예제 #1
0
 def linearLSTM_over_TreeLstm(self, num_classes, sent_lstm_num_units):
     self.sent_cell = td.ScopedLayer(tf.contrib.rnn.BasicLSTMCell(
         num_units=sent_lstm_num_units), name_or_scope = self._sent_lstm_default_scope_name)
     sent_lstm = (td.Map(self.tree_lstm.tree_lstm()
                         >> td.Concat()) >> td.RNN(self.sent_cell))
     self.output_layer = td.FC(
         num_classes, activation=None, name=self._output_layer_default_scope_name)
     return (td.Scalar('int32'), sent_lstm >> td.GetItem(1)
             >> td.GetItem(0) >> self.output_layer) \
         >> self.set_metrics()
예제 #2
0
def bidirectional_dynamic_FC(fw_cell, bw_cell, hidden):
    bidir_conv_lstm = td.Composition()
    with bidir_conv_lstm.scope():
        fw_seq = td.Identity().reads(bidir_conv_lstm.input[0])
        labels = (
            td.GetItem(1) >> td.Map(td.Metric("labels")) >> td.Void()).reads(
                bidir_conv_lstm.input)
        bw_seq = td.Slice(step=-1).reads(fw_seq)

        forward_dir = (td.RNN(fw_cell) >> td.GetItem(0)).reads(fw_seq)
        back_dir = (td.RNN(bw_cell) >> td.GetItem(0)).reads(bw_seq)
        back_to_leftright = td.Slice(step=-1).reads(back_dir)

        output_transform = td.FC(1, activation=None)

        bidir_common = (td.ZipWith(
            td.Concat() >> output_transform >> td.Metric('logits'))).reads(
                forward_dir, back_to_leftright)

        bidir_conv_lstm.output.reads(bidir_common)
    return bidir_conv_lstm
def build_program_decoder_for_analysis(token_emb_size, rnn_cell):
    """
    Does the same as build_program_decoder_for_analysis, but also returns
        the final hidden state of the decoder
    """
    decoder_rnn = td.ScopedLayer(rnn_cell, 'decoder')
    decoder_rnn_output = td.RNN(decoder_rnn,
                                initial_state_from_input=True) >> td.GetItem(0)

    fc_layer = td.FC(token_emb_size,
                     activation=tf.nn.relu,
                     initializer=tf.contrib.layers.xavier_initializer(),
                     name='encoder_fc')
    # decoder_rnn_output.reads()
    un_normalised_token_probs = td.Map(fc_layer)
    return decoder_rnn_output >> td.AllOf(un_normalised_token_probs,
                                          td.Identity())
예제 #4
0
def build_token_level_RVAE(z_size, token_emb_size, look_behind_length):
    c = td.Composition()
    c.set_input_type(
        td.SequenceType(td.TensorType(([token_emb_size]), 'float32')))
    with c.scope():
        padded_input_sequence = c.input
        # build encoder block
        encoder_rnn_cell = build_program_encoder(default_gru_cell(2 * z_size))

        output_sequence = td.RNN(encoder_rnn_cell) >> td.GetItem(0)
        mus_and_log_sigs = output_sequence >> td.GetItem(-1)

        reparam_z = resampling_block(z_size)

        if look_behind_length > 0:
            decoder_input_sequence = (
                td.Slice(stop=-1) >> td.NGrams(look_behind_length) >> td.Map(
                    td.Concat()))
        else:
            decoder_input_sequence = td.Map(
                td.Void() >> td.FromTensor(tf.zeros((0, ))))

        # build decoder block
        un_normalised_token_probs = build_program_decoder(
            token_emb_size, default_gru_cell(z_size), just_tokens=True)

        # remove padding for input sequence
        input_sequence = td.Slice(start=look_behind_length)
        input_sequence.reads(padded_input_sequence)

        mus_and_log_sigs.reads(input_sequence)
        reparam_z.reads(mus_and_log_sigs)

        decoder_input_sequence.reads(padded_input_sequence)
        td.Metric('encoder_sequence_length').reads(
            td.Length().reads(input_sequence))
        td.Metric('decoder_sequence_length').reads(
            td.Length().reads(decoder_input_sequence))
        un_normalised_token_probs.reads(decoder_input_sequence, reparam_z)

        c.output.reads(un_normalised_token_probs, mus_and_log_sigs)
    return c
예제 #5
0
def build_program_decoder(token_emb_size, rnn_cell, just_tokens=False):
    """
    Used for blind or 'look-behind' decoders
    """
    decoder_rnn = td.ScopedLayer(rnn_cell, 'decoder')
    decoder_rnn_output = td.RNN(decoder_rnn,
                                initial_state_from_input=True) >> td.GetItem(0)

    fc_layer = td.FC(
        token_emb_size,
        activation=tf.nn.relu,
        initializer=tf.contrib.layers.xavier_initializer(),
        name='encoder_fc'  # this is fantastic
    )

    # un_normalised_token_probs = decoder_rnn_output >> td.Map(fc_layer)
    if just_tokens:
        return decoder_rnn_output >> td.Map(fc_layer)
    else:
        return decoder_rnn_output >> td.AllOf(td.Map(fc_layer), td.Identity())
    def _compile(self):
        with self.sess.as_default(): 
            import tensorflow_fold as td
        
        output_size = len(self.labels)
        self.keep_prob = tf.placeholder_with_default(tf.constant(1.0),shape=None)

        char_emb = td.Embedding(num_buckets=self.char_buckets, 
                                num_units_out=self.embedding_size)
                                #initializer=tf.truncated_normal_initializer(stddev=0.15))
        char_cell = td.ScopedLayer(tf.contrib.rnn.LSTMCell(num_units=self.rnn_dim), 'char_cell')

        char_lstm = (td.InputTransform(lambda s: [ord(c) for c in s]) 
                    >> td.Map(td.Scalar('int32') >> char_emb) 
                    >> td.RNN(char_cell) >> td.GetItem(1) >> td.GetItem(1))        
        
        rnn_fwdcell = td.ScopedLayer(tf.contrib.rnn.LSTMCell(num_units=self.rnn_dim), 'lstm_fwd')
        fwdlayer = td.RNN(rnn_fwdcell) >> td.GetItem(0)
        
        rnn_bwdcell = td.ScopedLayer(tf.contrib.rnn.LSTMCell(num_units=self.rnn_dim), 'lstm_bwd')
        bwdlayer = (td.Slice(step=-1) >> td.RNN(rnn_bwdcell) 
                        >> td.GetItem(0) >> td.Slice(step=-1))
        
        pos_emb = td.Embedding(num_buckets=300,
                    num_units_out=32,
                    initializer=tf.truncated_normal_initializer(stddev=0.1))
        
        pos_x = (td.InputTransform(lambda x: x + 150)
                    >> td.Scalar(dtype='int32') 
                    >> pos_emb)
        
        pos_y = (td.InputTransform(lambda x: x + 150)
                    >> td.Scalar(dtype='int32') 
                    >> pos_emb)
        
        input_layer = td.Map(td.Record((char_lstm,pos_x,pos_y)) >> td.Concat())
        
        maxlayer = (td.AllOf(fwdlayer, bwdlayer) 
                    >> td.ZipWith(td.Concat()) 
                    >> td.Max())
        
        output_layer = (input_layer >> 
                        maxlayer >> td.FC(output_size, 
                                         input_keep_prob=self.keep_prob, 
                                         activation=None))

        self.compiler = td.Compiler.create((output_layer, 
                        td.Vector(output_size,dtype=tf.int32)))
                        
        self.y_out, self.y_true = self.compiler.output_tensors
        self.y_loss = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(
            logits=self.y_out,labels=self.y_true))

        self.y_prob = tf.nn.softmax(self.y_out)
        self.y_true_idx = tf.argmax(self.y_true,axis=1)
        self.y_pred_idx = tf.argmax(self.y_prob,axis=1)
        
        self.y_pred = tf.one_hot(self.y_pred_idx,depth=output_size,dtype=tf.int32)

        epoch_step = tf.Variable(0, trainable=False)
        self.epoch_step_op = tf.assign(epoch_step, epoch_step+1)
            
        lrate_decay = tf.train.exponential_decay(self.lrate, epoch_step, 1, self.decay)
            
        if self.optimizer == 'adam':
            self.opt = tf.train.AdamOptimizer(learning_rate=lrate_decay)
        elif self.optimizer == 'adagrad':
            self.opt = tf.train.AdagradOptimizer(learning_rate=lrate_decay,
                                                initial_accumulator_value=1e-08)
        elif self.optimizer == 'rmsprop' or self.optimizer == 'default':
            self.opt = tf.train.RMSPropOptimizer(learning_rate=lrate_decay,
                                                 epsilon=1e-08)
        else:
            raise Exception(('The optimizer {} is not in list of available ' 
                            + 'optimizers: default, adam, adagrad, rmsprop.')
                            .format(self.optimizer))
        
        # apply learning multiplier on on embedding learning rate
        embeds = [pos_emb.weights, char_emb.weights]
        grads_and_vars = self.opt.compute_gradients(self.y_loss)
        found = 0
        for i, (grad, var) in enumerate(grads_and_vars):
            if var in embeds:
                found += 1
                grad = tf.scalar_mul(self.embedding_factor, grad)
                grads_and_vars[i] = (grad, var)
        
        assert found == len(embeds)  # internal consistency check
        self.train_step = self.opt.apply_gradients(grads_and_vars)        
        
        self.sess.run(tf.global_variables_initializer())
        self.saver = tf.train.Saver(max_to_keep=100)
예제 #7
0
    def _compile(self):
        with self.sess.as_default(): 
            import tensorflow_fold as td
        
        output_size = len(self.labels)
        self.keep_prob = tf.placeholder_with_default(tf.constant(1.0),shape=None)

        fshape = (self.window_size * (self.char_embedding_size + self.char_feature_embedding_size), self.num_filters)
        filt_w3 = tf.Variable(tf.random_normal(fshape, stddev=0.05))

        def CNN_Window3(filters):
            return td.Function(lambda a, b, c: cnn_operation([a,b,c],filters))

        def cnn_operation(window_sequences,filters):
            windows = tf.concat(window_sequences,axis=-1)
            products = tf.multiply(tf.expand_dims(windows,axis=-1),filters)
            return tf.reduce_sum(products,axis=-2)

        char_emb = td.Embedding(num_buckets=self.char_buckets, 
                                num_units_out=self.char_embedding_size)
        
        cnn_layer = (td.NGrams(self.window_size) 
                        >> td.Map(CNN_Window3(filt_w3)) 
                        >> td.Max())

        # --------- char features
        
        def charfeature_lookup(c):
            if c in string.lowercase:
                return 0
            elif c in string.uppercase:
                return 1
            elif c in string.punctuation:
                return 2
            else:
                return 3

        char_input = td.Map(td.InputTransform(lambda c: ord(c.lower())) 
                            >> td.Scalar('int32') >> char_emb)
                            
        char_features = td.Map(td.InputTransform(charfeature_lookup) 
                            >> td.Scalar(dtype='int32') 
                            >> td.Embedding(num_buckets=4,
                                            num_units_out=self.char_feature_embedding_size))

        charlevel = (td.InputTransform(lambda s: ['~'] + [ c for c in s ] + ['~']) 
                        >> td.AllOf(char_input,char_features) >> td.ZipWith(td.Concat()) 
                        >> cnn_layer)        

        # --------- word features
        
        word_emb = td.Embedding(num_buckets=len(self.word_vocab),
                                num_units_out=self.embedding_size,
                                initializer=self.word_embeddings)
        
        wordlookup = lambda w: (self.word_vocab.index(w.lower()) 
                                if w.lower() in self.word_vocab else 0)
        
        wordinput = (td.InputTransform(wordlookup) 
                        >> td.Scalar(dtype='int32') 
                        >> word_emb)
        
        def wordfeature_lookup(w):
            if re.match('^[a-z]+$',w):
                return 0
            elif re.match('^[A-Z][a-z]+$',w):
                return 1
            elif re.match('^[A-Z]+$',w):
                return 2
            elif re.match('^[A-Za-z]+$',w):
                return 3
            else:
                return 4
        
        wordfeature = (td.InputTransform(wordfeature_lookup) 
                        >> td.Scalar(dtype='int32') 
                        >> td.Embedding(num_buckets=5,
                                num_units_out=32))
        
        #-----------
        
        rnn_fwdcell = td.ScopedLayer(tf.contrib.rnn.LSTMCell(
                        num_units=self.rnn_dim), 'lstm_fwd')
        fwdlayer = td.RNN(rnn_fwdcell) >> td.GetItem(0)
        
        rnn_bwdcell = td.ScopedLayer(tf.contrib.rnn.LSTMCell(
                        num_units=self.rnn_dim), 'lstm_bwd')
        bwdlayer = (td.Slice(step=-1) >> td.RNN(rnn_bwdcell) 
                    >> td.GetItem(0) >> td.Slice(step=-1))
        
        rnn_layer = td.AllOf(fwdlayer, bwdlayer) >> td.ZipWith(td.Concat())
        
        output_layer = td.FC(output_size, 
                             input_keep_prob=self.keep_prob, 
                             activation=None)
        
        wordlevel = td.AllOf(wordinput,wordfeature) >> td.Concat()
        
        network = (td.Map(td.AllOf(wordlevel,charlevel) >> td.Concat()) 
                        >> rnn_layer 
                        >> td.Map(output_layer) 
                        >> td.Map(td.Metric('y_out'))) >> td.Void()
    
        groundlabels = td.Map(td.Vector(output_size,dtype=tf.int32) 
                                >> td.Metric('y_true')) >> td.Void()
    
        self.compiler = td.Compiler.create((network, groundlabels))
        
        self.y_out = self.compiler.metric_tensors['y_out']
        self.y_true = self.compiler.metric_tensors['y_true']
        
        self.y_loss = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(
            logits=self.y_out,labels=self.y_true))

        self.y_prob = tf.nn.softmax(self.y_out)
        self.y_true_idx = tf.argmax(self.y_true,axis=-1)
        self.y_pred_idx = tf.argmax(self.y_prob,axis=-1)
        
        self.y_pred = tf.one_hot(self.y_pred_idx,depth=output_size,dtype=tf.int32)
        
        epoch_step = tf.Variable(0, trainable=False)
        self.epoch_step_op = tf.assign(epoch_step, epoch_step+1)
            
        lrate_decay = tf.train.exponential_decay(self.lrate, epoch_step, 1, self.decay)
            
        if self.optimizer == 'adam':
            self.opt = tf.train.AdamOptimizer(learning_rate=lrate_decay)
        elif self.optimizer == 'adagrad':
            self.opt = tf.train.AdagradOptimizer(learning_rate=lrate_decay,
                                                initial_accumulator_value=1e-08)
        elif self.optimizer == 'rmsprop':
            self.opt = tf.train.RMSPropOptimizer(learning_rate=lrate_decay,
                                                 epsilon=1e-08)
        else:
            raise Exception(('The optimizer {} is not in list of available ' 
                            + 'optimizers: default, adam, adagrad, rmsprop.')
                            .format(self.optimizer))
        
        # apply learning multiplier on on embedding learning rate
        embeds = [word_emb.weights]
        grads_and_vars = self.opt.compute_gradients(self.y_loss)
        found = 0
        for i, (grad, var) in enumerate(grads_and_vars):
            if var in embeds:
                found += 1
                grad = tf.scalar_mul(self.embedding_factor, grad)
                grads_and_vars[i] = (grad, var)
        
        assert found == len(embeds)  # internal consistency check
        self.train_step = self.opt.apply_gradients(grads_and_vars)        
        
        self.sess.run(tf.global_variables_initializer())
        self.saver = tf.train.Saver(max_to_keep=100)
def build_encoder(z_size, token_emb_size):
    input_sequence = td.Map(td.Vector(token_emb_size))
    encoder_rnn_cell = build_program_encoder(default_gru_cell(2 * z_size))
    output_sequence = td.RNN(encoder_rnn_cell) >> td.GetItem(0)
    mus_and_log_sigs = output_sequence >> td.GetItem(-1)
    return input_sequence >> mus_and_log_sigs
예제 #9
0
def build_VAE(z_size, token_emb_size):
    c = td.Composition()
    c.set_input_type(td.SequenceType(td.TensorType(([token_emb_size]), 'float32')))
    with c.scope():
        # input_sequence = td.Map(td.Vector(token_emb_size)).reads(c.input)
        input_sequence = c.input

        # encoder composition TODO: refactor this out
        # rnn_cell = td.ScopedLayer(
        #     tf.contrib.rnn.LSTMCell(
        #         num_units=2*z_size,
        #         initializer=tf.contrib.layers.xavier_initializer(),
        #         activation=tf.tanh
        #     ),
        #     'encoder'
        # )
        encoder_rnn_cell = td.ScopedLayer(
            tf.contrib.rnn.GRUCell(
                num_units=2*z_size,
                # initializer=tf.contrib.layers.xavier_initializer(),
                activation=tf.tanh
            ),
            'encoder'
        )
        output_sequence = td.RNN(encoder_rnn_cell) >> td.GetItem(0)
        mus_and_log_sigs = output_sequence >> td.GetItem(-1)

        # reparam_z = mus_and_log_sigs >> td.Function(resampling)
        reparam_z = td.Function(resampling, name='resampling')
        reparam_z.set_input_type(td.TensorType((2 * z_size,)))
        reparam_z.set_output_type(td.TensorType((z_size,)))

        #  A list of same length of input_sequence, but with empty values
        #  this is used for the decoder to map over
        list_of_nothing = td.Map(
            td.Void() >> td.FromTensor(tf.zeros((0,)))
        )

        # decoder composition
        # TODO: refactor this out
        # decoder_rnn = td.ScopedLayer(
        #     tf.contrib.rnn.LSTMCell(
        #         num_units=z_size,
        #         initializer=tf.contrib.layers.xavier_initializer(),
        #         activation=tf.tanh
        #     ),
        #     'decoder'
        # )
        decoder_rnn = td.ScopedLayer(
            tf.contrib.rnn.GRUCell(
                num_units=z_size,
                # initializer=tf.contrib.layers.xavier_initializer(),
                activation=tf.tanh
            ),
            'decoder'
        )
        decoder_rnn_output = td.RNN(
            decoder_rnn,
            initial_state_from_input=True
        ) >> td.GetItem(0)

        fc_layer = td.FC(
            token_emb_size,
            activation=tf.nn.relu,
            initializer=tf.contrib.layers.xavier_initializer()
        )

        un_normalised_token_probs = decoder_rnn_output >> td.Map(fc_layer)

        # reparam_z.reads(input_sequence)
        mus_and_log_sigs.reads(input_sequence)
        reparam_z.reads(mus_and_log_sigs)
        list_of_nothing.reads(input_sequence)
        un_normalised_token_probs.reads(list_of_nothing, reparam_z)

        c.output.reads(un_normalised_token_probs, mus_and_log_sigs)
    return c