output.reads(un_normalised_token_probs, mus_and_log_sigs) return c
def build_program_decoder(token_emb_size, rnn_cell, just_tokens=False): """ Used for blind or 'look-behind' decoders """ decoder_rnn = td.ScopedLayer(rnn_cell, 'decoder') decoder_rnn_output = td.RNN(decoder_rnn, initial_state_from_input=True) >> td.GetItem(0) fc_layer = td.FC( token_emb_size, activation=tf.nn.relu, initializer=tf.contrib.layers.xavier_initializer(), name='encoder_fc' # this is fantastic ) # un_normalised_token_probs = decoder_rnn_output >> td.Map(fc_layer) if just_tokens: return decoder_rnn_output >> td.Map(fc_layer) else: return decoder_rnn_output >> td.AllOf(td.Map(fc_layer), td.Identity())
def _compile(self): with self.sess.as_default(): import tensorflow_fold as td output_size = len(self.labels) self.keep_prob = tf.placeholder_with_default(tf.constant(1.0),shape=None) char_emb = td.Embedding(num_buckets=self.char_buckets, num_units_out=self.embedding_size) #initializer=tf.truncated_normal_initializer(stddev=0.15)) char_cell = td.ScopedLayer(tf.contrib.rnn.LSTMCell(num_units=self.rnn_dim), 'char_cell') char_lstm = (td.InputTransform(lambda s: [ord(c) for c in s]) >> td.Map(td.Scalar('int32') >> char_emb) >> td.RNN(char_cell) >> td.GetItem(1) >> td.GetItem(1)) rnn_fwdcell = td.ScopedLayer(tf.contrib.rnn.LSTMCell(num_units=self.rnn_dim), 'lstm_fwd') fwdlayer = td.RNN(rnn_fwdcell) >> td.GetItem(0) rnn_bwdcell = td.ScopedLayer(tf.contrib.rnn.LSTMCell(num_units=self.rnn_dim), 'lstm_bwd') bwdlayer = (td.Slice(step=-1) >> td.RNN(rnn_bwdcell) >> td.GetItem(0) >> td.Slice(step=-1)) pos_emb = td.Embedding(num_buckets=300, num_units_out=32, initializer=tf.truncated_normal_initializer(stddev=0.1)) pos_x = (td.InputTransform(lambda x: x + 150) >> td.Scalar(dtype='int32') >> pos_emb) pos_y = (td.InputTransform(lambda x: x + 150) >> td.Scalar(dtype='int32') >> pos_emb) input_layer = td.Map(td.Record((char_lstm,pos_x,pos_y)) >> td.Concat()) maxlayer = (td.AllOf(fwdlayer, bwdlayer) >> td.ZipWith(td.Concat()) >> td.Max()) output_layer = (input_layer >> maxlayer >> td.FC(output_size, input_keep_prob=self.keep_prob, activation=None)) self.compiler = td.Compiler.create((output_layer, td.Vector(output_size,dtype=tf.int32))) self.y_out, self.y_true = self.compiler.output_tensors self.y_loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits=self.y_out,labels=self.y_true)) self.y_prob = tf.nn.softmax(self.y_out) self.y_true_idx = tf.argmax(self.y_true,axis=1) self.y_pred_idx = tf.argmax(self.y_prob,axis=1) self.y_pred = tf.one_hot(self.y_pred_idx,depth=output_size,dtype=tf.int32) epoch_step = tf.Variable(0, trainable=False) self.epoch_step_op = tf.assign(epoch_step, epoch_step+1) lrate_decay = tf.train.exponential_decay(self.lrate, epoch_step, 1, self.decay) if self.optimizer == 'adam': self.opt = tf.train.AdamOptimizer(learning_rate=lrate_decay) elif self.optimizer == 'adagrad': self.opt = tf.train.AdagradOptimizer(learning_rate=lrate_decay, initial_accumulator_value=1e-08) elif self.optimizer == 'rmsprop' or self.optimizer == 'default': self.opt = tf.train.RMSPropOptimizer(learning_rate=lrate_decay, epsilon=1e-08) else: raise Exception(('The optimizer {} is not in list of available ' + 'optimizers: default, adam, adagrad, rmsprop.') .format(self.optimizer)) # apply learning multiplier on on embedding learning rate embeds = [pos_emb.weights, char_emb.weights] grads_and_vars = self.opt.compute_gradients(self.y_loss) found = 0 for i, (grad, var) in enumerate(grads_and_vars): if var in embeds: found += 1 grad = tf.scalar_mul(self.embedding_factor, grad) grads_and_vars[i] = (grad, var) assert found == len(embeds) # internal consistency check self.train_step = self.opt.apply_gradients(grads_and_vars) self.sess.run(tf.global_variables_initializer()) self.saver = tf.train.Saver(max_to_keep=100)
def _compile(self): with self.sess.as_default(): import tensorflow_fold as td output_size = len(self.labels) self.keep_prob = tf.placeholder_with_default(tf.constant(1.0),shape=None) fshape = (self.window_size * (self.char_embedding_size + self.char_feature_embedding_size), self.num_filters) filt_w3 = tf.Variable(tf.random_normal(fshape, stddev=0.05)) def CNN_Window3(filters): return td.Function(lambda a, b, c: cnn_operation([a,b,c],filters)) def cnn_operation(window_sequences,filters): windows = tf.concat(window_sequences,axis=-1) products = tf.multiply(tf.expand_dims(windows,axis=-1),filters) return tf.reduce_sum(products,axis=-2) char_emb = td.Embedding(num_buckets=self.char_buckets, num_units_out=self.char_embedding_size) cnn_layer = (td.NGrams(self.window_size) >> td.Map(CNN_Window3(filt_w3)) >> td.Max()) # --------- char features def charfeature_lookup(c): if c in string.lowercase: return 0 elif c in string.uppercase: return 1 elif c in string.punctuation: return 2 else: return 3 char_input = td.Map(td.InputTransform(lambda c: ord(c.lower())) >> td.Scalar('int32') >> char_emb) char_features = td.Map(td.InputTransform(charfeature_lookup) >> td.Scalar(dtype='int32') >> td.Embedding(num_buckets=4, num_units_out=self.char_feature_embedding_size)) charlevel = (td.InputTransform(lambda s: ['~'] + [ c for c in s ] + ['~']) >> td.AllOf(char_input,char_features) >> td.ZipWith(td.Concat()) >> cnn_layer) # --------- word features word_emb = td.Embedding(num_buckets=len(self.word_vocab), num_units_out=self.embedding_size, initializer=self.word_embeddings) wordlookup = lambda w: (self.word_vocab.index(w.lower()) if w.lower() in self.word_vocab else 0) wordinput = (td.InputTransform(wordlookup) >> td.Scalar(dtype='int32') >> word_emb) def wordfeature_lookup(w): if re.match('^[a-z]+$',w): return 0 elif re.match('^[A-Z][a-z]+$',w): return 1 elif re.match('^[A-Z]+$',w): return 2 elif re.match('^[A-Za-z]+$',w): return 3 else: return 4 wordfeature = (td.InputTransform(wordfeature_lookup) >> td.Scalar(dtype='int32') >> td.Embedding(num_buckets=5, num_units_out=32)) #----------- rnn_fwdcell = td.ScopedLayer(tf.contrib.rnn.LSTMCell( num_units=self.rnn_dim), 'lstm_fwd') fwdlayer = td.RNN(rnn_fwdcell) >> td.GetItem(0) rnn_bwdcell = td.ScopedLayer(tf.contrib.rnn.LSTMCell( num_units=self.rnn_dim), 'lstm_bwd') bwdlayer = (td.Slice(step=-1) >> td.RNN(rnn_bwdcell) >> td.GetItem(0) >> td.Slice(step=-1)) rnn_layer = td.AllOf(fwdlayer, bwdlayer) >> td.ZipWith(td.Concat()) output_layer = td.FC(output_size, input_keep_prob=self.keep_prob, activation=None) wordlevel = td.AllOf(wordinput,wordfeature) >> td.Concat() network = (td.Map(td.AllOf(wordlevel,charlevel) >> td.Concat()) >> rnn_layer >> td.Map(output_layer) >> td.Map(td.Metric('y_out'))) >> td.Void() groundlabels = td.Map(td.Vector(output_size,dtype=tf.int32) >> td.Metric('y_true')) >> td.Void() self.compiler = td.Compiler.create((network, groundlabels)) self.y_out = self.compiler.metric_tensors['y_out'] self.y_true = self.compiler.metric_tensors['y_true'] self.y_loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits=self.y_out,labels=self.y_true)) self.y_prob = tf.nn.softmax(self.y_out) self.y_true_idx = tf.argmax(self.y_true,axis=-1) self.y_pred_idx = tf.argmax(self.y_prob,axis=-1) self.y_pred = tf.one_hot(self.y_pred_idx,depth=output_size,dtype=tf.int32) epoch_step = tf.Variable(0, trainable=False) self.epoch_step_op = tf.assign(epoch_step, epoch_step+1) lrate_decay = tf.train.exponential_decay(self.lrate, epoch_step, 1, self.decay) if self.optimizer == 'adam': self.opt = tf.train.AdamOptimizer(learning_rate=lrate_decay) elif self.optimizer == 'adagrad': self.opt = tf.train.AdagradOptimizer(learning_rate=lrate_decay, initial_accumulator_value=1e-08) elif self.optimizer == 'rmsprop': self.opt = tf.train.RMSPropOptimizer(learning_rate=lrate_decay, epsilon=1e-08) else: raise Exception(('The optimizer {} is not in list of available ' + 'optimizers: default, adam, adagrad, rmsprop.') .format(self.optimizer)) # apply learning multiplier on on embedding learning rate embeds = [word_emb.weights] grads_and_vars = self.opt.compute_gradients(self.y_loss) found = 0 for i, (grad, var) in enumerate(grads_and_vars): if var in embeds: found += 1 grad = tf.scalar_mul(self.embedding_factor, grad) grads_and_vars[i] = (grad, var) assert found == len(embeds) # internal consistency check self.train_step = self.opt.apply_gradients(grads_and_vars) self.sess.run(tf.global_variables_initializer()) self.saver = tf.train.Saver(max_to_keep=100)
def build_encoder(z_size, token_emb_size): input_sequence = td.Map(td.Vector(token_emb_size)) encoder_rnn_cell = build_program_encoder(default_gru_cell(2 * z_size)) output_sequence = td.RNN(encoder_rnn_cell) >> td.GetItem(0) mus_and_log_sigs = output_sequence >> td.GetItem(-1) return input_sequence >> mus_and_log_sigs
def build_VAE(z_size, token_emb_size): c = td.Composition() c.set_input_type(td.SequenceType(td.TensorType(([token_emb_size]), 'float32'))) with c.scope(): # input_sequence = td.Map(td.Vector(token_emb_size)).reads(c.input) input_sequence = c.input # encoder composition TODO: refactor this out # rnn_cell = td.ScopedLayer( # tf.contrib.rnn.LSTMCell( # num_units=2*z_size, # initializer=tf.contrib.layers.xavier_initializer(), # activation=tf.tanh # ), # 'encoder' # ) encoder_rnn_cell = td.ScopedLayer( tf.contrib.rnn.GRUCell( num_units=2*z_size, # initializer=tf.contrib.layers.xavier_initializer(), activation=tf.tanh ), 'encoder' ) output_sequence = td.RNN(encoder_rnn_cell) >> td.GetItem(0) mus_and_log_sigs = output_sequence >> td.GetItem(-1) # reparam_z = mus_and_log_sigs >> td.Function(resampling) reparam_z = td.Function(resampling, name='resampling') reparam_z.set_input_type(td.TensorType((2 * z_size,))) reparam_z.set_output_type(td.TensorType((z_size,))) # A list of same length of input_sequence, but with empty values # this is used for the decoder to map over list_of_nothing = td.Map( td.Void() >> td.FromTensor(tf.zeros((0,))) ) # decoder composition # TODO: refactor this out # decoder_rnn = td.ScopedLayer( # tf.contrib.rnn.LSTMCell( # num_units=z_size, # initializer=tf.contrib.layers.xavier_initializer(), # activation=tf.tanh # ), # 'decoder' # ) decoder_rnn = td.ScopedLayer( tf.contrib.rnn.GRUCell( num_units=z_size, # initializer=tf.contrib.layers.xavier_initializer(), activation=tf.tanh ), 'decoder' ) decoder_rnn_output = td.RNN( decoder_rnn, initial_state_from_input=True ) >> td.GetItem(0) fc_layer = td.FC( token_emb_size, activation=tf.nn.relu, initializer=tf.contrib.layers.xavier_initializer() ) un_normalised_token_probs = decoder_rnn_output >> td.Map(fc_layer) # reparam_z.reads(input_sequence) mus_and_log_sigs.reads(input_sequence) reparam_z.reads(mus_and_log_sigs) list_of_nothing.reads(input_sequence) un_normalised_token_probs.reads(list_of_nothing, reparam_z) c.output.reads(un_normalised_token_probs, mus_and_log_sigs) return c